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Pluripotent embryonic stem cells (ESCs) contain the potential to
form a diverse array of cells with distinct gene expression states,
namely the cells of the adult vertebrate. Classically, diversity has
been attributed to cells sensing their position with respect to
external morphogen gradients. However, an alternative is that
diversity arises in part from cooption of fluctuations in the gene
regulatory network. Here we find ESCs exhibit intrinsic heteroge-
neity in the absence of external gradients by forming intercon-
verting cell states. States vary in developmental gene expression
programs and display distinct activity of microRNAs (miRNAs).
Notably, miRNAs act on neighborhoods of pluripotency genes to
increase variation of target genes and cell states. Loss of miRNAs
that vary across states reduces target variation and delays state
transitions, suggesting variable miRNAs organize and propagate
variation to promote state transitions. Together these findings
provide insight into how a gene regulatory network can coopt
variation intrinsic to cell systems to form robust gene expression
states. Interactions between intrinsic heterogeneity and environ-
mental signals may help achieve developmental outcomes.
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Alan Turing first proposed the existence of chemical “mor-
phogens” that could impart pattern formation during de-

velopment (1). Later, Lewis Wolpert proposed that gradual
differences in morphogen concentrations across cells’ external
environment could suffice to define many different patterns (2–4).
While organisms such as Drosophila and Xenopus develop by
utilizing maternally deposited asymmetric morphogen gradients,
mammals are unique because early stages of development take
place without such obvious gradients (5). Investigations have
aimed to recapitulate aspects of mammalian embryonic develop-
ment through mixing cell types that signal to each other or sup-
plying specified agonists in culture medium, often with external
scaffolds to help organize cells (6–9). These studies have revealed
“self-organized” body patterning axes, with formation of these
axes relying to differing extents on the external signals provided by
morphogens or scaffolds. Embryonic stem cells (ESCs) have
proven to be particularly useful models for self-organizing pro-
cesses that may shape the early embryo (6, 10, 11). Yet, the extent
to which genetically identical cells can inherently generate di-
versity without external signals has remained less clear, as has a
mechanism for such a phenomenon. This would require the gene
regulatory network to give a variable output across cells that re-
ceive similar input. Prevailing views ascribe spontaneously arising
cell-to-cell variation in gene expression to stochastic processes at
gene loci, which include phenomena such as transcriptional
bursting (12–19). However, an alternative hypothesis is that nat-
urally arising variation within cell systems can be coordinated
across multiple, specific loci by gene regulatory elements and
coopted by the cell to enable diversification.

In ESCs, the core transcriptional regulatory network consists
of pluripotency genes such as Pou5f1 (Oct4), Sox2, and Nanog
(together “OSN”) (20–23). This regulatory network also contains
microRNAs (miRNAs), small RNAs that bind and regulate
genes in mammals through Argonaute (Ago) effector proteins
(24), of which Ago2 is the principally active form in mammals.
ESCs are known to express Nanog and Sox2 in a variable, het-
erogeneous fashion across cell populations (15, 25–30). The
degree of cell-to-cell variation for Nanog and Sox2 is higher than
that observed for Oct4 (15, 31, 32), though the molecular basis of
this difference is unknown, as is the basis of Nanog and Sox2
heterogeneity. Additionally, the full extent to which the core
ESC regulatory network can be subdivided based on factors
driving cell-to-cell variation is unclear. In this study, we find
ESCs exhibit intrinsic heterogeneity through formation of
interconverting cell states in the absence of external gradients.
Networks of genes and miRNAs that vary between states regu-
late each other, forming a circuit for variation that includes
Nanog, Sox2, and Esrrb but not Pou5f1, Tcf3, or Smad1. These
findings imply that the core transcriptional gene regulatory
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network of ESCs contains a subcircuit that coherently amplifies
variation to achieve transition to new states.

Results
ESCs Exhibit Intrinsic Variation between States Expressing Distinct
Developmental Gene Expression Programs. To explore ESC varia-
tion, we measured the coding transcriptomes of individual ESCs
by single-cell RNA-sequencing (scRNA-seq) and identified
highly variable genes by a statistic (ν-score) that corrects the
coefficient of variation for technical sampling noise (32). Con-
sistent with previous reports (15, 25, 27–30, 32, 33), we found a
remarkably high degree of variation for Nanog and Sox2 tran-
scripts across single ESCs (Fig. 1A). To further investigate var-
iation in these pluripotency factors, we generated cells with
heterozygous insertions of fluorophore tags at the endogenous
loci of Nanog and Sox2 joined by posttranslational cleavage se-
quences (GFP-P2A-Nanog and Sox2-P2A-mCherry, respectively;
SI Appendix, Fig. S1A). Identically cultured ESCs showed re-
markable heterogeneity in levels of Nanog and Sox2 (Fig. 1B and
SI Appendix, Fig. S1B). We analyzed the frequency distributions
of Nanog and Sox2 levels, noting a dominant peak of high ex-
pression with one (Sox2) or two (Nanog) minor peaks at lower

expression (SI Appendix, Fig. S1C). Additionally, Sox2-high
Nanog-low ESCs have been previously identified (29). Thus, to
enable a coarse grain analysis of the continuum of ESC variation,
we clustered cells into three predominant states of Nanog and
Sox2 expression for subsequent analysis (Fig. 1B: state 1 = high
Nanog, high Sox2; state 2 = low Nanog, high Sox2; and state 3 =
low Nanog, low Sox2). When cells from these states were isolated
by flow cytometric sorting and cultured identically, each state
recapitulated the heterogeneity of the parental population (Fig.
1 B, Bottom). To extend this analysis, we sorted single ESCs from
each state and assessed their organization and evolving state
distribution by fluorescence microscopy. Single ESCs from each
state grew into colonies with mixed state morphology, with a high
degree of intra- and intercolony variation in state distribution
(Fig. 1C), consistent with a previous report tracking Nanog in
single-cell–derived ESC colonies (29). We did not detect any
reproducible orientation of states with respect to each other,
with states 2 to 3 sometimes oriented toward the edges of col-
onies and sometimes located centrally with respect to state 1
(Fig. 1C and SI Appendix, Fig. S2 A and B). To further delineate
whether single ESCs displayed an inherent capacity to organize
into states, we introduced a unique molecular barcode into each
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Fig. 1. Single ESCs exhibit intrinsic variation between cell states. (A) Distribution of single-cell variation test statistic (ν) scores for 7,259 genes across 2,299
well-sampled cells measured by scRNA-seq. Nanog, Sox2, and Esrrb are indicated, as are Pou5f1, Smad1, and Tcf3. (B) ESC labeled by heterozygous insertion of
fluorophore tags at the endogenous loci for Nanog and Sox2 (GFP-P2A-Nanog, Sox2-P2A-mCherry) were separated into three distinct cell states by flow
cytometric sorting and cultured identically. The population is shown over time. (C) ESCs were isolated from states 1 to 3 by flow cytometric sorting and plated
at low density. Cells were analyzed by widefield fluorescence for Nanog (GFP) and Sox2 (mCherry) at the indicated timepoints. (D) A unique barcode was
introduced into each ESC (SI Appendix, Supplementary Materials and Methods). Single ESCs from states 1 and 2, respectively, were isolated and cultured. State
distribution and sequencing of the barcode region (red highlight) are shown. (E) Coefficient of variation (CV)-mean plot of protein coding gene expression
across three states. Genes with differential expression between all three states (red) or between any two states (peach) are highlighted. Nanog, Sox2, and Pou5f1
(Oct4) are indicated. (F) Dimensionality reduction applied to scRNA-seq data. Cells are plotted according to their low dimensional representations by potential of
heat-diffusion for affinity-based trajectory embedding (PHATE). Each cell is colored for relative enrichment by gene expression signatures of states 1 to 3 (SI
Appendix, Supplementary Materials and Methods).
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ESC. We sorted single cells from a given state and assessed their
ability to repopulate other states. Over time, single-cell–derived
ESCs with unique barcodes switched into other states (Fig. 1D).
Together these results establish that single ESCs contain an in-
herent ability to organize into a cell system containing a distribution
of states. Individual cells switch between states to give rise to
intrinsic heterogeneity at the population level.
To gain insight into the observed ESC states, we characterized

their coding and noncoding transcriptomes by ribosomal RNA
(rRNA)-depleted RNA-seq (GEO: GSE132708). Protein-coding
genes differentially expressed between all three states were
highly enriched for developmental regulators and certain pluri-
potency genes (including Nanog, Sox2, and Esrrb) and depleted
for housekeeping, cell cycle, metabolic, and other pluripotency
genes (including Pou5f1, Smad1, and Tcf3), suggesting variation
across states was specific to particular developmental loci (Figs.
1E and 2 A and B and SI Appendix, Fig. S3 A–C). Next, we sought
to determine the extent to which the chosen states reflected the
scale of variation in ESCs by utilizing these state expression
signatures. We represented ESC states in a gene-unbiased
manner through dimensionality reduction of scRNA-seq data
and colored cells by enrichment for states 1 to 3 expression
programs. We chose methods of dimensionality reduction that
emphasize progression along trajectories as opposed to cluster-
ing into groups (34, 35) to reflect the continuum of variation in
ESCs. States 1 to 3, defined by Nanog and Sox2, captured a large
portion of variation across single ESCs, as indicated by a gradual
progression of cells enriched for each state’s expression across
the major axes (Fig. 1F and SI Appendix, Fig. S3D). Further,
variation across single cells was related to variation across states
1 to 3 for individual genes, as differentially expressed genes
across states (including Nanog, Sox2, and Esrrb) showed rela-
tively high ν-scores (Fig. 1A and SI Appendix, Fig. S3E).
Next, we sought to test whether ESC states relate to specific

developmental programs. Ontology analysis revealed that state 1
resembles a naïve, cytokine responsive population of cells, whereas
state 2 displays increased expression of preectodermal makers such
as Sox18 and Neurod1, and state 3 displays increased expression of
preendodermal and premesodermal markers such as Gata3 and
Hoxa3 (Fig. 2 A and C and SI Appendix, Fig. S3F). We compared
states 1 to 3 to characterized gene expression profiles of the mouse
blastocyst at developmental stages ranging from E4.5 to E5.5 in
embryogenesis (9, 36). We calculated the distance in gene expres-
sion between conditions (SI Appendix, Supplementary Materials and
Methods). While states 1 to 3 were most similar to each other, state
1 was closer in expression to E4.5 epiblasts than were states 2 and 3,
whereas the latter were closer in expression to E5.0 or E5.5 (Fig.
2D and SI Appendix, Fig. S3G). Overall, we find that ESCs contain
variation observable as cells transitioning between states that ex-
press distinct gene expression programs related to development.

Pluripotency Gene Neighborhoods Are Bound by miRNAs that
Increase Target Variation. Diversification of single cells into new
discrete states requires coordinated expression of gene programs,
raising the question of how variation is related across different
gene loci. To address this question, we constructed gene in-
teraction neighborhoods using network inference methods (32,
37). The neighborhood of a chosen “node” gene represents the set
of genes most closely correlated with it and with each other (SI
Appendix, Supplementary Materials and Methods). Emphasis of this
method on topology helps alleviate artifacts in correlation
strength that may arise from the low technical sampling of tran-
scripts in scRNA-seq. The neighborhoods of Nanog, Sox2, and
Esrrb are shown (Fig. 3A and SI Appendix, Fig. S4A). We con-
firmed these in silico inferred neighborhoods were meaningful by
testing the covariation of Nanog with neighbors Eif2s2, Esrrb, and
Hsp90ab1 by introducing a fluorophore tag at their endogenous
locus in Nanog fluorophore-tagged cells. Eif2s2, Esrrb, and
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Hsp90ab1 all showed covariation with Nanog by this method (SI
Appendix, Fig. S4B). Further, the neighborhoods of Nanog, Sox2,
and Esrrb all contain each other as members and have additional
mutual neighbors (SI Appendix, Fig. S4C), supporting the idea that
these genes interact and form an interconnected clique.
We analyzed these neighborhoods for molecular characteris-

tics that could account for interactions between member genes
giving rise to cell states. miRNAs are intriguing candidate cell
state controllers because individual miRNAs can regulate hun-
dreds of genes, which could allow cell-to-cell fluctuations in
miRNA to generate relatively large effects on cell state (38). We
mapped miRNA binding to target genes in ESCs using Ago
cross-linking and immunoprecipitation (CLIP) data (SI Appen-
dix, Supplementary Materials and Methods) (39). Next, we calcu-
lated whether neighborhoods were enriched for binding by
particular miRNAs by comparing them to matched control
neighborhoods constructed to contain the same number of genes
of similar expression distribution and total binding of miRNAs (SI
Appendix, Supplementary Materials and Methods). We found high
miRNA binding of Nanog transcripts and of the entire variable
pluripotency gene clique (Fig. 3 A and B and SI Appendix, Fig. S4
A and D). Pluripotency gene neighborhoods were enriched for

binding by particular miRNAs, such as miR-182 and miR-708 (SI
Appendix, Fig. S4E). Notably, transcripts and neighborhoods of
less variable pluripotency genes Pou5f1, Smad1, and Tcf3, showed
lesser binding by miRNAs and contained fewer mutual neighbors
than variable pluripotency genes (Fig. 3B and SI Appendix, Figs.
S4 C and D and S4F). The consistent enrichment of particular
miRNAs within neighborhoods suggested a role for miRNA in
regulating these neighborhoods.
To test if this was the case, we first determined variably expressed

miRNAs (differentially expressed [DE]-miRNA) across states 1 to
3 (Fig. 3C and SI Appendix, Fig. S5A). DE-miRNA included many
miRNAs enriched for binding pluripotency gene neighborhoods,
including miR-182 and miR-708. Notably, although DE-miRNAs
varied across states, their activity did not vary by cell cycle phase (SI
Appendix, Fig. S5B, shown for miR-182). Classically, miRNAs are
thought to regulate genes by repressing targets through mRNA
destabilization or translational inhibition (40). We found increased
mean mRNA levels for targets of DE-miRNAs in ESCs deficient
for miRNA activity (Fig. 3D and SI Appendix, Fig. S6B) (41–43).
Next, we tested the effect of a single DE-miRNA by generating
ESCs deficient in miR-182 using CRISPR-Cas9 targeting of the
miRNA hairpin loop (Mir182indel), a strategy previously reported to
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Argonaute 2 is expressed from a doxycycline-inducible transgene in an endogenous Ago1−/−/Ago2−/−/Ago3−/−/Ago4−/− background, and in the absence of
doxycycline for 48 h all miRNA activity is lost (43). “WT” ESCs are cultured in 1 μg/mL doxycycline (∼WT Ago2-miRNA levels) and “KO” ESCs are cultured in
0 μg/mL doxycycline for 48 h (<1% remaining miRNA activity). Expression for all genes was measured by RNA-seq. Kolmogorov–Smirnov (K–S) P values are
shown. (E) CDF of number of Ago2-miRNAs binding sites for genes where at least one site is assigned to a variable DE-miRNA (red) and genes bound by Ago2-
miRNA where no sites are assigned to DE-miRNAs (gray). K–S P value is shown. (F) Distribution of target site affinities (6-mer, 7-mer, or 8-mer matches for the
assigned miRNA seed within the cluster of Ago2 binding) for all miRNAs or variable DE-miRNAs. Hypergeometric P value for enrichment is shown.
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generate functional miRNA knockouts (KOs) (44). We validated
that Mir182indel cells had little to no detectable miR-182 activity
using reporters (45) (SI Appendix, Fig. S6A). We did not detect
changes for miR-182 targets on average across Mir182indel cells (SI
Appendix, Fig. S6C), leading us to consider whether DE-miRNA
might be acting cooperatively to regulate targets. Consistent with
this idea, binding-site analysis indicated that DE-miRNA targets
are more highly bound by Ago2-miRNA complexes than non-
variable miRNA targets (Fig. 3E). Interestingly, DE-miRNA
binding was skewed toward lower affinity “6-mer” miRNA site
type matches and therefore away from higher affinity “7/8-mer”
sites (hypergeometric P value = 0.0003) when considering the
degree of complementarity between the miRNA and its mes-
senger RNA (mRNA) target (Fig. 3F).
Weak, cooperative interactions are a hallmark of molecular

events prone to variation. Strikingly, targets of DE-miRNA
showed significantly increased variation across single cells
(ν-score) compared to all genes, with particularly high variation
for miR-182 targets (Fig. 4A). We analyzed Mir182indel cells by
scRNA-seq in parallel to WT cells and noted the increase in
variation for miR-182 targets in wild-type (WT) ESCs was lost in
Mir182indel ESCs (Fig. 4A). Therefore, while miR-182 did not
have a detectable effect on average target expression across all
cells, it appeared to have a significant effect increasing cell-to-
cell variation of its targets (Fig. 4A).

Coordination and Propagation of Variation across Neighborhoods.
Coordinated regulation of gene neighborhoods by miRNAs
could provide a mechanism for individual miRNAs to impact the

variation of many genes by binding and regulating their inter-
acting neighbors. First, we asked what effect loss of miR-182
activity has on the DE-miRNA–bound variable pluripotency
gene clique. We compared the variation across single cells
(ν-score) for Nanog, Sox2, and Esrrb in WT vs. Mir182indel ESCs.
These genes had lower variation in Mir182indel than in WT ESCs,
even if they were not direct targets of miR-182 (Fig. 4B). By
contrast, variation for Pou5f1, Smad1, and Tcf3, three pluri-
potency genes not bound by DE-miRNAs, was unchanged (Fig.
4B). This suggested that miR-182 propagates variability through
the neighborhoods it binds in addition to promoting variability of
its direct targets. To further assess whether variation can be
propagated across neighborhoods, we plotted variation of all
genes and their neighbors (Fig. 4C). Remarkably, highly variable
genes across single cells showed a strong tendency to group into
the same interaction neighborhoods, showing synchronous co-
variation when measured across a population of uniformly cultured
cells (Fig. 4C, note that red shading indicating higher ν-score is
clustered in a subset of neighborhoods rather than being evenly
distributed across all neighborhoods). This indicates that individual
genes do not vary stochastically with respect to each other. Rather,
variation is organized at the level of neighborhoods. The degree
and concentration of variation is significantly decreased in
Mir182indel ESCs (Fig. 4 C and D), consistent with the idea that
miR-182 loss reduces cell-to-cell variation of bound targets, which
in turn leads to less variation across Mir182indel ESC neighbor-
hoods compared to WT ESC neighborhoods. This synchronized
covariation of a group of genes within a cell could give that cell an
inherent ability to diversify into a new state.
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Fig. 5. Variation in microRNA can drive variation in ESC states. (A) Cell state distributions in Ago2-inducible ESCs (Fig. 3D) labeled at Nanog and Sox2 loci by
fluorophores (SI Appendix, Fig. S1). Cells were cultured in the indicated concentrations of doxycycline (Ago2-miRNA) for 48 h. Shown are variation in Nanog
(*P < 0.0001, Levene’s test) and the fraction of cells outside state 1 (*P < 0.0001, binomial test). Error is 95% CI from bootstrapping. See also SI Appendix, Fig.
S8A. (B) Cell state distributions in WT, Mir182indel, and Mir708indel ESCs labeled at Nanog and Sox2 loci by fluorophores (SI Appendix, Fig. S1). Shown are
variation of Nanog and the fraction of cells outside state 1. Statistics were calculated as in A. See also SI Appendix, Fig. S8B. (C) Reintroduction of miR-182 into
Mir182indel cells. Mir182indel cells were transfected with a bidirectional expression plasmid expressing pri-miR-182 tightly coupled to cerulean fluorescent
protein (CFP), or with a CFP-only plasmid (“empty” control). Cells were isolated by flow cytometric sorting at increasing levels of CFP. miR-182 and miR-293
levels are quantified and plotted relative to WT ESCs. Error is SD for n = 3 replicates. (D) Nanog (GFP) and Sox2 (mCherry) levels in transfected Mir182indel cells,
plotted by CFP (miR-182) levels as in C; *P < 0.0001, Levene’s test, pooled maroon vs. gray. Also shown is fraction of cells outside of state 1 (*P < 0.0001,
binomial test). See also SI Appendix, Fig. S8C. (E) State 1 WT and Mir182indel ESCs were isolated by flow cytometric sorting and cultured. The fraction of cells
outside state 1 is shown (*P < 0.0001, binomial test). See also SI Appendix, Fig. S8D.
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Variation in miRNA Can Drive Variation in ESC States. Cell-to-cell
variation in DE-miRNA expression and binding of these miRNAs
within key neighborhoods could drive cell diversification into
new states. This raised the possibility of miRNA regulation of
Nanog and Sox2 contributing to the observed distribution of
cell states through variation of miRNA levels. We explored
qualitative models that could recapitulate the observed distri-
bution of states. Previous work has established that bimodal
distributions of target expression can emerge from the interplay
between cell-to-cell miRNA variation and the threshold-like
response of their targets (45, 46). Thus, we explored minimal
qualitative models that could yield the observed distribution of
states. We found that a model in which two distinct miRNA
pools regulate Nanog and Sox2, one targeting both genes while
the other controls Nanog specifically, recapitulated three cell
states (SI Appendix, Fig. S7). In this configuration, cell-to-cell
variation in miRNA levels results in highly variable expression
of Nanog and Sox2. Loss of the shared miRNA pool, Nanog-
specific pool, or of all miRNAs results in changes in the distri-
bution of cell states (SI Appendix, Fig. S7).
To experimentally test this idea, we measured variation in ESC

states in cells with inducible Ago2 expression (and therefore
inducible miRNA activity) in an endogenous Ago1−/−/2−/−/3−/−/
4−/− background (43). We observed a titratable increase in
Nanog variation and cells exiting state 1 with increasing Ago-
miRNA activity (Fig. 5A and SI Appendix, Fig. S8A). A similar
effect was observed upon loss of individual DE-miRNA, as
Mir182indel and Mir708indel ESCs showed reduced state diversity
compared to WT, with reduction in variation of Nanog and fewer
cells exiting state 1 (Fig. 5B and SI Appendix, Fig. S8B). These
results were consistent with the qualitative predictions of our
model, and together they established that loss of miRNA could
reduce cell state variation in ESCs.
To determine if reintroduction of miRNA could restore di-

versity, we constructed an inducible bidirectional plasmid
expressing miR-182 tightly coupled to a fluorophore (CFP) and
introduced it into Mir182indel ESCs. This allows single-cell mea-
surement of miR-182, Nanog, and Sox2 levels through their re-
spective fluorophores (CFP, GFP, and mCherry, respectively).
CFP levels tracked miR-182 expression and the latter was restored
to wild-type levels (“++”) or overexpressed (“+++,” Fig. 5C). As
a control, we transfectedMir182indel cells with a CFP-only “empty”
plasmid in parallel to reexpression of miR-182. Mir182indel cells
with miR-182 reexpressed showed an increase in cell state varia-
tion, with an increased fraction of cells outside state 1 and in-
creased variation in Nanog and Sox2 levels (Fig. 5D and SI
Appendix, Fig. S8C, note that levels of Nanog and Sox2 change
across red “miR-182” bins but stay similar across gray empty bins).
This indicates that adding exogenous variation in cell-to-cell
miRNA levels by taking advantage of natural variation in plas-
mid transfection and expression efficiency increases variation in
cell states across the population. Finally, we isolated state 1 ESCs
from WT and Mir182indel ESCs by flow cytometric sorting and
assessed their ability to diversify into other states over time.
Mir182indel ESCs were delayed in diversifying out of state 1 com-
pared to WT ESCs (Fig. 5E and SI Appendix, Fig. S8D). This
supports the idea that miR-182 fluctuations impact transition of
cells out of state 1, which is expected when miRNAs act as
feedback repressors of genes subject to transient fluctuations (47).
We conclude that cell-to-cell variation in DE-miRNA levels can
drive variation in bound pluripotency gene neighborhoods in a
subset of cells, enabling their diversification into new states.

Discussion
We find naturally arising variation in ESC gene expression can
be described by three cell states with distinct expression pro-
grams related to embryonic development. Genes that vary across
these three states encode specific developmental factors such as

Nanog, Sox2, and Esrrb, but not others such as Pou5f1, Tcf3, or
Smad1 that are equally well expressed. When isolated, single ESCs
form a cell system that recapitulates the heterogeneity of the pa-
rental distribution despite the absence of an externally supplied
morphogen gradient or scaffold. Variation within the cell system is
concentrated at specific genes and miRNAs and excluded from
others, forming an integrated genetic subcircuit that organizes
variation into three cell states. Deletion of variable miRNAs re-
duces variation of target genes and reduces propagation of vari-
ation across the gene network, resulting in delayed ability for
states to repopulate one another (Fig. 6). Reexpression of variable
miRNA restores variation. These results define variation within
cell systems as a fundamentally regulated process subject to
modulation by noncoding elements such as miRNAs.
These results are consistent with previous reports describing

heterogeneity in the expression of pluripotency factors in ESCs
(15, 25–30). The molecular basis of this heterogeneity is still
under debate, and the results here suggest miRNAs are impor-
tant to ensure ESC heterogeneity by accelerating the dynamics of
interconversion between states. A previous report utilized con-
tinuous long-term single-cell tracking to examine Nanog ex-
pression dynamics (29), similarly identifying that Nanog-low/
negative ESCs can revert to high Nanog expression under stan-
dard culture conditions. Interestingly, this study found that the
context of cells surrounding Nanog-low cells influenced their
propensity to differentiate into precursor cells expressing Foxa2
and Sox1. Future work aimed at understanding how the intrinsic
state within a cell interacts with the milieu of states surrounding
it to achieve appropriate diversity will be of great interest.
Our results show variable miRNAs such as miR-182 act on a

clique of variable transcription factors (Nanog, Sox2, and Esrrb).
More broadly, we show that variation across ESCs is organized
into a specific subset of interacting gene neighborhoods. This
contrasts with stochastic models in which variation at different
loci is unrelated to one another or all loci are equally variable.
Further, we find genes that vary between states encode de-
velopmental factors such as Nanog and Sox2. Since Nanog and
Sox2 are themselves involved in promoting expression of many
miRNAs (24), this provides opportunity for higher-order organization

Mirindel cells:  
Disorganized variation, delayed transitions

State 1State 2

WT cells:  
Variation is propagated by miRNA

{ } { }

State 1State 2

Fig. 6. MicroRNAs organize intrinsic variation into cell states. In WT cells,
the presence of microRNAs allows coordination of cell-intrinsic fluctuations
across loci (curved arrows). Concentration of fluctuations at particular gene
neighborhood cliques can lead to a state transition due to changes in ex-
pression across co-related genes. In contrast, cells lacking variation-prone
miRNAs do not coordinate fluctuations across loci (squiggles) as effectively
and are delayed in transitioning between cell states.
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of intrinsic fluctuations within cells. Even within a genetically
identical population of cells cultured under uniform conditions,
fluctuations will inevitably arise in a subset of cells. If these
fluctuations are always focused to a particular set of interacting
genes in a highly ordered way, as identified here, and those genes
encode developmental factors, variation of these factors within
this subset of cells will inevitably result in their transition to
another developmental cell state. This causes intrinsic hetero-
geneity or the ability of cells to repopulate specific cell states
when separated.
Previous descriptions of cell-to-cell variation in gene expres-

sion have attributed it to noise or stochastic processes (12–19).
Yet we find manipulating the level of miR-182 in ESCs can di-
rectly change cell-to-cell variation in Nanog levels. The presence
of a genetic element (in this case, miRNA) whose manipulation
explicitly impacts the distribution of a gene’s expression across
cells indicates distribution of expression across cells for a gene is
in fact highly regulated.
We identified a role for miRNA to increase variation, in contrast

to their previously emphasized role reducing cell-to-cell variation in
gene expression (48). Many additional gene regulatory components
beyond miRNAs, such as enhancers, RNA binding proteins, or
splicing factors may also contribute to cell state variation by virtue
of their ability to regulate many genes. Although challenging, it will
be important to further define the structural and regulatory fea-
tures of molecular classes that vary in activity cell to cell.
No matter how cell-to-cell variation originates, gene regulatory

networks are poised to organize and direct it to achieve di-
versification of states in a robust manner without requiring varied
input to each cell from an external gradient. Thus, organization of
variation intrinsic to cell systems is a sufficient principle to allow
for single cells to diversify into distinct states, providing a mech-
anism for cell-intrinsic symmetry breaking. This feature of gene
regulatory networks may in part explain how self-organization
occurs, and its description here builds upon previously observed
links between gene expression variation and differentiation (49–
51). We show that single ESCs can both self-organize into three
states and that these states can repopulate one another. In adult
tissues such as intestine and lung, stem-like cell types have shown
the ability to repopulate each other (52–54). Development of
tissues is also known to be intimately tied to miRNA function (47).
While cells in complex tissues receive external signals in addition
to experiencing intrinsic fluctuations, these may cooperate in ho-
meostatic ratios of cell states. Future studies will be necessary to
determine the extent to which phenomena in mammalian devel-
opment and tissue homeostasis are related to the intrinsic het-
erogeneity observed in ESCs. In addition to development, other
biological systems demonstrate spontaneous organization of
seemingly equivalent cells into states, such as bacteria in forming
persister states or cancer cells in forming therapy resistant sub-
populations (55–59). Determining the configurations of gene
regulatory networks within such systems will be of great interest.
Nevertheless, the results presented here suggest that naturally
arising cell-to-cell variation, sometimes described as stochastic
fluctuation, is in fact coherently organized biology.

Materials and Methods
For additional information, please see SI Appendix, Supplementary Materials
and Methods.

Cell Lines. Ten mouse ESC lines were used in this study: 1) DGCR8−/− ESC (42);
2) Ago2-inducible ESCs (43), Nanog-GFP/Sox2-mCherry; 3) V6.5 ESC (Jaenisch
Laboratory, Whitehead Institute, Massachusetts Institute of Technology
[MIT]), Nanog-GFP/Sox2-mCherry; 4) V6.5 ESC, Nanog-GFP/Sox2-mCherry
(nuclear localization sequence [NLS]-tagged fluorophores); 5) V6.5 ESC,
Mir182indel, Nanog-GFP/Sox2-mCherry; 6) V6.5 ESC, Mir708indel, Nanog-GFP/
Sox2-mCherry; 7) V6.5 ESC, Nanog-GFP/Sox2-mCerulean3; 8) V6.5 ESC,
Nanog-GFP/Esrrb-E2-Crimson; 9) V6.5 ESC, Nanog-GFP/Eif2s2-mCherry; and
10) V6.5 ESC, Nanog-GFP/Hsp90ab1-mCherry.

All fluorophore tags, NLSs, and microRNA gene indels were added by us
(see relevant sections in SI Appendix).

Flow Cytometry and Fluorescence Activated Cell Sorting (FACS). A total of 50 to
90% confluent ESCs were analyzed on BD LSRII or LSRFortessa with FACSDiva
v8.0 acquisition software. Flow cytometry standard files were analyzed with
FlowJo V9.9. Samples were gated first for live cells based on forward scatter area
vs. side scatter area and then for single cells (forward scatter width vs. forward
scatter height). Cells singly transfected with transient fluorophore expression
constructs or singly taggedwith either GFP or mCherry were used as fluorescence
compensation controls. Channel gains were adjusted based on native V6.5 ESC.

BD FACSARIA was used to sort Nanog-GFP/Sox2-mCherry ESCs into states
(as defined by GFP/mCherry protein levels), and to sort single cells. States
were sorted into fresh culture medium in 5-mL collection tubes, then im-
mediately spun at 1,000 rpm for 5 min and resuspended for either plating or
RNA isolation. Single cells were sorted into 200 μL fresh culture medium in
one well of a 96-well flat bottom plate (VWR catalog no. 29442-054).

RNA-Sequencing Sample Preparation. Standard TRIzol protocol was used to
isolate total RNA from sorted states 1/2/3 or the total unseparated ESC
population passed through the sorter. Following DNase I (NEB M0303)
treatment and ethanol precipitation, samples were analyzed by Agilent
BioAnalyzer and accepted for sample RNA integrity number > 7.0. RNA-
sequencing represents three biological replicates isolated by flow sorting
on 3 separate days. rRNA-depleted RNA-sequencing libraries (∼100 ng RNA/
sample) were prepared using Kapa RNA HyperPrep Kit with RiboErase (HMR)
KK8561 using 11 rounds of PCR amplification after addition of External RNA
Controls Consortium spike-in controls at the recommended concentration.
The final libraries were quality control (QC) checked by fragment electro-
phoresis and qPCR for colony-forming units prior to pooling and loading on
an Illumina FlowCell (NextSEq. 500, 150 bp paired-end reads). Each sample
library was sequenced to 30- to 45-M read depth.

Single-Cell RNA-Seq. scRNA-seq was performed by the Koch Institute Nanowell
Cytometry Core using SeqWell (60) technology. In brief, single-cell suspensions of
fluorophore-tagged V6.5 ESCs were made by trypsinization followed by serial
passage through 50-μm cell strainer meshes. Approximately 10,000 cells were
loaded onto a SeqWell array, lysed, and prepared as single-cell cDNA libraries as
described (60). Libraries were sequenced using a NextSEq. 500 and aligned to
the mm10 genome using the SeqWell analysis pipeline (Love Lab, MIT). The
entire process was repeated on a different day to generate two data tables
representing reads per cell across mm10 annotated transcripts (Gencode M15).
These two tables were merged together and analyzed, prior to gene neigh-
borhood construction (SI Appendix, Supplementary Methods and Materials).

miRNA-Seq and Data Analysis Pipeline. Total RNA samples were prepared from
ESC states identically to RNA-seq above for two biological replicates isolated
by flow cytometric sorting. Small RNA libraries were then prepared using the
NEB small RNA-sequencing kit (E7300S) according to the manufacturer’s
instructions using 13 cycles of PCR amplification. QC assessment was done by
electrophoresis and colony forming units prior to loading pooled samples
onto an Illumina FlowCell (HiSeq2000, one lane for eight samples, 40-bp SE
reads) with 10- to 15-M reads/sample. For complete details of the data
analysis pipeline, including commands used, please see the document
“MiRNA-sequencing data analysis pipeline” Zenodo (DOI: 10.5281/
zenodo.3694341).

Statistical Analyses. For all analyses with P values, significance was de-
termined at P ≤ 0.05. P values are shown in the figure, or in the figure
legend, wherever they are used. The Kolmogorov–Smirnov (K–S) test was
used to assess whether paired cumulative distribution functions (CDFs) were
significantly different (Fig. 3 D and E and SI Appendix, Fig. S6 B and C). The
Kruskal–Wallis one-way analysis of variance test was used to assess differ-
ences between 3+ CDFs (Fig. 4A). Both the K–S and Kruskal–Wallis test sta-
tistics were calculated in GraphPad Prism. In all cases, a CDF based on the
population was compared to CDF(s) based on sample(s). The cumulative
hypergeometric statistical test for enrichment was used in Fig. 3F. This test
detects enrichment for a property in a population sample, compared to
what would have been expected based on the prevalence of that property in
the whole population. Four numbers are required: population size (N),
number of population successes (n), sample size (K), and number of sample
successes (k). The test statistic was calculated using Python v3.6, using
scipy.stats.hypergeom.pmf and summing from k to min(n,K) to calculate the
cumulative value. Box-whisker plots in Fig. 5 A and B were generated using
matplotlib (Python v3.6), and associated P values reflect the results of Levene’s
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test for equality of variances (Python v3.6, scipy.stats.levene), an alternative to
Bartlett’s test which is robust to deviations from nonnormality. In Fig. 5A,
Levene’s test confirmed significance of the higher Nanog variances for
“+Dox” conditions, compared to “no Dox.” In Fig. 5B, Levene’s test confirmed
significance of the lower Nanog variances for Mirindel cell populations, com-
pared to WT. Box-whisker plots in Fig. 5D were generated using plot.ly for
Python, with whiskers from 25th to 75th percentiles. Here, Levene’s test
confirmed significance of the higher Nanog and Sox2 variances for cells
transfected with CFP-pri-miR-182 (pooled across CFP levels), compared to
those transfected with the CFP-empty plasmid. Error bars for “fraction of cells
outside state 1” plots in Fig. 5 A, B, D, and E represent 95% CIs, and were
generated by bootstrapping using 10 bootstrap samples. Associated P values
reflect the results of a binomial test (scipy.stats.binom_test, Python v3.6), with
expected number of successes calculated from the fraction represented by the
relevant gray/control bar. Error bars for all plots in SI Appendix, Fig. S8 rep-
resent 95% CIs generated by bootstrapping using 10 bootstrap samples. Exact
cell numbers for all plots Fig. 5 and SI Appendix, Fig. S8 are recorded in SI
Appendix, Supplementary Materials and Methods.

Data and Code Availability. RNA-sequencing and small-RNA sequencing data
are available at the Gene Expression Omnibus (GEO) with accession number
GSE132708. SI Appendix, Tables S2 and S3 show RNA and miRNA expression
in states. Other data, scripts, and detailed descriptions of sequencing analysis
pipelines are available in the SI Appendix or on Zenodo (DOI: 10.5281/
zenodo.3694341).
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