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Cytotoxic CD8+ T cells can effectively kill target cells by producing
cytokines, chemokines, and granzymes. Expression of these effector
molecules is however highly divergent, and tools that identify and
preselect CD8+ T cells with a cytotoxic expression profile are lacking.
Human CD8+ T cells can be divided into IFN-γ– and IL-2–producing
cells. Unbiased transcriptomics and proteomics analysis on cytokine-
producing fixed CD8+ T cells revealed that IL-2+ cells produce helper
cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+

T cells expressed the surface marker CD29 already prior to stimula-
tion. CD29 also marked T cells with cytotoxic gene expression from
different tissues in single-cell RNA-sequencing data. Notably, CD29+

T cells maintained the cytotoxic phenotype during cell culture, sug-
gesting a stable phenotype. Preselecting CD29-expressing MART1
TCR-engineered T cells potentiated the killing of target cells. We
therefore propose that CD29 expression can help evaluate and select
for potent therapeutic T cell products.
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CD8+ T cells can effectively clear cells from our body that are
infected with intracellular pathogens. In addition, CD8+ T cells

are critical for immunosurveillance to eliminate precancerous or
cancerous cells. To exert their effector function, T cells produce
proinflammatory molecules such as IFN-γ and TNF-α, granzymes
and perforin, and chemokines such as CCL3 (MIP1α) and CCL4
(MIP1β) (1–3). Intriguingly, human T cells do not respond uni-
formly to activation, but rather show a heterogeneous production
profile of effector molecules (4, 5). This may derive from stochastic
and oscillating production of effector molecules, as suggested in
developmental processes (6). However, it may also be due to in-
trinsic differences in the effector response to antigen by distinct
CD8+ T cell types.
Interestingly, even though activated human CD8+ T cells ef-

ficiently produce IFN-γ and IL-2, we and others found that they
generally produce only one of the two cytokines (5, 7, 8). Only a
small proportion of human CD8+ T cells produces IFN-γ and IL-
2 combined (5, 7, 8). Several studies proposed that human and
mouse CD8+ T cells can provide T cell “help” by expressing CD154/
CD40L (7, 9, 10), in addition to their well-known cytotoxic function.
CD40L-expressing human CD8+ T cells were shown to produce IL-
2, but not IFN-γ (7). However, whether this cytokine produc-
tion profile is stochastic, or whether IFN-γ– and IL-2–producing
CD8+ T cells represent two different T cell subsets and/or a di-
vergent differentiation status is yet to be determined. It is also not
known whether IFN-γ– and IL-2–producing CD8+ T cells possess a
different cytotoxic potential.
In this study, we set out to dissect the properties of human

CD8+ T cells that display a differential cytokine production
profile. Previous studies used cytokine capture assays to isolate
T cells for gene expression analysis (11). While this method is
very accurate for low-abundance responses, the risk of select-
ing false-positive cells by capturing cytokines from the neigh-
boring cell in high-abundance responses is substantial. We

therefore developed a protocol that allowed for efficient iso-
lation of RNA and protein from fluorescence-activated cell
sorting (FACS)-sorted fixed T cells after intracellular cytokine
staining. With this top-down approach, we performed an un-
biased RNA-sequencing (RNA-seq) and mass spectrometry
(MS) analyses on IFN-γ– and IL-2–producing primary human
CD8+ T cells.
We found that IFN-γ–producing T cells exhibit a cytotoxic

expression profile, which is sustained during T cell culture. The
surface molecules CD29 and CD38 helped identify the cytotoxic
IFN-γ–producing T cells, and the noncytotoxic IL-2–producing
CD8+ T cells, respectively, in in vitro cultures, a feature that is
maintained for several weeks. Using these two surface markers
allowed us to distinguish T cells with a distinct cytokine pro-
duction profile and cytotoxic potential already prior to T cell
stimulation. Furthermore, the CD29 gene expression signature
was a good prognostic marker for long-term survival in mela-
noma patients. In conclusion, CD29 selects for bona fide IFN-
γ+ CD8+ T cells with high expression levels of cytotoxic mole-
cules. CD29 could therefore potentially be used to evaluate the
quality of therapeutic T cell products, and that could help to
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identify and select cytotoxic CD8+ T cells for the generation of
effective T cell products.

Results
Efficient Recovery of RNA and Protein from T Cells after Intracellular
Cytokine Staining. To determine whether and how the gene ex-
pression profile of IFN-γ–producing CD8+ T cells differed from
IL-2–producing cells, we needed a method to separate high
percentages of cytokine producers while preventing possible
contaminations from false-positive cells. We therefore developed
a protocol for efficient recovery of RNA and proteins from
FACS-sorted fixed cells after intracellular cytokine staining.
With the standard TRIzol RNA isolation protocol, >99% of the
mRNA isolated from phorbol 12-myristate 13-acetate (PMA)–
ionomycin-activated and formaldehyde-fixed T cells was lost, as

determined by RT-PCR of several standard housekeeping genes,
and of IFNG and IL2 mRNA (SI Appendix, Fig. S1A). To conserve
the RNA integrity, we performed the intracellular cytokine staining
(ICCS) and FACS in an RNA-protecting high salt buffer that
contained RNAse inhibitors (Fig. 1A). This alteration in the
protocol preserved the quality of ICCS, and thus the distinction of
different cytokine producers (5). To free RNA from protein
complexes, we included a proteinase K digestion step prior to
RNA isolation (12) (Fig. 1A). These adjustments yielded mRNA
levels from fixed T cells comparable to “fresh” T cells that were
prepared without permeabilization and formaldehyde fixation
(SI Appendix, Fig. S1A). Importantly, RNA purity and integ-
rity were compatible with RNA-seq analysis, as revealed by
nanodrop analysis and RNA nano chip assay (SI Appendix,
Fig. S1B).
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Fig. 1. RNA-seq analysis on CD8+ T cells after intracellular cytokine staining. (A) Scheme to isolate RNA and protein from cytokine-producing, fixed T cells.
Primary human CD8+ T cells were activated for 48 h with α-CD3/α-CD28, and rested for 4 d in the presence of 10 ng/mL rhIL-15. T cells were reactivated for 4 h
with 10 ng/mL PMA and 1 μM ionomycin. Intracellular cytokine staining was performed in RNA-protecting buffers. Cells were FACS-sorted under RNA-
protecting conditions. Total RNA and protein was recovered for RNA-seq and mass spectrometry analysis (Fig. 2) by reversing formaldehyde cross-linking. IL2:
IL-2 single producers; IFNG: IFN-γ single producers; DP: double positive: IL-2 and IFN-γ coproducers; DN: double negative for IL-2 and IFN-γ production. (B–G)
RNA-seq analysis of CD8+ T cells with a differential IL-2 and/or IFN-γ production profile. (B) Gene biotypes and (C) samplewise Pearson correlation coefficient of
genes (n = 2,349) that are differentially expressed between all four T cell populations. (D) Heatmap of differentially expressed protein-coding genes (n = 1,984),
numbers indicate k-means clusters (k = 5). (E) Heatmap of differentially expressed TFs with >100 DESeq2 normalized counts, (F) lncRNAs, and (G) RBPs with >10
DESeq2 normalized counts. (E–G) Expression levels of biological replicates were averaged (n = 3 per population). Color scale of heatmaps represents Z-score.
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To achieve MS-grade protein recovery, we used the filter aided
sample preparation (FASP) protocol (13). Because this protocol
contains a 95 °C heating step to reverse the formaldehyde cross-
linking, it is compatible with MS analysis of cells prepared with the
ICCS procedure (14, 15). Indeed, the coefficient of determination
of MS analysis from fixed and fresh samples was R2 = 0.973 (SI
Appendix, Fig. S1C). Thus, RNA and protein could be efficiently
recovered from cytokine-producing, formaldehyde-fixed T cells,
which allowed us to study their expression profile in depth.

Differential Gene Expression Profile of IFN-γ– and IL-2–Producing CD8+ T
Cells. To determine the gene expression profile of IFN-γ–producing
cells with that of IL-2–producing cells, human CD8+ T cells from
three biological replicates, each containing a pool of 40 healthy
donors, were activated for 2 d with α-CD3/α-CD28. T cells were
removed from the stimulus and cultured for 4 d in the presence of
human recombinant IL-15. ICCS after 4 h of activation with PMA–
ionomycin identified four T cell populations: IFN-γ producers
(IFNG), IL-2 producers (IL2), IFN-γ/IL-2-coproducing T cells
(double positive [DP]), and T cells that did not produce detectable
levels of either cytokine (double negative [DN]; Fig. 1A).
Of the RNA-sequencing data, on average 19.8 million reads

(∼92%) of the total 21.4 million reads could be mapped to the
genome of each T cell population. Of these, 2,349 genes were
differentially expressed in at least one population, with a cutoff
of log2 fold change (LFC) >0.5, p-adjusted <0.01 (Dataset S1).
According to Ensembl-BioMart gene annotation, 85% (n =
1,984) of the differentially expressed genes (DEGs) were protein
coding, 5.3% were antisense, 3.9% were pseudogenes, 2.6% were
long-intergenic noncoding RNA (lincRNA), and 3.2% com-
prised other classes of noncoding RNA (ncRNA) (Fig. 1B).
Pearson’s correlation coefficient of differentially expressed

genes revealed that each biological replicate clustered according
to its cytokine production profile (Fig. 1C). Interestingly, IFNG
cells clustered with DP cells, and IL2 cells with DN cells (Fig.
1C). This close relationship of IFNG and DP cells and of IL2
with DN cells was also revealed by gene cluster analysis using k-
means (k = 5), in particular in clusters 2 and 4 (241 and 434
genes, respectively) (Fig. 1D and Dataset S1). Yet, cluster 1 (507
genes) was more specific for IL2 T cells, and for IFNG T cells,
clusters 3 and 5 (474 and 326 genes, respectively; Fig. 1D and
Dataset S1).
We next interrogated whether specific gene classes were differ-

entially expressed. Gene set enrichment analysis revealed several
pathways differing between IFNG and IL2 producers, which in-
cluded the calcium signaling and transport for IFNG producers, and
WNT signaling for IL2 producers (SI Appendix, Fig. S1 D and E).
Also gene expression modulators like transcription factors (TFs),
long noncoding RNAs (lncRNAs), and RNA binding proteins
(RBPs) were differentially expressed in IFNG and IL2 producers.
Most of the 134 differentially expressed TFs were shared between
DN and IL2 producers, and between IFNG and DP producers (Fig.
1E and Dataset S2). This included GATA3 and IRF8 for IL2/DN
producers, and PRDM1 (Blimp-1), NFATc2, and NFATc3 for
IFNG/DP producers (SI Appendix, Fig. S1F and Dataset S2). Specific
gene expression was detected for EOMES and RORA in IFNG
producers, and for RORC (ROR-γt) in DP producers (Dataset S2).
A small cluster of TFs including IKZF2 (Helios) was specifically up-
regulated in DN cells (SI Appendix, Fig. S1F). Also the 351 differ-
entially expressed lncRNAs revealed the close kinship between DN/
IL2 producers and IFNG/DP producers (Fig. 1F and Dataset S2).
For instance, the IFN-γ-promoting IFNG-AS1 (NEST) (16) was
highly expressed in IFNG/DP producers (SI Appendix, Fig. S1G).
Conversely, GATA3-AS1 known to reenforce the Th2 phenotype in
CD4+ T cells (17) showed highest gene expression in IL2 producers
(SI Appendix, Fig. S1G).
RBPs are critical regulators of RNA splicing, stability, and

translational control (18). Again, most of the 180 differentially

expressed RBPs were similarly expressed in IFNG/DP producers
and in IL2/DN producers (Fig. 1G and Dataset S2). Combined,
these data revealed a differential gene expression profile in IFNG
and IL2 producers, which correlates with distinct expression of
gene regulators.

Differential Protein Signature of IL-2- and IFN-γ-Producing CD8+ T
Cells. We next determined the protein expression profile of the
four FACS-sorted CD8+ T cell populations by MS. We identified
in total 5,995 proteins from the three biological replicates. After
removing possible contaminants and after filtering for proteins
that were present in each biological replicate in at least one
of the four populations, we identified a total of 3,833 proteins.
Each sample contained >3,500 identified proteins (Fig. 2A and
Dataset S1). Pearson’s correlation and k-means clustering of the
81 differentially expressed proteins (nine clusters) also revealed
the kinship in the proteome between IFNG and DP producers,
and between IL2 and DN producers (Fig. 2 B and C). A total of
42 (52%) of the differentially expressed proteins overlapped with
the differential gene expression profile, including IL-2 and IFN-γ
(Fig. 2D). In conclusion, IL2 and IFNG producers display a
distinct gene and protein expression signature.
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Fig. 2. Mass spectrometry analysis on cytokine producing, fixed CD8+

T cells. (A) Number of proteins identified by MS analysis of FACS-sorted T cell
populations per sample (bars) and of all 12 samples combined after filtering
(red line; n = 3,833). (B) Samplewise Pearson correlation coefficient of dif-
ferentially expressed proteins (n = 81). (C) Heatmap of differentially
expressed proteins, numbers indicate k-means clusters (k = 9). Proteins
showing differential expression in both mRNA and protein are indicated in
blue. Color scale represents log2 centered intensity. (D) Venn diagram of
differentially expressed proteins and genes (Fig. 1).
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IFN-γ-Producing CD8+ T Cells Display a Cytotoxic Profile. To de-
termine whether IFNG and IL2 producers also showed a distinct
gene expression of other secreted effector molecules, we selected
differentially expressed genes from Fig. 1 that 1) had expression
levels >100 DESeq2 normalized counts and that 2) were anno-
tated as “secreted” in the human protein atlas (19). After re-
moving nuclear components and mitochondrial and ribosomal
proteins (Materials and Methods), we identified 67 differentially
expressed genes encoding secreted proteins (Fig. 3A). For IL2
producers, these included the prototypic Th2 helper effector
molecules IL-4, IL-3, leukemia inhibitory factor (LIF) (20,
21), and the Th2-inducing cytokine IL-11 and prostaglandin-
endoperoxide synthase 2 (PTGS2, or COX-2) (22, 23) (Fig. 3A).
IL-2 and PTGS2 were also found differentially expressed in the
MS analysis (Fig. 3B). Conversely, IFNG producers—and in
most cases also DP producers—contained substantially higher
gene expression levels of the prototypic cytotoxic molecules
TNF-α, Granulysin, Granzyme A, Granzyme H, and Perforin

(Fig. 3A). Also the chemokines CCL5 (RANTES), CCL3, CCL4,
and its alternative splicing variant CCL4L2, all of which are as-
sociated with antiviral and antibacterial activity of cytotoxic
CD8+ T cells (24–26), were highly expressed in IFNG and DP
producers (Fig. 3A). IFN-γ, TNF-α, Granulysin, Perforin, and
CCL5 were also identified by MS analysis (Fig. 3B).
We validated this prototypic cytotoxic gene expression profile

of IFNG and DP cells in a new cohort of four individual donors.
Identical to the cell preparation for RNA-seq/MS analysis, pe-
ripheral blood mononuclear cells (PBMCs) were activated for
2 d with α-CD3/α-CD28, and rested for 4 d in rhIL-15. ICCS after
reactivation for 4 h with PMA–ionomycin confirmed that IFNG/
DP producers produced significantly more TNF-α, Granulysin,
Perforin, Granzyme A and B, and the chemokines CCL3, CCL4,
and CCL5 than the DN/IL2 producers (Fig. 3C). Not only the
percentage, but also the production of cytokines/chemokine per
cell was higher, as determined by the geometric mean fluores-
cence intensity (GeoMFI; SI Appendix, Fig. S2A). We therefore
conclude that IFNG and DP CD8+ T cells preferentially express
cytotoxic effector molecules.

CD29 and CD38 Enrich for IFN-γ– and IL-2–Producing CD8+ T Cells.We
next interrogated if surface markers could identify IFNG pro-
ducers and IL2 producers. We filtered the MS data for surface
molecules with an expression of ≥1.5-fold difference in one of
the four T cell populations. Nineteen surface markers showed
differential protein expression in at least one T cell population
(Fig. 4A). RNA-seq analysis identified 72 differentially expressed
annotated proteins (SI Appendix, Fig. S2B). We tested the ex-
pression pattern of 28 of these markers by flow cytometry on
PMA–ionomycin-activated CD8+ T cells. None of the 16 surface
markers we identified by RNA-seq analysis alone was suitable to
select for IFNG and IL2 producers by flow cytometry (SI Ap-
pendix, Fig. S2C). Gene products that were detected in both MS
and RNA-seq analysis, like β1-integrin (ITGB1; CD29) showed
significantly higher cell surface expression in IFNG/DP pro-
ducers than in IL2/DN producers (Fig. 4B and SI Appendix, Fig.
S2 C and D). HLA class II histocompatibility antigen gamma
chain CD74 also followed this expression pattern (SI Appendix,
Fig. S2 C and E). Conversely, IL2/DN producers showed sig-
nificantly higher expression levels of cyclic ADP ribose hydrolase
CD38 than IFNG/DP producers (Fig. 4B and SI Appendix, Fig.
S2 C and D), and CD40L and the complement decay-
accelerating factor CD55 coexpressed with CD38 (SI Appendix,
Fig. S2 F and G).
We next sought for markers that could preidentify IFNG/DP

producers and DN/IL2 producers in resting T cells. CD40L
and CD74 had limited expression in nonactivated, CD8+ T cells
(SI Appendix, Fig. S2G) and were thus not suitable. CD29 and
CD38 however allowed for the identification of IFNG/DP
producers and DN/IL2 producers prior to reactivation (Fig. 4 C
and D). This included the production of TNF-α, Granzyme A,
Granulysin, Perforin, CCL3, CCL4, and CCL5 by CD29+ T cells
(SI Appendix, Fig. S3A). Because CD29+ T cells included DP
producers (Fig. 4B), the overall IL-2 protein production was
similar in CD29+ and CD38+ T cells, yet clearly distributed
between CD29+ DP and CD38+ IL2 single producers (SI Ap-
pendix, Fig. S3B).
Intriguingly, even though the percentage of CD29+ T cells and

CD38+ T cells was greatly variable between donors (SI Appendix,
Fig. S3C), their expression pattern and cytokine production pro-
file was maintained throughout the T cell culture (Fig. 4 E and F).
Specifically, when we FACS-sorted CD29+ and CD38+ T cells
on day 7 after activation, reactivated them with αCD3/αCD28 for
2 d, and cultured them for another 10 d (i.e., 12 d postsort), CD29
and CD38 expression was maintained by the vast majority (>90%)
of the cells (SI Appendix, Fig. S3D). In addition, the CD29+

FACS-sorted T cells expanded slightly better than CD38+ T cells,
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as determined by a slightly higher loss of carboxyfluorescein suc-
cinimidyl ester (CFSE) signal, and by increased cell numbers from
8 d postsort (SI Appendix, Fig. S3 E and F). Importantly, also when
T cells were cultured for 14 d after the second α-CD3/α-CD28
activation (i.e., 23 d of total T cell culture), CD29+ T cells were the
prime IFNG producers, and CD38+ T cells, the IL2 producers (Fig.
4 D and E). Using different cytokines during α-CD3/α-CD28 acti-
vation, or during the resting phase did not alter the percentage of
CD29+ T cells at the end of culture, or the GeoMFI expression of
CD29 (SI Appendix, Fig. S3G andH). Overall, we conclude that the
differences between CD29+ and CD38+ T cells are cell intrinsic and
can be used to distinguish IFNG/DP producers from IL2/DN
producers.

CD29 Is Expressed on Nonnaïve CD8+ T Cells. We next investigated
how our findings on differential cytokine production by CD29+ and
CD38+ T cells in vitro translated to CD8+ T cell reactivity ex vivo.
CD38 expression on CD8+ T cells was limited (14.1 to 25.8%). CD38
expression was similarly distributed in different T cell subsets, i.e.,
CD45RA+CD27+ naïve T cells (TN), CD45RA+CD27− effector

CD8+ T cells (TEff), CD45RA−CD27− effector memory (TEM), and
CD45RA−CD27+ memory CD8+ T cells (TMem) (SI Appendix, Fig.
S4A) and is described to be absent on stem cell memory cells (27).
However, CD38 expression did not anticorrelate with CD29 expres-
sion ex vivo (Fig. 5A). In fact, CD38 expression was observed only
after several days of T cell activation in vitro, and only then its inverse
correlation with CD29 became apparent. Because CD29 expression
was detected ex vivo and maintained its strong correlation with IFN-γ
production (SI Appendix, Fig. S4 C and D), we further focused on
CD29 expression and its relation to T cell differentiation and func-
tionality. CD29 expression was primarily detected in TEff, TEM, and
TMem CD8+ T cells with equal protein expression levels (Fig. 5B and
SI Appendix, Fig. S4B). This expression profile was in concordance
with that of cytotoxic molecules (28, 29) and its observed expression
in effector T cells (8, 30). Of the CD45RA+CD27+ naïve T cells (TN),
only 6.6 ± 4.2% expressed CD29 (Fig. 5B and SI Appendix, Fig. S4B).
However, the CD29+ “naïve” T cells that rapidly produce IFN-γ
upon 4 h PMA–ionomycin stimulation, and express CD49d (Fig. 5
C and D), were previously identified as memory T cells with a naïve
phenotype (TMNP) (31). Irrespective of their differentiation
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status, the vast majority of IFN-γ–producing T cells—and less so
the IL-2–producing cells—expressed CD29 (SI Appendix, Fig. S4
C and D). Of note, CD29+ TMNP were the prime IFN-γ pro-
ducers in the TN subset (SI Appendix, Fig. S4C).
To determine how CD29 expression related to antigen-specific

triggering, we studied choriomeningitis virus (CMV)- and Epstein-
Barr virus (EBV)-specific T cells. In healthy blood donors, CMV-
specific T cells are primarily of the effector, and EBV-specific
T cells of the central memory phenotype (32, 33). We activated
PBMCs with CMV and EBV peptide pools and found that the
IFN-γ–producing CMV- and EBV-specific T cells are primarily
CD29+ (Fig. 5 E and F). In conclusion, CD29 is almost exclusively
expressed by nonnaïve T cells.

scRNA-Seq Analysis Reveals the Cytotoxic Signature of CD29+ CD8+ T
Cells. To further characterize the gene expression profile of
CD29+CD8+ T cells, we reanalyzed previously published single-
cell RNA-seq (scRNA-seq) data of peripheral blood-derived
CD8+ T cells (34). To distinguish naïve T cells from nonnaïve
CD29+ T cells, we used unsupervised clustering followed by
differential expression analysis. High LEF1, CCR7, and SELL
gene expression and low CCL5, GZMB, and PRF1 gene ex-
pression was used to identify T cells with a TN transcriptome
signature (35, 36) (SI Appendix, Fig. S4E). CCL5 gene expres-
sion highly correlated with nonnaïve T cells and was therefore
used to enrich for those for downstream analysis (SI Appendix,
Fig. S4 F–H).
Even though many nonnaïve CD8+ T cells express ITGB1

(CD29), its expression levels vary greatly, as revealed in the
scRNA-seq analysis (Fig. 5 G, Left and SI Appendix, Fig. S4B).

We therefore compared the gene expression profile of nonnaïve
T cells that show high or low ITGB1 gene expression (threshold
was determined as depicted in SI Appendix, Fig. S4I). High
ITGB1 gene expression strongly associated with high gene expres-
sion levels of GNLY (Granulysin), GZMB (Granzyme B), and of
TBX21 (T-bet) and ZNF683 (Hobit), two transcription factors as-
sociated with the cytotoxic activity of human T cells (37) (Fig. 5 G,
Right and SI Appendix, Fig. S5A). We confirmed increased T-bet and
Hobit protein expression in PBMC-derived CD29+CD8+ T cells (SI
Appendix, Fig. S5B). Conversely, in concordance with previously
described gene expression profiles (28, 38), ITGB1low CD8+ T cells
associated with high gene expression levels ofGZMK (Granzyme K),
and the inhibitory receptor KLRB1 (CD161) (Fig. 5 G, Right and
Dataset S3). The surface markers CD55 and CD127 (IL-7 receptor)
that anticorrelated with IFNG/DP producers in in vitro cultured
T cells (Fig. 4A and SI Appendix, Fig. S2B) were also primarily
expressed by CD29− T cells ex vivo (SI Appendix, Fig. S5C).
scRNA-seq analysis of CD8+ T cells from lung tissue (34) also

revealed a nonuniform expression of the ITGB1 transcript (SI
Appendix, Fig. S4 J and K). Again, high ITBG1 expression as-
sociated with a cytotoxic gene expression profile (SI Appendix,
Fig. S4K). When we compared the top 50 most up-regulated
genes in ITGB1high T cells derived from blood and lung, and
from lung and liver tissue (39), we identified a core signature
gene set of ITGB1high CD8+ T cells that encompassed the cy-
totoxic molecules GNLY, GZMB, GZMH, and FGFBP2, and
LGALS1 (Galectin-1) (Fig. 5H and SI Appendix, Fig. S4L). The
fractalkine receptor CX3CR1 is also part of the ITGB1high signature
(Fig. 5H). We confirmed this finding with flow cytometry analysis of
blood-derived CD8+ T cells (SI Appendix, Fig. S5E). Interestingly,
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CX3CR1+ T cells were always CD29+ (SI Appendix, Fig. S5E). In
contrast to murine CD8+ T cells (29), however, CX3CR1 expression
in humans is almost exclusively found on CD45RA+CD27− effector
CD8+ T cells, and only on a minority of TM or TEM cells (SI Ap-
pendix, Fig. S5F) (40). In line with the restricted expression pattern
of CX3CR1, CD29 expression correlates better with production of
IFN-γ and TNF-α than CX3CR1 (SI Appendix, Fig. S5 G and H).
Also other surface markers such as CD49a (ITGA1), CD49b
(ITGA2), CD49d (ITGA4), and CD11b (ITGAM) that we found
on IFNG/DP producers (Fig. 4A and SI Appendix, Fig. S2B) were
coexpressed by a subset, but not by all CD29+ blood-derived
CD8+ T cells (SI Appendix, Fig. S5I). Conversely, CD74 was re-
stricted to activated T cells and not expressed on CD8+ T cells ex
vivo (SI Appendix, Fig. S5D). Thus, ITGB1 (CD29) gene expression
robustly identifies human T cells with a cytotoxic gene expression
profile in blood and in tissues.

CD29+ Gene Signature Is Prognostic for Long-Term Survival of Melanoma
Patients. We next interrogated if ITGB1 gene expression correlated
with good clinical responses. We focused on skin cutaneous mela-
noma (SKCM), because the Cox regression analysis for survival

from all The Cancer Genome Atlas (TCGA) datasets on CD8B
expression identified SKCM as the only tumor type with a clear
benefit of CD8+ T cell infiltration (SI Appendix, Fig. S6A, P =
0.000125). ITGB1 is expressed by many cell types, including tumor
cells (41). Therefore, we used the CD29+ core signature gene set we
defined in Fig. 5H as the 19 overlapping genes from the top 50
expressed genes that were coexpressed in blood- and lung-derived
ITGB1high/CD29+ T cells. Intriguingly, analysis of TCGA data of
melanoma patients revealed that the CD29+ core signature corre-
lated well with a positive clinical outcome (high CD29+ signature:
median = 10.08 y, low CD29+ signature: median = 4.84 y; Fig. 6A).
In particular, using the patient cohort with high CD8+ T cell in-
filtrate levels estimated by CIBERSORT (42) further showed a
clear benefit of the CD29+ core signature for long-term survival
(high CD29+ signature: median = 13.5 y, low CD29+ signature:
median = 5.37 y; Fig. 6B). Thus, the CD29+ core signature pos-
sesses prognostic value for melanoma patients.

MART1 TCR-Engineered CD29+ CD8+ T Cells Effectively Kill Tumor
Cells. Lastly, we examined whether CD29 expression is also in-
dicative of high production levels of cytotoxic molecules when
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Repeated measurement ANOVA with Tukey posttest. Numbers indicate P value. (F) Correlation of tumor killing of total CD8+ MART1-TCR–expressing T cells
with the percentage of CD29+CD8+ T cells present in the T cell product (n = 34, linear regression).
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T cells were activated through cognate antigen recognition. We
retrovirally transduced CD8+ T cells with the codon-optimized
MART1-TCR that recognizes the HLA-A*0201 restricted 26 to
35 epitope of MART1 (43). FACS-sorted CD29+ and CD38+

MART1 TCR-engineered CD8+ T cells were then exposed for
6 h to a patient-derived HLA-A201+ MART1high-expressing
melanoma tumor cell line (MART1+), or to the HLA-A201−

MART1low-expressing cell line (MART1−) (44, 45) (Fig. 6C).
MART1 TCR-engineered CD29+ T cells produced substantially
higher levels of IFN-γ, TNF-α, Granulysin, and CD107α in re-
sponse to MART1 antigen-expressing tumor cells than CD38+

T cells (SI Appendix, Fig. S6B). CD29+ T cells were the major
source of IL-2+IFN-γ+ double producing T cells, and CD38+

T cells were enriched for IL2 single producers (Fig. 6C and SI
Appendix, Fig. S6B).
We then determined whether MART1 TCR-engineered CD29+

T cells were also more potent in killing tumor cells. CFSE-labeled
MART1+ and MART1− tumor cells were cocultured for 20 h with
FACS-sorted MART1 TCR-engineered total CD8+ T cells or with
FACS-sorted CD29+ or CD38+ T cells. We found that MART1+

tumor cells, but not MART1− cells, were effectively killed by
MART1 TCR-engineered T cells (Fig. 6D). Notably, in line with
their cytotoxic gene and protein expression profile, CD29+ T cells
showed superior killing when compared to CD38+ T cells (Fig. 6D
and E). This augmented killing capacity by CD29+ T cells was
observed at each effector:target ratio tested (SI Appendix, Fig.
S6C). Intriguingly, when we tested the killing capacity of MART-1
TCR-engineered T cells from 34 individual donors, we found that
the percentage of CD29-expressing T cells strongly correlated with
the killing capacity of the T cell product (P = 0.0096; Fig. 6F).
Thus, CD29 expression identifies T cells with the highest cytotoxic
potential in response to tumor cells.

Discussion
In this study, we present how RNA-seq and mass spectrometry
analysis can be performed from formaldehyde-fixed, permeabilized
primary CD8+ T cells. This method uses the endogenous protein
expression measured by intracellular cytokine staining for selection,
resulting in a reliable isolation of different populations without the
need of genetic modifications (11). We anticipate that one can
readily adapt this rapid and cost-effective method to select cells with
other features, such as differential chemokine or transcription factor
expression.
Our study showed that the differential cytokine production of

human CD8+ T cells reflects stable, T cell-intrinsic properties.
Whereas IL2 producers display a gene expression profile resembling
helper T cells, IFNG producers express a cytotoxic core signature.
With CD29 and CD38, IFNG-DP producers can be identified and
separated from DN-IL2 producers even prior to T cell stimulation,
a feature that was maintained upon prolonged in vitro cultures.
Importantly, scRNA-sequencing analysis on blood- and lung-
derived CD8+ T cells revealed that the cytotoxic core signature of
CD29+ T cells is not limited to in vitro T cell cultures but is also
found ex vivo. A cytotoxic gene expression of tumor-infiltrating
T cells has been associated with better patient survival (46, 47). In
line with that finding, TCGA analysis in SKCM patients also indi-
cates that the CD29 core gene signature is a good prognostic
marker for long-term survival. In fact, it further stratifies long-term
survival in SKCM patients with high CD8+ T cells infiltration, which
is already by itself a good predictor.
We found that CD29 expression marks nonnaïve T cells.

CX3CR1+ T cells are also included in this population. However,
because CX3CR1 is primarily expressed in effector T cells in
humans that are known to poorly expand in vitro (29), we con-
sider CD29 superior to identify IFN-γ producers with a cytotoxic
expression profile that also showed a good proliferative capacity.
Selecting for CD29+ T cells resulted in the generation of TCR-

engineered T cell products with improved killing of target cells at
least in vitro.
How CD29 expression is induced and maintained on CD8+ T cells

is yet to be determined. We found a great variation in the per-
centage of CD29+ T cells between blood donors. It is conceivable
that this donor-individual difference in CD29 expression stems
from a differential pathogenic and microbial exposure. Yet,
CMV and EBV infections efficiently generated CD29+ IFN-
γ–producing T cells, indicating that a variety of pathogens may
yield cytotoxic CD29+ T cells. Of note, the clear correlation with
CD29 expression and cytokine production was not detected in
mice housed under specific pathogen-free (SPF) conditions. This
may again point to the possibility that pathogen exposure con-
tributes to the generation of nonnaïve cytotoxic CD29+ T cells.
Which TF regulates ITGB1/CD29 or CD38 gene expression in
IL2 or IFNG producers, however, remains to be revealed. We
found that 15 TFs with increased transcript levels in IFNG pro-
ducers (Fig. 1E) have putative binding sites in the IGTB1/CD29
promoter/enhancer (GeneHancerID GH10J032947): EED, RXRA,
SOX13, ATF3, ARNT, ZNF395, HLF, PRDM1, RARA, CREB1,
NCOA1, ZNF592, JUN, PHF21A, and SMAD5. Likewise, four
TFs (STAT5A, NFATC1, TRIM22, and IKZF1) associated with
IL2 producers could interact with the CD38 promoter/enhancer
(GeneHancerID GH04J015778). Whether these TFs govern CD29
and/or CD38 expression is however yet to be defined.
Previous studies showed that the cytokine production profile

of CAR T cells was highly diverse (2). As culturing T cells with
different cytokines did not alter the relative distribution of
CD29+ and CD29− T cells, we propose to select for donors with
high CD29 expression, or to select for CD29+ T cells in case of
low percentages of CD29+ T cells to generate effective cytotoxic
T cell products. Similarly, it could help identify vaccines with a high
potential to induce cytotoxic T cells. Selecting for CD29+ cytotoxic
T cells to generate T cell products may also come with a positive side
effect. IL2 producers displayed a Th2 gene expression profile, which
includes IL-3, IL-4, IL-11, LIF, and PTGS2 (COX-2). A Th2 cytokine
profile may impede antitumoral responses (48). In fact, IL2 and DN
populations produce PTGS2 (COX-2) that was recently shown to
suppress antitumoral immunity (49, 50). It is therefore conceivable
that removing IL2/DN producers from T cell products may already
support the antitumoral responses of CD29+ T cells.
Another factor that impedes effective antitumoral T cell re-

sponses is the failure to migrate into the tumor tissue (47, 48).
Whereas β1 (CD29) and β2 integrins appear not to be required
for T cell migration into at least some tumor types (51), the
expression of metalloproteinases is critical for this process (52).
Intriguingly, we found that IFNG/DP producers also express
higher transcript levels of the metalloproteinase ADAM15 and
ADAM9, which could potentially support their intratumoral
migratory capacity. An additional critical feature of an effective
T cell response is their capacity to expand. We show here that
FACS-sorted CD29+ T cells divide at least as effectively, if not
slightly better than CD38+ T cells. It is therefore conceivable
that CD29+ T cells also accumulate in vivo, a critical feature for,
e.g., the killing of B cell lymphomas by CAR T cells (53).
In summary, our data show that RNA-seq and mass spec-

trometry analysis after intracellular cytokine staining is a pow-
erful tool to define distinct T cell populations. This allowed us to
uncover the differential make-up of CD8+ T cell responses that
is conserved and sustained, marked by CD29. Our findings may
not only help improve T cell products for therapeutic purposes in
the future, but they also provide a robust marker to study IFN-
γ+ CD8+ T cells with cytotoxic properties.

Materials and Methods
T Cell Activation. PBMCs from deidentified healthy volunteers were isolated
by Lymphoprep (density gradient separation; StemCell) and stored in liquid
nitrogen until further use. The studywas performed according to the Declaration
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of Helsinki (seventh revision, 2013). Written informed consent was obtained
(Sanquin Research, Amsterdam, The Netherlands).

For RNA-seq and MS analysis, cryopreserved blood from three in-
dependently obtained pools of 40 blood donors depleted for monocytes was
used. CD8+ T cells were enriched to a purity of ±80% with the CD8 magnetic-
activated cell sorting (MACS) positive isolation kit (Miltenyi). Validation essays
were performed with cryopreserved blood from individual donors without
MACS isolation.

T cells were activated as previously described (5). Briefly, nontissue culture-
treated 24-well plates (Corning) were precoated overnight at 4 °C with 4 μg/mL
rat α-mouse IgG2a (MW1483, Sanquin) in phosphate-buffered saline (PBS).
Plates were washed and coated for >2 h with 1 μg/mL α-CD3 (clone Hit3a,
eBioscience) at 37 °C. The 0.8 × 106 CD8+ enriched PBMCs/well were seeded
with 1 μg/mL soluble α-CD28 (clone CD28.2, eBioscience) in 1 mL Iscove’s
Modified Dulbecco’s Media (IMDM) (LONZA) supplemented with 8% fetal
calf serum (FCS), 100 U/mL penicillin, 100 μg/mL streptomycin, and 2 mM
L-glutamine. After 48 h of incubation at 37 °C, 5% CO2, cells were harvested,
washed, and further cultured in standing T25/75 tissue culture flasks
(Thermo Scientific) at a density of 0.8 × 106/mL, supplemented with 10 ng/mL
human recombinant IL-15 (Peprotech). Medium was refreshed every 5 to
7 d. Alternatively, cells were cultured without cytokine or, with human
recombinant IL-2 (50 IU/mL), IL-6 (10 ng/mL), IL-9 (10 ng/mL), IL-11 (10 ng/mL),
and IL-21 (50 ng/mL).

Preparation of Activated and Fixed T Cells for RNA-Seq and MS Analysis. T cells
were activated with 10 ng/mL PMA and 1 μM ionomycin (Sigma-Aldrich) for
4 h in the presence of 1:1,000 monensin (eBioscience). Cells were stained in
sterile PBS for 30 min at 4 °C with anti-CD8α (RPA-T8, BD) and near-infrared
(near-IR) live-dead marker (Thermo Fisher). ICCS was performed with
CytoFix-CytoPerm kit (BD) according to the manufacturer’s protocol. Prior to
use, CytoFIX was preincubated on ice for 2 min with 40 IU/mL murine RNase
inhibitors (M0314, NEB). After 15 min of incubation at 4 °C, cells were
washed once with 1xCytoPerm that was preincubated with 40 IU/mL RNase
inhibitors. Cells were then incubated in 1xCytoPerm (preincubated with RNase
inhibitors) for 15 min at 4 °C. Cells were then washed and resuspended in
sorting buffer (2× SSC: 300 mM NaCl, 30 mM sodium citrate, 80 IU/mL
RNase inhibitor). Antibodies directed against IL-2 (MQ1-17H12) and IFN-γ
(4S.B3) were incubated overnight in sorting buffer at 4 °C. Cells were washed
once and resuspended in sorting buffer prior to FACS sorting.

To evaluate the protein recovery of fixed samples compared to fresh
samples, we used 5 × 106 PBMCs treated with CytoFix-CytoPerm kit (BD)
according to the manufacturer’s protocol or left in PBS. The samples were
washed once with PBS, snap frozen in liquid nitrogen, and used for MS
analysis.

FACS Sorting. The precooled FACSAria III (BD) sorter was washed once with
70% ethanol, followed by a 5-min wash with cleaning buffer (20× SSC: 3 M
NaCl, 300 mM sodium citrate, 400 IU/mL RNase inhibitors). Sorted cells (ex-
cluding cell doublets and dead cells) were collected in 500 μL sorting buffer.
Cells were spun for 20 min at 4 °C at 4,000 rpm (2,820 relative centrifugal
force [RCF]). The cell pellet was transferred in 1 mL sorting buffer in lo-Bind
tubes (Eppendorf) and spun at 10,000 × g for 5 min in a table-top centrifuge
(Eppendorf). Supernatant was removed, and pellet was frozen at −80 °C
until further use.

Live cells were FACS-sorted according to standard procedures. Antibody
staining was performed in PBS + 1% FCS for 30 min at 4 °C for live-dead
marker (Invitrogen), α-CD8 (RPA-T8, SK1), α-CD29 (Mar4, BD), α-CD38 (HIT2,
Biolegend), and for murine α-TCRβ when selecting for MART1-TCR-
expressing T cells (H57-597). Cells were washed once with culture medium
and sorted on a precooled FACSAria III sorter. Sorted cells were collected in
culture medium.

Flow-Cytometry Analysis. Cells were stained in PBS + 1% FCS for live-dead
marker and antibodies against: CD3 (UCHT1), CD8 (RPA-T8, SK1), CD29
(Mar4), CD38 (HIT2), CD55 (JS11), CD11b (ICRF44), CD27 (CLB-27), CD49a
(TS2/7), CD49b (P1E6-C5), CD49d (9F10), CD39 (EbioA1), CD40L (24-31),
CD45RA (HI100), CD5 (M1649), CD70 (Ki-24), CD74 (M-B741), CD80 (L307.4),
CD81 (JS-81), CD103 (B-ly7), CD122 (Mik-B3), CD137 (4B4-1), CD226 (11-A8),
CD360 (17A12), CCR4 (1G1), CX3CR1 (2A9-1), GITR (108-17), HLA-DR (LN3),
ICOS (C398.4A), IL18R1 (H44), IL7R (HIL-7R-M21), KLRG1 (HP-3D9), lag3
(3DS223H), Ox40 (ACT35), PD-L1 (MIH1), for MART1-TCR selection murine
TCR-B (H57-597). The cytokine production profile was determined by ICCS
after activation with PMA–ionomycin for 4 h. Cells were prepared with a
CytoFIX-CytoPerm kit following manufacturer’s protocol. Cells were stained
with antibodies against IFN-γ (4S.B3), IL-2 (MQ1-17H12), TNF-α (MAb11),

Granulysin (DH2), Granzyme A (CB9), Granzyme B (GB11), CCL3 (CR3M), CCL4
(FL34Z3L), CCL5 (21445), and Perforin (dG49). Staining with antibodies
against T-bet (4B10) and Hobbit (Sanquin-Hobit/1) was performed with the
Foxp3/Transcription Factor Staining kit (eBioscience) according to the man-
ufacturer’s protocol. To measure cell proliferation, CD29+ and CD38+ FACS-
sorted T cells were labeled with 3 μM CFSE (Cayman Chemicals) according to
standard protocols. To measure CMV or EBV reactivity of CD8+ T cells, MHC
Class I-restricted peptide pools (Promix, ProImmune) supplemented with
α-CD28 (1 μg/mL) were used to stimulate cells for 6 h. Cells were acquired on
LSR II, Fortessa, or Symphony (all BD) using FACS Diva v8.0.1 (BD). Data were
analyzed with FlowJo VX (TreeStar).

Sample Preparation for RNA-Sequencing. For validation assays, cell pellets were
defrosted on ice and resuspended in proteinase K digestion buffer (20 mM
Tris·HCl [pH 8.0], 1 mM CaCl2, 0.5% SDS) and 75 μgmolecular grade proteinase K
(Life Technologies). After a 1-h incubation at 55 °C, TRIzol-chloroform ex-
traction was performed with 500 μL according to the manufacturer’s protocol
(Invitrogen).

For RNA-seq analysis, RNA was isolated with the RNAeasy formalin-fixed
paraffin embedded (FFPE) kit (Qiagen) according to the manufacturer’s
protocol, omitting the steps directed at deparaffinization. RNA was resus-
pended in RNase-free water. RNA concentration was measured with nano-
drop (Thermo Fisher), and RNA integrity was determined with the RNA 6000
Nano assay on the Bioanalyser 2100 (Agilent). Sequencing was performed
with stranded “FFPE-library preparation” (GenomeScan), including ribo-
somal RNA depletion with the Next rRNA Depletion kit (NEB E6310). Se-
quencing was performed on Illumina HiSEq. 4000, with an average depth of
21 million paired-end 150-nt (PE150) reads.

Quantitative PCR Analysis. For validation experiments, cDNA preparation was
performed with random hexamers using Super Script III reverse transcription
(Invitrogen) according to the manufacturer’s protocol. RT-qPCR primers were
designed with the National Center for Biotechnology Information (NCBI)
primer blast tool (54), and manufactured by Sigma. qPCR primer pairs were
used when standard curves showed an r2 >0.98. RT-qPCR was performed
with Power SYBR-green (Thermo Fisher) with the standard protocol (Tm =
60 °C for 1 min) on a 7500 Real-Time qPCR system (Applied Biosystems). RT-
qPCR data were analyzed with 7500 Software v2.3 (Applied Biosystems), and
plotted using GraphPad PRISM. Primers are as follows: β-Actin (Fwd AGAGC-
TACGAGCTGCCTGAC, Rev AGCACTGTGTTGGCGTACAG); RPS18 (Fwd CAGAAG-
TGACGCAGCCCTCTA, Rev AGACAACAAGCTCCGTGAAGA); and GAPDH (Fwd
GAGACTCGTGCAATGGAGATTCT, Rev ACCCTGTTGCTGTAGCCA). IL2 and IFNG
primers were previously described (5).

RNA-Seq Data Analysis. Reads quality was inspected using fastQC version
0.11.7 (55). Reads were aligned with STAR version 2.5.0a (56) on the human
genome hg38-release 92 from ENSEMBL (57). STAR was used to count reads
per genes (option–quantMode GeneCounts) and DESeq2 (58) using Wald
test with p-adjusted <0.01 and LFC >0.5 to isolate differentially expressed
genes. DESeq2 normalized counts were used for heatmaps and plotting.
Further annotation was obtained from Ensembl BioMart (57, 59) to dis-
criminate between different types of coding and noncoding genes. Gene set
enrichment analysis was performed using GSEA (60). Identification of tran-
scription factors between CD29, CD38, and IFNG/IL2 populations was done
using GeneHancer (61) annotation.

Mass Spectrometry Analysis. Sample preparation was performed as previously
described (62). Tryptic peptides were separated by nanoscale C18 reverse-
phase chromatography coupled on line to an Orbitrap Fusion Tribrid mass
spectrometer (Thermo Scientific) via a nanoelectrospray ion source (Nano-
spray Flex Ion Source, Thermo Scientific). The MS2 ion count target was set to
1.5 × 104. Only precursors with charge state 2 to 7 were sampled for MS2.
The instrument was run in top speed mode with 3-s cycles. All data were
acquired with Xcalibur software.

The RAW mass spectrometry files were processed with the MaxQuant com-
putational platform, 1.5.2.8. Proteins and peptides were identified using the
Andromeda search engine by querying the human Uniprot database (down-
loaded February 2015). Standard settings with the additional options match
between runs, label-free quantification (LFQ), and razor + unique peptides for
quantification were selected. The generated “proteingroups.txt” table was fil-
tered for potential contaminants, reverse hits and “only identified by site” using
Perseus 1.5.1.6. The LFQ values were normalized using a log2 transformation.
Data were imported in R and processed with the Differential Enrichment analysis
of Proteomics data (DEP) R package (63) and filtered for proteins that were
found in all biological replicates of at least one population. Filtered data were
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normalized and imputed using random draws from a Gaussian distribution
centered around a minimal value (q = 0.01). Differential protein expression was
determined with DEP (which uses Limma) with p-adjusted <0.05 and log2 fold
change >0.5.

Single-Cell RNA-Seq Analysis. Single-cell RNA-seq datasets were reanalysed from
Guo et al. (34) and Zheng et al. (39). Count matrix was filtered for “PTC” for
peripheral blood CD8+ T cells, “NTC” for normal lung or liver CD8+ T cells. Single-
cell toolkit (SCTK) or ASAP (for clustering of naïve-like cells) was used for scRNA-
seq data analysis (64, 65). First, the batch effect from the different patients was
corrected using ComBaT in SCTK (66). Cells were filtered for >1,000 expressed
genes per cell, keeping the 50% most-expressed genes after zero removal. We
then log transformed and performed differential expression (DE) analysis (ab-
solute LFC ≥0.5 and p-adjusted <0.05). CD29 grouping was determined based on
the “double peak” expression distribution of ITGB1 (CD29), PTC from blood
CD8+ (cutoff: 10 reads/cell), NTC from lung or liver CD8+ cells (cutoff: 32 reads/cell
[lung] and 10 reads/cell [liver]) (SI Appendix, Fig. S7). Unsupervised clustering was
performed in ASAP, using k-means (set to k = 4) on t-Distributed Stochastic
Neighbor Embedding (t-SNE). For validation, naïve-like cells were compared to
the remaining “nonnaïve-like” cells with ASAP (using Limma, LFC >1 and p-
adjusted <0.05). All DE genes were used for volcano plots, and Venn diagrams
show the top 50 most-upregulated DE genes.

Filtering of Differentially Expressed Genes for Functional Annotation. Genes
encoding secreted proteins were extracted from ref. 67, and DEGs, or proteins
with an absolute LFC >1.5, were identified. Of note, we manually curated the
list for secreted genes for obvious misannotations (histones, membrane, TF,
RNA binding, CD molecules, protein without protein evidence, collagen, nu-
clear, nucleus, ribosomal, and mitochondrial). Similarly, genes and proteins
encoding CD molecules were extracted with the corresponding gene and
protein names (68), and DEGs or proteins with an absolute LFC >1.5 were
identified.

Genes encoding for transcription factor were obtained from ref. 69 and
filtered from the DEG. LncRNAs were filtered from DEG, excluding protein-
coding genes and TCR/IG pseudogenes. Genes of experimentally validated
RNA binding proteins were obtained from refs. 70–72, and filtered from
the DEG.

Survival Analysis. Oncolnc (73) was used to assess the effect of CD8B expression
on different types of cancer. A Cox regression analysis for CD8B was perfomed
and the −log(false discovery rate [FDR]) was used to identify responsive cancer
types (FDR < 0.01).

Datasets for SKCM RNA-seq and patient survival were obtained from
TCGA (https://www.cancer.gov/tcga) using University of California, Santa
Cruz Xena (ref. 74; https://xenabrowser.net/datapages/). Gene signature of
CD29+ CD8+ T cells (Fig. 5G) was used to isolate the gene expression from the
RNA-seq SKMC TCGA dataset (in TPM+1, where TPM is transcripts per kilo-
base per million). TPM+1 counts were transformed into a genewise Z-score.
The average of all Z-scores was calculated per patient. Patients were then
stratified in two groups (high or low CD29 signature expression) using the
median of the Z-score average (as described in ref. 34). Patients were also
stratified for CD8+ T cell infiltrates using estimates obtained by CIBERSORT

(42) on SKCM TPM+1 counts. Survminer R package was used to prepare and
visualize the patient survival with Kaplan–Meier plot. Log-rank test was used
to determine statistical differences in survival between group.

Generation of MART1-TCR-Expressing T Cells. PBMCs from individual donors
were activated for 48 h with α-CD3/α-CD28 as described above. Cells were
harvested and retrovirally transduced with the MART1-TCR, as previously
described (43). Briefly, nontissue cultured-treated 24-well plates were coated
with 50 μg/mL Retronectin (Takara) overnight and washed once with 1
mL/well PBS. A total of 300 μL/well viral supernatant was added to the plate,
and plates were centrifuged for 1 h at 4 °C at 4,000 rpm (2,820 RCF). The 0.5 ×
106 T cells were added per well, spun for 10 min at 1,000 rpm, and incubated
overnight at 37 °C. The following day, cells were harvested and cultured in
T25 flasks at a concentration of 0.8 × 106 cells/mL for 6 to 8 d in presence of
10 ng/mL rhIL-15.

Functional Assays with MART1-TCR-Expressing T Cells. MART1-TCR-transduced
CD8+ T cells were FACS-sorted based on TCR expression and rested overnight in
medium at 37 °C. Cytokine production was determined, as described above, by
ICCS after 6 h of coculture with HLA-A2+ MART1hi Mel 526 (MART1+), or HLA-
A2− MART1lo Mel 888 (MART1−) tumor cell lines (44), in a 3 to 1 effector to
target (E:T) ratio. For CD107α staining, cocultured cells were supplemented with
anti-CD107a, Brefeldin A, andMonensin, in the culture medium for 6 h. Cells were
subsequently measured by flow cytometry. For killing assays, total CD8+ MART1
TCR-engineered T cells were FACS-sorted or sorted based on their CD29 and CD38
expression profile (CD29+ and CD38+). Tumor cells were labeled with 1.5 μM CFSE
for 10 min at 37 °C in FCS-free medium and washed three times with warm culture
medium. The 15 × 103 tumor cells were cocultured with MART1-TCR+ FACS-sorted
T cells for 20 h, in a 3:1, 1:1, and 0.3:1 E:T ratio. Dead cells were quantified by flow
cytometry with near-IR live-dead marker on CFSE+ tumor cells.

Statistical Analysis and Data Visualization. Data generated with flow cytom-
etry were analyzed with paired t test, repeated measurement ANOVA using
GraphPad PRISM version 7. Differences were considered significant with a P
value <0.05.

Plots were generated with ggplot2 version 3.0, DEP version 1.2.0, and with
GraphPad. Heatmapswere generatedwith pHeatmap version 1.0.10 andDEP.
Venn diagrams were generated with http://bioinformatics.psb.ugent.be/
webtools/Venn/.

Data Availability. All sequencing data are deposited on NCBI GEO under the
accession no. GSE125497, and all MS data were deposited on PRIDE
PXD012874.
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