
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Informatics in Medicine Unlocked 16 (2019) 100225

Available online 15 August 2019
2352-9148/© 2019 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

A non-contact infection screening system using medical radar and 
Linux-embedded FPGA: Implementation and preliminary validation 

Cuong V. Nguyen a, Truong Le Quang a, Trung Nguyen Vu b,c, Hoi Le Thi b, Kinh Nguyen Van b, 
Thanh Han Trong a, Tuan Do Trong a, Guanghao Sun d,e,*, Koichiro Ishibashi d 

a School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, 100000, Viet Nam 
b National Hospital of Tropical Diseases, Hanoi, Viet Nam 
c Hanoi Medical University, Hanoi, Vietnam, Hanoi, Viet Nam 
d Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, 182-8585, Japan 
e Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, 182-8585, Japan   

A R T I C L E  I N F O   

Keywords: 
Infection screening 
Embedded system 
Field programmable gate array 
Digital signal processing 
Machine learning 

A B S T R A C T   

Objectives: In this study, an infection screening system was developed to detect patients suffering from infectious 
diseases. In addition, the system was also designed to deal with the variability in age and gender, which would 
affect the accuracy of the detection. Furthermore, to enable a low-cost, non-contact and embedded system, 
multiple vital signs from a medical radar were measured and all algorithms were implemented on a Field Pro
grammable Gate Array, named PYNQ-Z1. 
Methods: The system consisted of two main stages: digital signal processing and data classification. In the former 
stage, Butterworth filters, with flexible cut-off frequencies depending on age and gender, and a time-domain peak 
detection algorithm were deployed to compute three vital signs, namely heart rate, respiratory rate, and standard 
deviation of heart beat-to-beat interval. For the classification problem, two machine learning models, Support 
Vector Machine and Quadratic Discriminant Analysis, were implemented. 
Results: The Student’s t-test showed that our proposed digital signal processing algorithms coped well with the 
variability of human cases in age and gender. Meanwhile, the f1-score of roughly 98.0% represented the high 
sensitivity and specificity of our proposed machine learning methods. 
Conclusion: This study outlines the implementation of an infection screening system, which achieved competent 
performance. The system might be beneficial for fast screening of infected patients at public health centers in 
underdeveloped areas, where people have little access to healthcare.   

1. Introduction 

With the widespread epidemics of influenza [1], the Middle East 
Respiratory Syndrome (MERS) [2], or the Ebola hemorrhagic fever [3] 
in recent years, it is imperative to diagnose the presence of infection at 
mass gathering places. Our previous studies were conducted focusing on 
the noncontact dengue fever detecting systems based on multiple vital 
signs using medical radar and thermography. For example, [4–7] 
developed methods that processed the recorded signal to obtain heart 
rate (HR) and respiratory rate (RR) by built-in algorithms, namely 
Autocorrelation, Fast Fourier transform (FFT) and Multiple Signal 
Classification (MUSIC), on computer software. However, those research 
studies used built-in algorithms with fixed parameters regardless of the 

age and sex of subjects, which could reduce the accuracy of the system. 
Regarding the task of discriminating patients with infectious diseases, 
[6] employed the Linear Discriminant Analysis method on a small 
dataset of 18 samples, which achieved an indifferent accuracy level of 
88.9%. Moreover, [8–10] employed sophisticated methods using Neural 
Networks. However, this approach required high computational 
complexity to train the Neural Network, partly because it was suscep
tible to the variability in age and gender. 

In this study, several signal processing and machine learning classi
fication algorithms were employed to improve the performance of both 
tasks. To measure vital signs, a Digital Butterworth filter [11] and a 
simple time-domain peak detection algorithm were deployed to process 
the signal acquired from medical radar. To deal with the variability in 
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HR [12] and RR [13,14] depending on age and gender, instead of the 
inflexible methods used in Refs. [4–7], filters with flexible cut-off fre
quencies were designed in this work. For the classification problem, two 
machine learning models, namely Support Vector Machine (SVM) [15] 
and Quadratic Discriminant Analysis (QDA) [16] were used, with a far 
larger dataset of 101 samples, than the 18-sample dataset in Ref. [6], to 
increase the classification accuracy. Moreover, those algorithms were 
implemented on a Field Programmable Gate Array (FPGA), since one of 
the long range objectives of this study is to enable a low-cost, portable, 
and standalone system, which would be beneficial for public health 
centers in underdeveloped areas, where people have little access to 
healthcare, thus they have higher risks of succumbing to infectious 
diseases. FPGAs have been widely used for multiple signal processing 
problems, especially filtering [17,18], due to their flexible and recon
figurable structure. Moreover, research focusing on FPGA implementa
tions of machine-learning problems, such as classification, has been 
thriving in recent years [19–21], since the flexibility, parallelism and 
energy- efficiency of FPGAs are beneficial for accelerating complicated 
work. In this study, the FPGA called PYNQ-Z1 was employed to imple
ment all signal processing and classification algorithms. 

2. Materials and methods 

2.1. The PYNQ-Z1 board 

The PYNQ-Z1 board [22] is designed to be used with the PYNQ 
opensource framework, which is described in Fig. 1. The framework 
enables embedded programmers to deploy All Programmable 
System-on-Chip (APSoC) platforms without having to use hardware 
description languages such as Verilog to design combinational or 
sequential logic circuits. At the hardware level, programmable logic 
circuits of the FPGA are presented as libraries called overlays. These 
overlays are analogous to software libraries and can be accessed through 
an application programming interface (API). On the other hand, 
regarding the software level, a high-level programming language, Py
thon, with the Jupyter Notebook design environment [23], as well as the 
kernels of the Linux operating system, can be deployed for high per
formance embedded application. The PYNQ-Z1 board combines all of 
the above elements of both software and hardware levels to simplify and 
improve APSoC design. 

In this study, the capabilities of the PYNQ-Z1 were exploited to 
enable a low-cost and portable platform. Specifically, the software level 
of the board enabled the implementations of all algorithms in Python for 
both the signal processing and classification tasks. Instead of inflexible 
built-in algorithms on computer software [4–7], flexible digital filters 
were designed to process the radar signal. The filters were designed with 
SciPy [24], a Python library for mathematics, science, and engineering. 
In addition, SVM and QDA classifiers could also supplant complicated 

Neural Networks [8–10] deployed on bulky and expensive computers or 
workstations. The two classifiers were implemented on the board using 
scikit-learn [25], a framework supporting many machine learning 
algorithms. 

2.2. Overview of the embedded screening system 

Fig. 2 provides overall information about the system. The medical 
radar (NJR 4262J, Japan), which has the frequency range from 24.05 to 
24.25 GHz transmitted microwave to the person’s chest and received the 
reflected wave, which contained both the cardiac and respiratory fre
quency components due to the Doppler effect [6]. The signal was 
monitored for 30 seconds, then it was transferred to the board for 
processing. 

A digital band-pass filter extracted the cardiac frequency component 
from the signal, then a peak detection algorithm was used to obtain HR 
and Standard deviation of heart beat-to-beat interval (SDHI). Similarly, 
the respiratory component was extracted by a digital low-pass filter, 
then passed to the peak detection algorithm to compute the RR. 

From a machine learning perspective, the signal processing stage 
performs as a feature extraction process [26], which transforms raw data 
into a reduced set of features containing relevant information of the 
original. This process, therefore, reduces the complexity of following 
classification algorithms, which take the small set of relevant features as 
input. In this study, each digital signal was processed to generate 3 
features, which were HR, SDHI and RR. Then, those 3 features were 
passed to a classification algorithm. With such a small number of fea
tures, machine-learning-based algorithms, such as SVM and QDA can 
perform well, and they should not be inferior to deep-learning complex 
structures like Neural Network. Therefore, in this study, the SVM and 
QDA classifiers were chosen and implemented. 

The performance time of the system was also evaluated, which 
consisted of all amounts of time taken for running algorithms on the 
PYNQ-Z1 board. The performance time was measured after the 30-sec
ond recording time by the medical radar. Assessing performance time 
should be vital for practical purposes, since if negligible, the screening 
result of the subject could be displayed promptly; thus a real-time 
platform could be enabled. 

2.3. Data acquisition 

Machine learning algorithms often require a large dataset for 
training, depending on the complexity of the problem, the number of 
classes and input features. The size of each class in the dataset should be 
similar. In this study, experiments were conducted on the un
dergraduates at Hanoi University of Science and Technology (HUST), 41 
males and 13 females, aged from 18 to 22, who did not have any illnesses 
over the measurement period, and 54 samples were collected for the 
healthy class. For the infected group, the 3 vital signs of 47 dengue fever 
patients, 26 males and 21 females, from 15 to 77 years of age, were 
measured at the National Hospital of Tropical Diseases (NHTD), Hanoi, 
Vietnam, from July 31 to August 2, 2017. In total, the dataset has 101 
samples of both healthy and infected classes, which is far larger than the 
18-samples dataset used in Ref. [6]. This joint research’s data acquisi
tion was approved by the Ethics Committee of the NHTD, HUST and the 
University of Electro-Communications (UEC). 

2.4. Digital signal processing 

The system consisted of two main stages: Digital signal processing 
and data classification. The first stage, including two forms of digital 
filters, band-pass and low-pass filter, and the peak detection algorithm 
in time domain, was designed to calculate the 3 vital signs HR, SDHI, RR 
of a person from the radar signal. Fig. 1. Overview of the PYNQ framework.  
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2.4.1. Digital Butterworth filter 
The signal recorded by the medical radar contained cardiac, respi

ratory information, and high-frequency noise [6]. The primary purpose 
of our filtering method was to eliminate unwanted frequency compo
nents. The frequency of the heartbeat was greater than that of the 
respiration [27] and lower than the noise [6]; therefore, a band-pass 
filter was applied for calculating the HR. Similarly, a low-pass filter 
was employed for RR measurement, to remove both the cardiac and 
noise frequency ranges. The digital filters required a parameter of 
normalized frequency fn [28], which was related to the analog frequency 
fa [Hz] and the sampling rate fs ¼ 100 [samples/second] in this study by 
Equation (1). The unit of the normalized frequency fn is half-cycles per 
sample (hcps). 

fn¼ 2�
fa

fs

�

hcps
�

(1) 

A third-order band-pass and a fifth-order low-pass Butterworth filter 
were implemented on the PYNQ-Z1 board. By comparing the HR and RR 
results calculated by different filter orders with the results calculated by 
reference methods, the third and the fifth orders appeared to produce 
the most reliable HR and RR outcomes, respectively. 

2.4.2. Time-domain peak detection algorithm 
The next step was to detect all peaks in the filtered signal. A low- 

complexity algorithm was designed, which found all local maxima in 
the filtered signal, whose differences with the two adjacent troughs were 
higher than a threshold. The elaborate procedure was described in Al
gorithm 1. 

Algorithm 1. Time-domain peak detection.

2.4.3. Heart rate measurement 
A person’s heart rate normally ranges between 60 and 100 beats per 

minute (bmp) [29], while patients suffering from dengue haemorrhagic 
fever have higher heart rates [30]. In addition, the heart rate range also 
varies according to this problem, since there is no parameter which can 
be optimal for all human cases. In this study, to address with the prob
lem, band-pass filters were designed with different cut-off frequency 
ranges by sex for four age groups, and the heart rate range was expanded 
to cover the infected case, as shown in Table 1. 

With the sampling rate fs ¼ 100 [cycles/sample], the normalized 
higher and lower cut-off frequencies of the band-pass filter were 
computed, as shown in Equations (2) and (3). For example, with the 
heart rate range [50, 140] [bpm], equivalent to [0.83, 2.33] beats per 
second: 

fLn ¼ 2�
0:83
100
¼ 0:017

�

hcps
�

(2)  

fHn¼ 2�
2:33
100
¼ 0:047

�

hcps
�

(3) 

Applying the peak detection algorithm for the filtered signal, the HR 
can be obtained by: 

HR¼
npeaks

tm
� 60

�

bpm
�

(4) 

In Equation (4), npeaks is the total number of peaks that were detected, 
and tm is the measuring time in seconds. 

2.4.4. Standard deviation of heart beat-to-beat interval 
The standard deviation is a statistical measure that indicates the 

amount of variation in a dataset. The heart beat-to-beat interval is the 
time between consecutive heartbeats, which can be measured as the 
duration between consecutive peaks in the filtered signal. According to 
Ref. [31], the SDHI of a normal person should be higher than that of an 
infected patient, due to the phenomenon of respiratory sinus arrhythmia 
(RSA) [32]. Therefore, the SDHI should be a beneficial feature to 
improve the accuracy of diagnosis. Statistically, it is calculated by the 
following formula: 

Fig. 2. Block diagram of the system.  

Table 1 
Heart rate range and normalized cut-off frequency by age and sex.  

Gender 10–29 30–49 50–69 70–99 

Male (HR range 
[bpm]) 

50–140 45–130 45–125 40–120 

Male (Cut-off 
[hcps]) 

0.017–0.047 0.015–0.043 0.015–0.042 0.013–0.040 

Female (HR range 
[bpm]) 

55–140 50–135 40–125 40–120 

Female (Cut-off 
[hcps]) 

0.018–0.047 0.017–0.045 0.013–0.042 0.013–0.040  
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SDHI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
Xn

i¼1
ðxi � μÞ2

s "

s

#

(5) 

In Equation (5), n ¼ (npeaks- 1) is the number of heart beat-to-beat 
intervals, xi[s] is the ith heart beat-to-beat inter-val, which is the time 
between two consecutive peaks ith and (iþ1)th, μ[s] is the mean value of 
all heart beat-to-beat intervals xi in the band-pass filtered signal. 

2.4.5. Respiratory rate measurement 
The respiratory rate range varies significantly according to age, 

especially from birth to 18 years of age [13]. The range of children and 
adolescents, from 18 to 30 breaths per minute [BPM], tends to higher 
than that of adults, which is from 12 to 20 [BPM] [14]. Therefore, the 
inflexible methods used in Refs. [4–7] should be highly influenced by 
this variability. In this study, to measure the subjects’ respiratory rate 
more accurately, a low-pass filter was designed with different cut-off 
frequencies: 30 [BPM] (0.5 breaths per second) if the subject is aged 
18 or more, and 20 [BPM] (0.33 breaths per second) otherwise. Similar 
to the HR calculation method, the low-pass filter was applied with the 
normalized cut-off frequencies fCn1 and fCn2 obtained by: 

fCn1¼ 2�
0:5
100
¼ 0:01

�

hcps
�

(6)  

fCn1¼ 2�
0:5
100
¼ 0:01

�

hcps
�

(7) 

After the peak detection stage, the RR was computed by Equation (8): 

RR¼
npeaks

tm
� 60

�

BPM
�

(8) 

The frequency responses of the band-pass and low-pass filters, with 
normalized cut-off frequencies of [0.017, 0.047] and 0.01 [hcps], were 
illustrated in Fig. 3, in solid red and dashed blue curves, respectively. 
The normalized cut-off frequencies of the two filters were showed in thin 
dotted vertical lines as well. 

2.5. Data classification 

The two classification algorithms proposed in this paper were SVM 
and QDA. This section briefly provides the mathematical concepts of 
those methods. 

2.5.1. Quadratic Discriminant Analysis 
The QDA algorithm [16] assumes that the dataset follows a Gaussian 

distribution X ~ Nðμk;
P

kÞ, with each class having different covariance 

matrices, 
P

1 and 
P
� 1, as well as different mean values, μ1 and μ� 1. One 

of the most fundamental concepts of the QDA is the quadratic discrim
inant function of each class, which is defined for class k as: 

δk

�

x
�

¼ �
1
2

�

x � μk

�TX� 1

k
ðx � μk

!

�
1
2

log

�
�
�
�
�

X

k
j þ logπk (9) 

The aim of the training phase, as described in Algorithm 2, is to 
compute all covariance matrices 

P
kwith mean values μk, and πk from 

the labelled dataset, so that the quadratic discriminant function δk of an 
unknown point x with respect to class k can be calculated. The term πk is 
the priori probability of class k to the entire dataset. 

Algorithm 2. QDA Training phase 
Input: Data matrix Xðm�nÞ, containing m samples of n-dimensional 

vectors. 
Output: Covariance matrices and mean values of all classes: ð

P
k;μkÞ, 

k  ¼ 1, 2, …, m  

1 Compute the mean of each class: 

μk ¼
1

mk

X
xi; 8xi 2 class⋅k  

mk is the number of samples of class k in the dataset.  

2 Calculate the priori probability of each class: 

πk ¼
mk

m    

3 Compute the covariance matrix of each class: 
X

k
¼

1
mk

X
ðxi � μkÞðxi � μkÞ

T
8xi 2 class⋅k 

In the testing phase, given the unknown n-dimensional data x, by 
applying (9) the discriminant functions fδ1; δ� 1g of x were obtained with 
respect to the two classes. The classification rule assigns the unknown 
data x to the class that has the greater discriminant functions, based on 
the following classification rule: 

y� ðxÞ ¼ argmax
k

δkðxÞ (10)   

2.5.2. Support Vector Machine 
The idea of the SVM algorithm [15] is to find an optimized classifier 

that maximizes the geometric margins between the decision boundary 
and the two classes. All points x on the decision boundary must satisfy 
Equation (11): 

ωT xþ b ¼ 0 (11) 

In (11), ðω; bÞ are the parameters obtained through the training 
phase. The geometric margin γi of the decision boundary with respect to 
a sample ðxi; yiÞ in the training set is defined in Equation (12): 

γi ¼ yi

 �
ω
jjωjj

�T

xi þ b

!

(12) 

The need to maximize the geometric margin leads to the constrained 
optimization problem shown in (13): 

min
γ;ω;b

1
2

�
�
�
�

�
�
�
�ω
�
�
�
�j

2
; subject ​ to:yi

�
ωT xi þ b

�
� 1 8xi 2 X (13) 

The problem above can be solved by Lagrange duality [33] and 
sequential minimal optimization problem (SMO) [34], obtaining the 
optimal values of ðω;bÞ. 

Then, at the testing phase, the SVM classifies an unknown sample x Fig. 3. Frequency responses of Butterworth filters.  
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based on the hypothesis function: 

hω;bðxÞ ¼
�

1; if : ωT xþ b � 0
� 1; otherwise (14) 

The labels 1 and -1 in (14) denote the healthy and infected classes, 
respectively. 

On the other hand, the training phase produces a set of points which 
are closest to the decision boundary, called the support vectors. The 
benefit of those support vectors is that when predicting the label of a 
new point x, following the property of the Lagrange duality: 

ωT xþ b ¼
Xm

i¼1
αiyi⟨x; xi⟩ (15) 

All of the Lagrange multipliers αi of all points xi in the dataset are 
zero except for support vectors. Hence, many terms in Equation (15) are 
zero, and the computational cost is significantly reduced. 

2.5.3. Hyperparameter optimization 
In machine learning, hyperparameters [35] are parameters which 

are set before the learning process commences. They are different from 
the parameters of a model generated after the learning process. Different 
algorithms require different hyperparameters. Hyperparameter optimi
zation, or hyperparameter tuning [35], is the process in which optimal 
hyperparameters are chosen for a learning algorithm, to produce the 
best model for a specific problem. There are several methods for opti
mization, such as grid search and random search [36]. Grid search finds 
the optimal choice by choosing exhaustively from a set of hyper
parameters; thus it guarantees that the optimal hyperparameters in the 
set will be found. However, its drawback is that when the model needs a 
number of hyperparameters, the optimizing process can be very 
time-consuming. Random search, on the other hand, searches the given 
set randomly, ignoring a certain number of values; thus it is much less 
time-consuming, but there is no guarantee that the result is the optimal 
combination of hyperparameters. 

The QDA algorithm does not require any hyperparameter, since its 
training and testing phase can be done sequentially by algebraic oper
ations, while the SVM often has a penalty hyperparameter C of the error 
term [15]. Because there was only one hyperparameter that needed 
optimizing, a grid search was employed in this study to find the optimal 
value of C for the SVM model. 

2.6. Assessment methods 

Firstly, to assess the accuracy of our proposed approach in measuring 
vital signs, reference measurements were conducted simultaneously and 
independently for comparisons. Specifically, the heart rates of all 101 
subjects calculated by our method were compared with the ones ob
tained from a photoplethysmography (PPG) sensor. The PPG signal were 
processed by a Heart Rate Analysis Toolkit [37] to measure the reference 
heart rates. For the respiratory rate, the reference values were measured 
by manually counting how many times the subject’s chest rises during 
the 30-second monitoring period. Three staff separately did the count to 
obtain a reliable reference. 

Our filtering method, with different orders of the band-pass and low- 
pass Butterworth filters, namely the 2nd, 3rd, 4th, 5th and 6th, was 
compared with the reference measures. A Student’s t-test [39] was 
employed to find the most appropriate orders. The test showed whether 
the means of two samples are different from each other, and how sig
nificant the differences are, based on statistical computation. In this 
study, to evaluate the performance of the signal processing stage, the 
t-test was applied for the vital signs obtained by our proposed method 
and the reference methods. 

Secondly, to evaluate the accuracy of the two classification mea
sures, the k-fold cross-validation method [40] was employed. The entire 
dataset was shuffled randomly and split into k similar-in-size disjoint 

subsets. (k - 1) subsets were used for training, and the remaining subset 
was used for testing, which is also called the hold-out cross-validation 
set. The model made predictions of all samples in the holdout set, and by 
comparing those with the ground truth class labels, all evaluation met
rics such as training accuracy, precision, recall and f1-score [41] were 
collected. The process is repeated k times, which means each subset is 
used 1 time as the hold-out set and (k – 1) times for the training stage. 

The precision (P) and the recall (R) are defined as: 

P ¼
TruePositive

TruePositiveþ FalsePositive
(16)  

R ¼
TruePositive

TruePositiveþ FalseNegative
(17) 

The precision score measures the accuracy of a machine learning 
model in terms of false positive cases, i.e., the number of infected pa
tients predicted to be healthy. The lower the false positive cases, the 
higher the precision of the model. Meanwhile, the recall score gives 
information about false negative cases, which is the number of pre
dictions that a person has an infectious disease but is actually healthy. In 
the context of disease screening, it appears that ignoring infected pa
tients is far more severe than misdiagnosing healthy people; thus the 
precision makes more sense than the recall in terms of evaluating a 
model. 

The f1-score is an overall statistical measure that combines and 
balances both the precision and recall values; thus it is the most suitable 
metric for model evaluation. 

f1¼ 2�
PR

Pþ R
(18) 

In this study, 4-fold cross validation (k ¼ 4) was chosen, which 
means that each subset constitutes 25% of the entire dataset. To make a 
reliable assessment about the robustness of a classifier, especially when 
shuffling the dataset before splitting, the 4-fold cross validation was 
conducted 10 times repeatedly to obtain the average and standard de
viation (STD) of evaluation metrics. 

However, the cross-validation method was not used to measure the 
training and testing time of the two classifiers, since this method 
reduced the size of the dataset used for training. Instead, the entire 
dataset containing the 3 vital signs of 101 objects was used for training, 
and only one test case was used for testing. 

3. Results 

Fig. 4 illustrates the results of the digital signal processing stage and 
how the three vital signs were computed. In the second subplot, through 
the band-pass filter, all of the high-frequency noise and respiratory in
formation in the original signal were eliminated, to produce the HR from 
the extracted cardiac frequency component. The third subplot illustrates 
the waveform of a reference cardiac signal, monitored by the PPG sensor 
simultaneously with the radar signal. Meanwhile, the fourth subplot 
shows the low-pass filtered signal, which contains information to 
calculate the RR. All red dots represent the peaks detected in the two 
signals after filtering, by applying Algorithm 1. Then using (4), (5) and 
(8), with the measuring time tm ¼ 30s, 32 peaks in the cardiac, and 8 
peaks in the respiratory filtered signals, the 3 vital signs were obtained: 
HR ¼ 64 [bpm], SDHI ¼ 0.21 [s], RR ¼ 16 [BPM]. 

Table 2 and Table 3 show the assessment of the accuracy of our signal 
processing method, in comparison with the reference methods by the 
PPG sensor and manual counting for HR and RR, respectively. A t-test 
was conducted, with the null hypothesis that the two results are different 
from each other. t-value and p-value are two metrics of the test. The 
lower the absolute of the t-value, the more similarity between the results 
of the two methods. Meanwhile, if the p-value, from 0 to 1, was smaller 
than a threshold, typically 0.05, the null hypothesis that there is no 
significant difference between the two methods could be rejected. In 
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Table 2, the 3rd-order filter produced the best performance for heart rate 
measurement, with t-value ¼ 0.11 and p-value ¼ 0.03. Similarly, Table 3 
indicates that the 5th, with t-value ¼ 0.09 and p-value ¼ 0.03, was the 
most appropriate order for calculating the respiratory rate. 

In addition, three previous methods to measure vital signs from the 
digital radar signal, namely Auto-Correlation [4], FFT [5,6] and MUSIC 
[7], were also evaluated by the t-test with the reference method. Those 
measures were operated on our dataset of 101 subjects. Tables 2 and 3 
show that the performance of our proposed filtering method should be 
superior to the three methods, since [6] employed those three as rigid 

built-in algorithms, with fixed parameters, which were more susceptible 
to the variability of human cases. 

Table 4 compares the 3 signal processing phases in terms of the 
average amount of time taken to obtain the three vital signs from a signal 
recorded in 30 seconds by the medical radar. It is evident that the peak- 
detecting process accounted for by far the highest amount, approxi
mately 80% of the total. Meanwhile, since the calculation of HR and 
SDHI require two same steps of band-pass filtering and peak detecting, 
the gross processing time of both the two features was reduced to 
approximately 35.87 ms. In total, the signal processing stage on the 
board took about 70 ms. 

Fig. 5 visualizes pairs of the 3 vital signs HR, SDHI, and RR calculated 
from the signal processing stage, of all healthy and infected people 
included in our research study. It is clear that the HR and RR of ordinary 
people appeared to be lower than those of the unhealthy, while the 
converse can be seen in the SDHI. 

The grid search was used for tuning the hyperparameter C of the SVM 

Fig. 4. Original, filtered and reference signals.  

Table 2 
Assessment of heart rate measurement.  

Metrics 2nd 3rd 4th 5th 6th Auto-Correlation FFT MUSIC 

t-value 0.21 0.11 0.13 0.22 0.29 0.21 0.19 0.16 
p-value 0.16 0.03 0.11 0.18 0.23 0.19 0.15 0.10  

Table 4 
Digital signal processing time (ms) on the board.  

Vital sign Filtering Peak detecting Calculating Total 

HR 5.7 29.6 0.07 35.37 
SDHI 5.7 29.6 0.5 35.80 
RR 4.7 29.6 0.01 33.61  

Table 3 
Assessment of respiratory rate measurement.  

Metrics 2nd 3rd 4th 5th 6th Auto-Correlation FFT MUSIC 

t-value 0.59 0.31 0.24 0.09 � 0.46 0.27 0.22 0.18 
p-value 0.38 0.25 0.19 0.03 0.36 0.21 0.18 0.14  
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model, ranging from 1 to 100, with the evaluating metrics f1-score. The 
results showed that the value C ¼ 45 seems to be optimal, with which the 
SVM model achieved the highest f1-score of 97.9%. 

The solid green parabolas and dashed purple lines represent the 2-D 
decision boundaries of the QDA and SVM algorithms, respectively. The 
decision boundary of the linear-kernel SVM [42] is a straight line, while 
that of the QDA algorithm is a parabolic curve. It can be seen that the 
two classifiers distinguished the 2 classes quite separately, and subse
quent results quantitatively show that both the SVM and the QDA 
measures achieved high precision, recall, and f1-scores. 

Table 5 compares the performance of the SVM and the QDA models. 
In the training phase, the SVM model generated higher accuracy than 
the QDA. In contrast, all the metrics with regard to the testing phase of 
the QDA were slightly higher. 

The average predicting time of the QDA algorithm for one test case 
was approximately 1.63 ms, significantly higher than the 1.04 ms value 
of SVM. These results could be attributed to (9) and (15), which show 
that the QDA required more complicated operations with the covariance 
matrices, such as determinant and inverse, than solely dot product and 
addition of the SVM. In contrast, the SVM required 403 ms for training 
the model, nearly 90 times as high as the training time of the QDA. It was 
probably because the SVM includes an iterative procedure to solve the 
constrained optimization problem, whereas training the QDA classifier 
only requires a fixed number of steps for basic matrix operations. In 
practical purposes, all machine learning models can be trained prior to 
testing; thus the predicting time appears to outweigh the training time. 
Therefore, on balanced, the performance of the SVM model appeared to 
be superior. 

4. Discussion 

4.1. Main findings 

In Tables 2 and 3, the small absolute t-value and p-value, around 0.10 
and 0.03 respectively, show that our proposed methods that used flex
ible cut-off frequencies of Butterworth filters coped well with the vari
ability in vital signs depending on age and sex. Therefore, the 
measurements of heart rate and respiratory rate were more accurate. 

Table 5 shows the negligible difference between the SVM and the 

QDA models regarding precision, recall, and f1-score. Overall, the two 
classifiers distinguished the healthy and infected classes quite accu
rately, as they both achieved f1-scores of about 98.0%, significantly 
higher than the accuracy of 88.9% of the Linear Discriminant Analysis in 
Ref. [6]. Those models were also not inferior to the complicated Neural 
Networks used in Refs. [8,10], which achieved an accuracy of 97.1% and 
98.0%. Additionally, low standard deviations of all the metrics indicate 
that the two classifiers are robust and less susceptible to overfitting [43]. 
Moreover, the far larger dataset of 101 samples contributed to the 
robustness of our approach, compared with the dataset of 18 samples in 
Ref. [6]. Furthermore, mitigating the effects of variability in human 
cases in the preceding signal processing stage also benefited the per
formance of the two models. 

4.2. Limitations 

The total performance time on the PYNQ-Z1 board was nearly 72 ms, 
including 70 ms of signal processing and about 2 ms to make a binary 
prediction, which was negligible compared with the 30s for monitoring 
the signal via medical radar. On one hand, the longer the measuring 
time, the better the estimates of vital signs, as both the HR and RR in (4) 
and (8) are susceptible to how long the radar signal is monitored. On the 
other hand, 30 seconds is rather long for practical applications. 
Furthermore, the dataset of 101 subjects with only 3 features per sam
ple, as well as the narrow age range of the healthy group, might be other 
limitations of our study. 

5. Conclusion 

In this research, we developed the embedded infection screening 
system, exploiting the capabilities of the PYNQ-Z1 board. Specifically, 
algorithms for digital signal processing and data classification were 
implemented. The flexible parameters of Butterworth filters mitigate the 
effects of the variability of human cases, which improved the accuracy of 
measuring vital signs. Two machine learning models, SVM and QDA, 
were also proposed for classification, to increase the sensitivity and 
specificity of the system. The results show that the proposed algorithms 
achieved good performance. 

The low-cost embedded system has considerable potential for 

Fig. 5. Data visualization.  

Table 5 
Assessment of the two classification algorithms.  

Model Training time (ms) Training accuracy Predicting time (ms) Precision Recall f1-score 

QDA 4.63 98.5% 1.63 98.1% 98.0% 98.1% 
STD 0.1% 0.1% 0.09 0.013% 0.012% 0.014% 
SVM 403 98.8% 1.04 98.0% 97.8% 97.9% 
STD 0.12% 0.1% 0.06 0.6% 0.6% 0.6%  
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practical purposes. In future work, we intend to measure additional vital 
signs such as blood pressure and oxygen saturation and increase the 
number of people from different age groups involved in our research, as 
well as reduce the monitoring time of the system, while maintaining the 
competent and robust performance. 
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