SCIENCE CHINA
Earth Sciences

* REVIEW -

February 2014 Vol.57 No.2: 189-203
doi: 10.1007/s11430-013-4635-0

Impact of global change on transmission of
human infectious diseases

WU XiaoXu'?, TIAN HuaiYu'"", ZHOU Sen’, CHEN LiFan' & XU Bing"*"

! College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China;
2 School of Environment, Tsinghua University, Beijing 100084, China

Received February 6, 2013; accepted April 19, 2013; published online June 21, 2013

Global change, which refers to large-scale changes in the earth system and human society, has been changing the outbreak and
transmission mode of many infectious diseases. Climate change affects infectious diseases directly and indirectly. Meteorolog-
ical factors including temperature, precipitation, humidity and radiation influence infectious disease by modulating pathogen,
host and transmission pathways. Meteorological disasters such as droughts and floods directly impact the outbreak and trans-
mission of infectious diseases. Climate change indirectly impacts infectious diseases by altering the ecological system, includ-
ing its underlying surface and vegetation distribution. In addition, anthropogenic activities are a driving force for climate
change and an indirect forcing of infectious disease transmission. International travel and rural-urban migration are a root
cause of infectious disease transmission. Rapid urbanization along with poor infrastructure and high disease risk in the ru-
ral-urban fringe has been changing the pattern of disease outbreaks and mortality. Land use changes, such as agricultural ex-
pansion and deforestation, have already changed the transmission of infectious disease. Accelerated air, road and rail transpor-
tation development may not only increase the transmission speed of outbreaks, but also enlarge the scope of transmission area.
In addition, more frequent trade and other economic activities will also increase the potential risks of disease outbreaks and fa-

cilitate the spread of infectious diseases.
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Since the 20th century, the global incidence of infectious
diseases has had a series of ups and downs. At the begin-
ning of the century, influenza pandemics were prevalent; in
mid century, the incidence of all types of infectious diseases
was relatively low. However, since the 1970s, new infec-
tious diseases, including AIDS, severe acute respiratory
syndrome (SARS), highly pathogenic avian influenza A
(HPAI H5N1), Ebola hemorrhagic fever, legionellosis and
Lyme disease, have emerged. Certain non-prevalent diseas-
es, including tuberculosis, cholera, schistosomiasis, plague
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and sexually transmitted diseases have reemerged, followed
by biological attacks and infectious diseases caused by hu-
man activities. Various infectious diseases have unprece-
dented impacts on human health, social stability and eco-
nomic development. Nearly 15 million people worldwide
die from these diseases every year, accounting for 25% of
all deaths (Morens et al., 2004). Morbidity and mortality
bring heavy economic burdens to developing countries
(Guerrant et al., 1999). Infectious diseases, together with
war and famine, still rank first on the list of the greatest
threats to human survival (Morens et al., 2004; Binder et al.,
1999).

Under the influence of global change in both the natural
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and social environment, the emergence and transmission
patterns of infectious diseases have changed. Natural factors,
especially global climate change, will directly or indirectly
impact the transmission process of many such diseases.
Global warming will also cause the rise of sea level and sea
surface temperature, which increase the incidence of wa-
ter-borne diseases including cholera and poisoning of shell-
fish products (McMichael et al., 1996; Patz et al., 1995).
Research indicates that climate change, including increases
of temperature and rainfall, more frequent deluges and
storms, sea level rise, and environmental deterioration such
as that caused by settlement in refugee camps, could cause
outbreaks and prevalence of cholera (Tong et al., 2000).
Global climate change will influence the spread of in-
sect-borne infectious diseases, through its influence on the
geographic distribution change of insect vectors, increase of
propagation velocity, invasion strength of insect vectors and
by shortening the incubation period of pathogens. In-
sect-borne infectious diseases strongly affected by climate
change include malaria, schistosomiasis, dengue fever, viral
encephalitis and others (McMichacl et al., 1996; Patz et al.,
1995). Extreme temperature, strong rainfall and natural dis-
asters related to weather can directly cause death, adverse
health effects and disease. Climate change indirectly affects
human health through the following: Altering sources of
infection, which causes increased emergence of infectious
diseases and expansion of their geographic distributions;
impacting grain yield, which causes emergence of dys-
trophic diseases; population movements, resulting from sea
level rise that causes increasing incidence of infectious and
mental diseases; by affecting air quality, which increases
incidence of respiratory infectious diseases; by influencing
society, the economy and population, which produces
wide-ranging public health problems (http://www.unep.org/
annualreport/2011/).

Socioeconomic factors are important in emergence, de-
velopment and variation of infectious diseases (Jones et al.,
2008). First, land use, the human living environment, fre-
quent trade and increased tourism are believed to be im-
portant drivers for the re-emergence and devastation of in-
fectious diseases (Patz et al., 2004; Taylor et al., 2001;
Weiss et al., 2004; Woolhouse et al., 2005), and create
many social problems. For example, antibiotic abuse will
lead to pathogen emergence of drug-tolerant persisters and
variants (as in malaria, dengue, tuberculosis, cholera and
influenza). Land cover change may induce prevalence of
infectious diseases; for example, cultivating wastelands and
deforestation has led to the emergence and spread of hem-
orrhagic fevers. Second, changes in the style of human ac-
tivity have contributed to the spread of infectious diseases.
These changes include frequent population migration, an
increase in erotic services and multiple sex partners, illegal
trade, industrialization of food, insufficient heat treatment in
mechanized food production, and careless disinfection.
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1 Natural environment and infectious diseases

Under the impetus of global natural and human activities,
the emergence and transmission patterns of infectious dis-
eases have changed (Figure 1). Natural factors, including
temperature, humidity, rainfall, vegetation and land use di-
rectly or indirectly influence the outbreak and spread of
many such diseases. Among these factors, the effects of
climate change cover the widest range and have greater
magnitude. Human activities are not only the major driver
of climate change, but also indirect drivers of infectious
disease spread.

1.1 Climate change and infectious diseases

1.1.1 Meteorological factors and infectious diseases

Meteorological factors affect infectious disease via three
aspects: pathogen, host (Kuhn et al., 2005) and transmission
route.

(1) Effects of meteorological factors on pathogens. Tem-
perature and humidity can directly impact reproduction of
pathogens and their survival time in the environment
(Zhang et al., 2008). Temperature has a significant effect on
viruses. First, most viruses, bacteria and parasites have
threshold temperatures to survive. For example, the thresh-
old temperature for survival of the malaria parasite Plasmo-
dium falciparum is 18°C (MacDonald, 1957), and the
spread of malaria is limited to the range 16-33°C (otherwise
the spore cannot reproduce). The optimal condition for ma-
laria spread is high humidity and temperature, within
20-30°C (Khasnis et al., 2005). The threshold temperatures
for the plasmodia P. falciparum and P. vivax to survive in
malaria mosquitoes are 18°C and 15°C (Duane et al., 2001),
respectively, whereas the threshold temperature for Japa-
nese encephalitis virus survival is 20°C (Mellor et al., 2000).
Many pathogens, such as Vibrio cholerae and hepatitis E
virus are restricted to some tropical areas, also because of
temperature limitation (Hunter, 2003). In addition, temper-
ature can affect the evolution of viruses, thereby resulting in
outbreaks of new infectious diseases. For example, global
warming will cause the evolution of influenza virus and
extensive outbreaks of influenza (Aimone, 2010; Brown,
2010; Gibbs et al., 2010; Tang et al., 2010). New influenza
viruses are emerging, threatening the health and safety of
human and other species. Studies have shown a certain cor-
relation between global temperature and nucleoproteins.
Global change would impact the evolution of arbovirus to
some degree (Gould et al., 2009), and also affect change
patterns of emerging diseases. Moreover, temperature can
influence viral infectivity and risk. A study in Peru showed
that 1°C rise in temperature would increase the probability
of severe diarrhea by 5% (Checkley et al., 2000). Another
study in Australia showed positive correlation between
temperature and cases of Salmonella infection (D’Souza
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Figure 1 Relationship between global change and outbreak and transmission of infectious diseases.

et al., 2004).

(i1) Effects of meteorological factors on host. Climate
change affects infectious disease hosts, via aspects includ-
ing: (1) Spatiotemporal distribution of arthropods; (2) life
cycle characteristics of arthropods; (3) spread pattern of
related arboviruses; (4) spread efficiency from arthropod to
vertebrate (Gould et al., 2009). Arthropod vectors are poi-
kilothermic animals that are sensitive to change of climatic
factors. Meteorological conditions influence the survival
and reproduction rate of disease vectors, along with their
habitat, distribution and quantity, spatiotemporal pattern of
annual carrier activity and development, thus influencing
pathogen survival and reproductive rate in disease vectors
(Lafferty, 2009). Variations in carrier populations show
positive correlation with temperature and humidity, and are
also related to rainfall and sunshine, which are greater dur-
ing periods of disease prevalence (Rogers et al., 2006). Ge-
ographic distribution and change of insect host species are
closely related to patterns of temperature, rainfall and hu-
midity. Temperature rise can accelerate entomic metabolism,

increase spawning quantity and blood circulation frequency
(Mellor et al., 2000). Global warming and climate change
have the potential to significantly impact the hydrosphere
and fragile atmosphere (Zell, 2004), and especially species
diversity, human health and infectious disease distribution
(Harvell et al., 1999; Intergovernmental Panel on Climate
Change, 2001). One such threat is increasing contact be-
tween humans and vector- or water-borne diseases. Global
warming is beneficial to the spread of malaria (Khasnis et
al., 2005). The effect of rainfall is also significant; it indi-
rectly modulates the life cycle of insects through influenc-
ing humidity. A wetter environment is much more benefi-
cial for insect reproduction, which thereby increases the
geographic distribution and abundance of seasonal insect
vectors (Kuhn et al., 2005). Moreover, mosquito hosts are
very sensitive to climate. Their reproductive and death rates
are influenced by climate (Zell, 2004).

Mild meteorological conditions are favorable for repro-
duction of ticks, and modify the distribution of Crimea-
Congo hemorrhagic fever (Ergonul, 2006). Outbreaks of
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this disease in Turkey are connected with mild temperatures
in the preceding spring (Cazorla et al., 2003). Observations
in recent years have shown that the number of rodents is
also affected by climate, since warm and wet winters and
springs can increase their number (Kausrud et al., 2007).
Climate change aside, this number has the potential to grow
in temperate areas, causing more contact between humans
and rodents and greater risk of pathophoresis, especially in
urban areas. In some European countries, damage to health
infrastructure and the lack of health care knowledge among
the public has increased the incidence of plague (Kausrud et
al., 2007). A mild climate favors increase in the number of
rodent species. However, harsh climate conditions such as
heat waves may cause rodents to feed indoors, resulting in
more contact with humans (Kausrud et al., 2007). Fluctua-
tion in the number of main hosts is related to cases of
plague (Davis et al., 2004). Climate change in central Asia
is favorable for the spread of plague. According to predic-
tion, 1°C temperature increase would heighten the number
of diseases in hosts caused by Yersinia pestis by 50%
(Stenseth et al., 2006). Plague epidemics in central Asia are
common, and also impact European countries (Akiev et al.,
1976). In Sri Lanka, drought has caused river to shift course
and river water accumulation, which provides numerous
breeding sites for local mosquito vectors and leads to fre-
quent occurrence of malaria. Usually, in El Nifio Southern
Oscillation (ENSO) years, the northeast monsoon in that
country brings sufficient rainfall, but not so the southwest
monsoon. In recent years, the reemergence of malaria in
certain locations may be related to ENSO. In recent decades,
the longer propagation period of falciparum malaria in Pa-
kistan has been connected with seasonal temperature in-
crease in later parts of an ENSO year, which has a high
temperature overall. Temperature can directly impact plas-
modium growth and the mosquito life cycle. Sufficient
rainfall is favorable for mosquito breeding, and suitable
climate conditions can strengthen mosquito invasiveness. In
1987, malaria was very prevalent in Rwanda, mainly be-
cause of temperature increase (especially for temperature
minima) and successional rainfall (Bouma et al., 1994).
Temperature influences the growth, development, reproduc-
tion and death of Schistosoma and Oncomelania, and also
contact between humans and infected water (Tong et al.,
2000). In most cases, Schistosoma infection does not occur
at low temperature (lower than 9°C). However, infection
probability increases with temperature, maximizing within
24-27°C. However, temperatures in excess of 39°C can
cause kill Oncomelania and reduce the Schistosoma infec-
tion rate (McMichael et al., 1996). The distribution of On-
comelania is also affected by rainfall (McMichacl et al.,
1996). Temperature has an important influence on the
spread of dengue fever. With its increase, incubation of
dengue virus in mosquitoes shortens, and these bite humans
more frequently. Moreover, the geographic distribution of
the mosquito that transmits dengue fever virus may be ex-
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tended (McMichacl et al., 1996; Patz et al., 1995). Global
warming is likely to increase the incidence of food-borne
diseases. For example, during the period 1982 to 1991, the
incidence of food-borne disease in England was closely
related to average temperature; this correlation had an av-
erage threshold temperature above 7.5°C (Tong et al.,
2000).

(iii) Effects of meteorological factors on transmission.
Climate change can influence the occurrence and spread of
infectious diseases through its effect on transmission. For
example, climate change can cause air pollution and short-
ages of food and clean water (Debono et al., 2012), leading
to changes of high-incidence areas and outbreak patterns,
thereby affecting the occurrence and spread of infectious
disease.

Climate change can alter the spread of infectious diseases
by influencing the water environment. Taking red tides as
an example, global warming provides excellent conditions
for algae growth. Algae in warm waters and sewage ditches
contain many toxins, which may be related to an increased
incidence of liver cancer in recent years. With the continu-
ing rise in sea surface temperature, liver cancer has spread
to coastal areas in high altitude and low temperature zones
(Luber et al., 2009). Red tide outbreaks in drinking water
sources present a huge threat to public health. Moreover,
eating contaminated fish from red tide waters indirectly
impacts human health (Morris et al., 1982). Climate change
and over-exploitation of resources will aggravate the short-
age of clean water in Africa and Southeast Asia (Intergov-
ernmental Panel on Climate Change, 2007). Shortage of
clean water may bring a series of waterborne infectious
disease outbreaks. One study of children under the age of
five from less developed and developing countries showed
that low rainfall was closely related to outbreaks of illnesses
such as diarrhea (Lafferty, 2009).

Climate change can alter the spread of infectious disease
by influencing food. Climate change, including changes in
temperature, rainfall and soil moisture, alter or relocate
grain-producing areas (McMichael, 2001). People in such
areas tend to be dystrophic, which is more common in de-
veloping countries. Thus, hunting wild animals to survive,
along with poor health and sanitary conditions, increase
risks of infectious disease in residents of these areas (U.S.
Global Change Research Program, 2001). Model studies
have also shown that decreased grain production caused by
global climate change would increase the number of those
living in poverty by 5%-10% (Parry et al., 2004); large
number of refugees and increased transient populations
would cause outbreaks of a series of infectious diseases
(McMichael et al., 2006). Increases in average temperature
will result in an obvious increase in the number of people
infected with Salmonella and Campylobacter (D’Souza et al.,
2004). Diseases caused by food sources can also kill vul-
nerable people (Hall et al., 2002). In 10 countries of main-
land Europe, cases of Salmonella food poisoning have risen
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to nearly 30% (Kovats et al., 2004). Investigations in Eng-
land have also found a close connection between the inci-
dence of food poisoning and temperature of the preceding
2-5 weeks (Bentham et al., 2001).

Climate change can alter the spread of infectious diseases
by influencing air quality. One study focused on the poten-
tial effects of climate change on air pollution over the next
50 years in the eastern United States. The study stated that
the ozone-related death toll would increase by 4.5% in 2050
relative to that in 1990 (Hogrefe et al., 2004). Climate
change may alter geographic range and time of pollen and
spore spread, thereby causing prevalence of anaphylactic
diseases including hay fever and asthma (Beggs, 2004).

1.1.2  Abnormal weather events and infectious diseases

Abnormal weather events have significant effects on mos-
quito-borne, rat-borne and tick-borne diseases (Zell, 2004).
Disease outbreaks rise significantly during El Nifio events,
such as incidence of diarrhea in Peru (Checkley et al., 2000),
African horse sickness in South Africa (Baylis et al., 1999),
and dengue fever in the South Pacific (Hales et al., 1996;
Epstein, 1999). The increased hantavirus activity in the Four
Corners region of the southwest United States in 1997 and
1998, as well as periodic epidemics of Rift Valley fever in
Eastern Africa, are related to El Nifio events (Epstein, 1999).
Cases of human infection in Colorado of the U.S. are also
related to EI Nifio (Hjelle et al., 2000), so we may conclude
that the increase of rainfall owing to EI Nifio leads to a rise
in the number of rodents. Such rise intensifies intraspecific
competition, and increased contact between humans and rats
strengthens hantavirus activity (Zell, 2004). EI Nifio is also
related to outbreaks of cholera. The most catastrophic flood
disasters in a century occurred in 1991 and 1998 in China;
cholera was extensively prevalent in 1998, but not in 1991.
The flood of 1991 was caused by EI Nifio, and it produced a
decrease in sea surface temperature and seawater salinity in
the southeastern waters of China, which is unfavorable for
the prevalence of cholera. Flooding in 1998 was caused by
La Nifia, and it led to abnormal rise in sea surface tempera-
ture in southeastern waters, which was favorable for the
growth and reproduction of comma bacillus (Wang et al.,
2000). The outbreak and prevalence of malaria in Ecuador,
Peru and Bolivia in 1983 were related to heavy rains and
accompanying ENSO.

The quasi-biennial oscillation (QBO) of stratospheric
westerly winds at the equator is associated with tropospher-
ic weather patterns such as change of atmospheric pressure
caused by the Southern Oscillation. Recently, it was proven
that Ross River virus found in Queensland, Australia had
significant seasonal change, with peaks in summer and au-
tumn. Heavier summer rainfall in southeast Queensland had
a strong relationship with occurrence of the QBO in the
west. The QBO can affect virus activity by influencing the
local environment (Zell, 2004).
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1.1.3  Meteorological disasters caused by abnormal
weather and infectious diseases

Drought is found to have a close relationship with outbreaks
of some infectious diseases. In 1993, an abnormal occur-
rence of deadly SARS broke out in New Mexico, Colorado,
Utah and Arizona in the United States. A Bunyaviridae
Hantavirus pathogen was named Sin Nombre virus (Nichol
et al., 1993; Wenzel, 1994). Later, it was found that this
virus was spread by the deer mouse. During previous out-
breaks of hantavirus in spring and summer of 1993, locally
abnormal winter rainfall caused a long drought, which re-
sulted in a dramatic 10-fold increase in rodent numbers in
the early part of the outbreak (Engelthaler et al., 1999).
Owing to shortages of food, deer mice invaded human set-
tlements to forage, thus introducing the virus and causing the
outbreak of Hantavirus pulmonary syndrome (Engelthaler et
al., 1999). Severe drought can lead to a shortage of water
supply, so residents use water from pools with no stream-
flow, secondary supplied water and water from long-term
storage. Once the water resources are contaminated, out-
breaks of intestinal infectious diseases can readily occur
(Yang, 2007; Feng, 2000). Drought can cause pollutants to
accumulate in dams and blue-green algae to massively
propagate, releasing toxins in dams and lakes.

Rainstorms are also connected with the occurrence of
some infectious diseases. The bunyavirus Rift Valley Fever
Virus (RVFV) shows symptoms in humans, including fever
and encephalitis accompanied by retinal inflammation, and
first broke out in 1912 (Gonzalez-Scarano et al., 1996). This
virus mainly harbors on the body surface of mosquitoes,
primarily Aedes and Culex (Wilson et al., 1994). Rift Valley
fever occurs after downpours, with abnormal sea tempera-
tures in the eastern equatorial Pacific and western equatorial
Indian Ocean (Linthicum et al., 1999). In addition to rise in
sea surface temperature, rainfall causes many grassland de-
pressions in East Africa, which provide breeding sites for
immature mosquitoes. There are large numbers of infected
grain-sized eggs in these floodplain grasslands, which are
the origin of Rift Valley fever outbreaks. Rift Valley fever
disappears with ending of the rainy season and decrease in
number of mosquitoes (Zell, 2004). Research into the ef-
fects of flood disasters on infectious diseases has been car-
ried out domestically. After these disasters, deterioration of
environmental hygiene and increased hazardous exposure in
crowds always causes outbreaks and prevalence of many
infectious diseases. Xianning in Hubei Province suffered
flooding in 1998. Investigation of this showed that respira-
tory infectious disease was the principal disease during the
early and late flood stage and effector phase after flooding,
while intestinal infectious disease was the main one during
the flood period (Zhou, 2000). Insect-borne disease mainly
occurs in the disaster period, whereas natural focus infec-
tion disease occurs during the later flood stage and effector
phase after flood. Effects of flood disaster on infectious
diseases include: (1) Effects on schistosomiasis related to
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the spread of snails to surrounding areas via floodwater,
flotage and other means, causing an increased incidence of
schistosomiasis infection (Xie et al., 1999; Zhang et al.,
2003, 2004); (2) effects on leptospirosis related to the fact
that it is a zoonotic disease caused by pathogenic Leprospira,
with rats and pigs as principal sources of infection. Most
scholars believe that the prevalence of Leptospira in disaster
areas after flooding depends on the carrier rate of infection
sources (Ren et al., 2005). It has been shown that rat density
is positively correlated to leptospirosis incidence (Pan et al.,
2003); (3) effects on hemorrhagic fever with renal syn-
drome (HFRS) related to the fact that it is a natural focus
infection disease, with rats as the major disease host. When
humans and rats cohabitate, the likelihood of contact and
infection increases. Local outbreaks or prevalence of HFRS
readily occur. Sometimes, flooding may reduce the number
of rats and thereby HFRS incidence. Since there is not
enough time or no place for rats to move or escape to in
flood disaster areas, some rats drown, which results in re-
duced numbers of hosts and disease incidence. However,
some rats move to unaffected high altitudes or bordering
land, where the number of infection sources increases, re-
sulting in more contact between humans and rats and in-
creased incidence of disease (Chen et al., 1999; Chen, 1999);
(4) effects on intestinal infectious disease related to the fact
that water supply facilities and sanitary fixtures like lavato-
ries are flooded or inundated during flood disasters, leading
to pollution of these and other water sources by garbage,
excrement and the like. This directly produces outbreaks
and prevalence of many intestinal infectious diseases,
among which infectious diarrhea has a high-frequency
(Chen et al., 1998; Cheng et al., 1999); (5) effects on ma-
laria related to the connection between its incidence and
rainfall (Wen et al., 2003). Flooding can increase epidemics
in malarious areas (Zhang et al., 2004). In addition, torren-
tial rains or rainstorms may transport sewage and waste
water into sources of drinking water and dams, thereby
causing diseases (Thomas et al., 2006). Recent focuses of
model studies are on simulating variations of safety and
usability of drinking water caused by climate change (Fer-
guson et al., 2007).

Heat waves are also frequently related to infectious dis-
eases. Outbreaks of such diseases in southeast Romania
from 1996 to 1997 were very similar to those that broke out
in Israel in 2000. Both were related to heat waves caused by
high temperature in early summer (Rogers et al., 2006).

1.2 Terrestrial ecosystem and infectious diseases

The outbreak of infectious diseases is related to types of
underlying surfaces. Previous studies have indicated that
appearance of seasonal wetlands is associated with out-
breaks of HPAI HSN1 on the Indian subcontinent (Adhikari
et al., 2009). The first case of avian influenza in Romania
was in the Danube Delta, the largest wetland in Europe. One
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of the most important factors sustaining transmission of
avian influenza virus is that it may survive in water without
a host. Water can increase the spread of excrement and sa-
liva, propagate virus even lacking hosts, and redistribute
viruses among different hosts (Gilbert et al., 2008). The
occurrence of HPAI H5N1 is closely related to the distribu-
tion of water and wetlands in China, India and Pakistan
(Adhikari et al., 2009; Fang et al., 2008; Biswas et al.,
2009). Global transmission of H5N1 through wild bird mi-
gration, poultry transport and the interface of interaction
between wild and domestic birds, has been determined for
improved understanding (Liang et al., 2010).

The occurrence of infectious disease is associated with
the vegetation ecosystem. In the Middle East and northeast
Africa, HPAI H5N1 has occurred in areas with greater sea-
sonal variation of Normalized Difference Vegetation Index
(NDVI) values (Williams et al., 2009). In Europe, HPAI
HS5N1 occurrence is also closely related to NDVI (Si et al.,,
2010). Based on NDVI time series data, this occurrence in
Africa and the Middle East is correlated with differences in
phenological characteristics of plants (Williams et al., 2008,
2009). This results from the fact that plant distribution af-
fects the food sources of waterfowl, thereby altering their
distribution and movement.

Many kinds of natural factors together influence the oc-
currence and spread of infectious diseases. Research indi-
cates that influences on HPAI HS5NI1 occurrence among
wild birds in Europe were increased NDVI in December,
intermediate NDVI in March and at lower elevations, in-
creased minimum temperatures and decreased precipitation
in January (Si et al., 2010). It is believed that this occur-
rence is mainly impacted by food sources, increased tem-
perature and decreased precipitation (Si et al., 2010). Global
warming and climate change may significantly modify the
hydrosphere through heavy rainfall, floods, storms, heat
waves and droughts. Research found that falciparum malar-
ia in northwest Pakistan is related to continuous rainfall in
September and October, and continuing high temperatures
in November and December (Bouma et al., 1996).

2 Human activity and infectious disease

Human activities influence the emergence and transmission
of infectious diseases via the following aspects (Figure 1).

2.1 Growing population mobility

2.1.1 International travel

With the development of transportation over almost a cen-
tury, human travel has transitioned from interzonal to inter-
national. Over the last 50 years, the number of international
travelers has risen by 1300% (Mavroidi, 2008). According
to statistics, there are nearly one million international trav-
elers daily and one million per week traveling between de-
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veloped and developing countries (Garrett, 1996), repre-
senting nearly 700 million trips annually (Gossling, 2002).
Ecotourism and adventure tourism have seen the highest
growth rate at 10% each year since 1985, and often involve
activities with high risk of disease transmission (Chomel et
al., 2007). Increased tourism, business travel, and immigra-
tion have contributed to the dissemination of pathogens
(Arguin et al., 2009). Existing reported diseases include
HIV, legionellosis, Cyclospora cayetanensis, cholera, viral
hemorrhagic fevers, transmissible spongiform encephalo-
pathies, dengue, malaria, schistosomiasis, leptospirosis,
tuberculosis, dysentery and others (Ostroff et al., 1998).
According to transmission media, infectious diseases basi-
cally can be divided into water-borne, food-borne
(Swaminathan et al., 2009), airborne and zoonotic diseases.
Based on the Geosentinel Surveillance Network, statistics of
17353 infected travelers visiting developing countries indi-
cated that tourism, visits with family and friends, and busi-
ness travel respectively accounted for 59%, 15% and 14%
of all trips. In such travel, malaria is the disease with the
highest mortality rate and diarrhea is the most frequent, fol-
lowed by dengue and typhoid fever (Freedman et al., 2006;
Hill, 2006). African tick bite fever has been reported to have
caused 350 cases attributed to intercontinental travel (Jen-
senius et al., 2004). Dengue is a tropical infectious disease,
transmitted by Aedes aegypti and Aedes albopictus, which
has spread globally by infected travelers becoming a new
infection source. Leishmaniasis rapidly spread in developed
and non-epidemic countries over the last two decades of the
20th century, for which one important factor was rapidly
growing international travel (Antinori et al., 2005; Pavli et
al., 2010; Pérez-Ayala et al., 2009). Furthermore, global
crowd-gathering events, such as the Olympic Games, World
Expo or World Cup, not only increase the number of travel
destinations, but also attract many travelers and accordingly
increase the disease risk. For instance, according to evalua-
tion of cumulative disease trend from the Geosentinel Sur-
veillance Network, the Beijing Olympic Games was con-
sidered to have potential risks for disease outbreaks.

2.1.2  Population migration from rural areas to cities

With the accelerated development of urbanization, a shift in
population migration from rural areas to cities and suburbs
has changed global patterns of infectious diseases. It is es-
timated that nearly 40% of the increased urban population
in developing countries come from rural areas (Leon, 2008).
The “floating population” often suffers poor health care
situations and high residential densities, which readily cause
infectious disease outbreaks and further spread disease dur-
ing large population movements. Taking China as an exam-
ple, there were only 6.57 million who were considered
floating in the third census, representing 0.65% of the total
population. In the fifth census in 2000 and a 1% population
sampling survey in 2005, the floating population reached
121 million and 147 million, respectively, constituting
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9.55% and 11.26% of total population. During the SARS
event in 2003 and influenza A (HIN1) pandemic in 2009,
the floating population was the vulnerable group, easily
susceptible to infection and difficult to monitor (Zeng et al.,
2009; Zeng, 2009). Research on health surveys of the float-
ing population in Beijing indicated that there was a higher
risk of disease and greater mental stress for people migrat-
ing from rural areas to cities than for other groups (Chen,
2011). Similar surveys showed that the incidence of viral
hepatitis, syphilis, measles, dysentery, mumps and infec-
tious diarrhea in floating populations is higher than in local
residents (Yang et al., 2007). China’s Ministry of Health,
the WHO and UNICEF conducted a baseline survey of
children’s health care conditions in Hangzhou and Beijing
at the end of 2006. The survey showed that the incidence of
diarrhea in children in the floating population was 16.5%
and 13.3%, and that of cough was 34.2% and 30.4% in the
respective cities. These rates are all higher than those in
poor rural areas in 1998 (Huang et al., 2008). There were
similar situations in other developing countries, such as
Africa, Asia, and Latin America. Outbreaks of leishmaniasis,
which used to be confined to rural areas, occurred in many
cities as a result of tremendous rural population immigration
(Jeronimo et al., 1994; Werneck et al., 2002). Other forms
of cutaneous leishmaniasis broke out in densely populated
cities in western and central Asia (Ashford, 2000). In recent
years, cholera outbreak in the Tanzanian capital of Dar es
Salaam has resulted from large floating poor populations
and outdated health care support facilities (Penrose et al.,
2010).

2.2 Rapid urbanization

Urbanization and health is another focus of current research
on socioeconomic factors, and it is one of six research is-
sues of global environmental change and health in the Earth
System Science Partnership (ESSP; Confalonieri et al.,
2006). Since the beginning of the 20th century, England
became the first country with urban population exceeding
rural population; by 2007, over half the global population
was living in cities. Moreover, according to a UN forecast,
urban population in 2050 will reach 6.3 billion (Alirol et al.,
2011). The 20th and 21st centuries represent an important
stage of urbanization, and an era with obvious problems of
infectious disease and health in cities. With urbanization
development, cities expand outward, floating populations
increase and urban populations concentrate. Rapid urbani-
zation is often accompanied by poverty and deterioration of
living environment, and people’s needs exceed the service
capacity. The shift in population from rural to urban has
been altering global patterns of infectious diseases and
mortality (Hay et al., 2005).

2.2.1 Lagging urban infrastructure
The rapid expansion of cities has greatly modified the living
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environment for various sources of infection. Sudden
changes of environment increase biological attacks and the
possibility of infection events, thus augmenting the proba-
bility of spreading infectious disease (Wu et al., 2010).
Moreover, poor infrastructure, water supply, drainage, and
sewage treatment systems facilitate breeding for some vec-
tors (Sutherst, 2004). For example, rapid urbanization
caused a global outbreak of dengue fever in the late 20th
century. Su et al. (2005) found that urbanization may
change types and dominance of major vectors of dengue
fever. In addition, Lin et al. (2005) believed that urbaniza-
tion may cause vectors to breed indoors. Water pollution
caused by urban sewage often provides good breeding areas
for Culex, causing outbreaks of diseases such as lymphatic
filariasis (Maciel et al., 1996), systemic lupus erythemato-
sus, Rift Valley fever and other diseases. Taking China as
an example, in the next 20 years there will be 400 million
peasants migrating to cities. This implies huge demand for
health care and related facility construction along with po-
tentially huge risks, as inferred from lessons in Asian, Afri-
can and Latin American countries.

2.2.2 Disease spread risks in suburbs

With the expansion of cities, both developed and develop-
ing countries face the same problems, in that city edges or
suburbs are often the first to impinge on undeveloped areas,
such as forests and wastelands. Humans often lack immuni-
ty when moving into a new area or environment. Moreover,
human impacts may bring new pathogens and vectors into
such areas (McMichael et al., 2006; Ashford, 2000; Charrel
et al., 2007; Harrus et al., 2005; Patz et al., 2000). Diseases
related to this that have been reported include yellow fever,
trypanosomiasis, Kyasanur Forest disease, malaria and
leishmaniasis (Patz et al., 2000; Molyneux, 2003).

2.3 Continuous changes in land use

Land use change, including agricultural encroachment, de-
forestation, road and dam building, wetland transformation,
mining and urban expansion, has led to a series of disease
outbreaks and changed the transmission pattern of many
endemic diseases (Patz et al., 2004). Land use change can
influence diseases indirectly by changing the habitats and
behavioral habits of wild animals and livestock. This in-
creases the possibility of human exposure to pathogens and
vectors, reduces regional biodiversity, increases the domi-
nance of infected species, and provides breeding areas for
vector-borne disease hosts.

2.3.1 Deforestation

Deforestation has accelerated since the early 20th century,
with 101724 km? of forest cleared each year. Forest disap-
pears gradually at a rate of 0.3%, and tropical forests disap-
pear at 23% annually (Wolfe et al., 2000). This disappear-
ance destroys the original ecosystem, and the land is trans-
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formed into pastures, farmland, plantations or wasteland,
which are low-biodiversity environments. Further, the for-
mation of many fragmented habitats has a “marginal” (edge)
effect, which increases the opportunity for human contact
with new pathogens or wild animals (Patz et al., 2004). For
example, cases of malaria (Yasuoka et al., 2007), onchocer-
ciasis (Wilson et al., 2002), Lyme disease (Killilea et al.,
2008), cutaneous leishmaniasis (Chaves et al., 2008) and
other vector-borne diseases and corresponding vector popu-
lations are rising. Population dominance of vectors in for-
ests is also changing. With the effects of increased light,
enlarged wasteland areas and increased surface ponding, the
population of photophilic vectors has increased in forests.
Recent studies indicate an increase in cases of SARS, Ebola
virus, Nipah virus and some bat-host viral pathogens (Leroy
et al., 2005; Looi et al., 2007). There is a growing sense that
HIV, falciparum malaria and other zoonotic diseases are
results of increased human exposure to wild animals (Keele
et al., 2009; Rich et al., 2009).

2.3.2 Artificial waters

Dams, paddy field irrigation and other water conservancy
facilities furnish breeding areas for vector-borne infectious
disease hosts, and increase risks of expanding the habitats of
intermediate hosts for schistosomiasis (Seto et al., 2002; Xu
et al., 2004). With population movement, extensive devel-
opment of new irrigated areas, and dam building, the inci-
dence and geographic distribution of schistosomiasis is
shifting (Chitsulo et al., 2000). Neighborhood relationships
and hydrologic connectivity has been quantified to assess
the effect of inter-village parasitic transport on disease
transmission and control (Xu et al., 2006). After completion
of the Aswan Dam in Egypt, local Schistosoma haemato-
bium was gradually replaced by Schistosoma mansoni as a
result of ecological changes. The completion of the Jama
dams on the Senegal River and a dam on the Bafing River
exacerbated an S. mansoni epidemic in North Senegal
(Southgate et al., 2001). The Three Gorges Dam is also be-
lieved to enlarge the snail habitat and further spread schis-
tosomiasis in southern China (Li et al., 2000). Furthermore,
changes to surface water bodies can impact the regional eco-
logical environment and dominance of vectors of certain
vector-borne diseases. Artificial waters have flooded breed-
ing areas of Simuliidae, which transmit onchocerciasis, but
provided breeding areas for Anopheles and Planorbis, which
respectively transmit malaria and schistosomiasis. Dam
spillways become new breeding areas of Simulium, which
have triggered epidemics of onchocerciasis in West Africa.

2.3.3 Large-scale agricultural encroachment

Nearly half of the world’s land is used for agricultural pro-
duction, which consumes two-thirds of fresh water re-
sources (Horrigan et al., 2002). The low biodiversity and
fragile ecosystems of agricultural land contribute to the oc-
currence of vector-borne diseases. In developing countries,
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traditional agricultural irrigation and intensive irrigation
canals have become ideal habitats for Culex and snails.
Typical irrigated farming generates breeding areas for Culex
(in particular Culex tritaeniorhynchus, a vector of Japanese
encephalitis virus) and snails. In western Kenya, Anopheles
arabiensis is common during rice growing season, whereas
Anopheles funestus is common in the mature rice season.
Anopheles gambiae appears after the rainy season, whereas
in the dry season, Anopheles arabiensis dominates. Re-
search in Tanzania and Kenya found that excessive agricul-
tural encroachment and resistance vectors are keys for out-
break and reemergence of malaria (Bodker et al., 2000;
Shanks et al., 2000).

2.4 Rapid development of transportation

2.4.1 Air transportation

Currently, the speed of cross-regional spread of infectious
diseases is faster than at any time in history because of rapid
and efficient air transportation, which has been significant
in boosting long-distance epidemic transmission. In a study
of the SARS event of 2003, Olsen et al. believed that the
epidemic was transmitted by SARS patients who were in
the incubation period and was spread globally by air
transport (Breugelmans et al., 2004; Olsen et al., 2003).
Wilder-Smith et al. analyzed records of flights to Singapore
and believed that the spread of SARS on airplanes was
overestimated (Wilder-Smith, 2003a; 2003b; 2004). Vogt et
al. (2006) collected information on the passengers and crew
on seven flights heading to the U.S. carrying SARS patients,
and the results of their retrospective study indicated that the
risk of SARS transmission on aircraft has not been overes-
timated. Although risk of the spread of SARS by air
transport remains controversial, a consensus has been
reached that epidemic diseases can be effectively spread in
aircraft (Roy et al., 2004). This has attracted attention from
scholars for taking epidemic prevention and control
measures at airport customs and immigration centers (Wil-
der-Smith, 2003b; 2004). Similarly, in a study on the 2009
HINI1 pandemic, Khan found that in almost all countries
accessible to Mexicans, confirmed cases of HIN1 have
emerged, and the rate of spread is astonishingly high (Khan
et al., 2009). Based on an investigation of HIN1 cases on a
airplane flight, Baker found that close contact with symp-
tomatic patients poses a higher risk of infection. After the
passengers departed the aircraft, subsequent exposure
measurement became inefficient and difficult (Baker et al.,
2010). Thus, in-flight measurement of the potential risks of
HINTI transmission was proposed (Wagner et al., 2009). As
an efficient means for spreading infectious diseases, air
transport is also of concern regarding its influence on risks
of transmission of other infectious diseases, including tu-
berculosis (Abubakar, 2010; Dowdall et al., 2010;
Kornylo-Duong et al., 2010), malaria (Bradley, 1989;
Tatem et al., 2006), plague (Pascali, 1982), yellow fever
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(Oliva, 1979), cholera (Rondle et al., 1978), dengue fever,
Norwalk virus (Kirking et al., 2010), and epidemic menin-
gococcal diseases (Rachael et al., 2009). Modes of trans-
mission during air travel and transport include via droplet
transmission, interpersonal contact, vector-borne and zoon-
otic disease hosts entering the cabin, water and food con-
tamination, and others. There were an estimated 36 billion
air travelers in 2010. This means that an outbreak or epi-
demic of disease anywhere in the world could spread to
other regions in only a few hours.

2.4.2 Highway and railway transportation

Highways are the main conduits for interregional and re-
gional traffic. Highways carry more passengers and
transport to more destinations than any other mode of
transport. Taking China as an example, in 2009 its high-
ways carried 2779081 passengers, more than 100 times the
number by water transport and civil aviation combined, and
about 18 times that of railway traffic (Bureau of Statistics of
China, 2010). HIN1 pandemics spread in cities of all sizes
in China, with an initial epidemic stage featuring the spread
of imported cases, followed by secondary cases from initial
imported cases, and a late stage in which the pandemic
spreads from metropolitan areas to small cities and from
eastern to western areas (Zeng et al., 2009). In the epidemic
process, rapid movement of large populations is mainly
realized through road traffic, so this traffic is an important
risk factor for the secondary spread of infectious disease in
various countries. Further, long-term freight is mainly
transported by road traffic. Highway freight volume in 2009
was 21278.34 million tons, accounting for 75.3% of total
freight (China Statistics Bureau, 2010). Some zoonoses are
readily diffused to larger areas via shipping. For example,
highly pathogenic avian influenza (HPAI) virus can gener-
ate increased human and animal infection in more areas, via
agricultural products shipped from other areas. Fang et al.
(2009) showed that during a SARS event, the transportation
network of highways and railways is important in spreading
an epidemic across mainland China. Close correlation be-
tween SARS distribution and a ring road in the Beijing ur-
ban area has been reported (Wang et al., 2006; Wang et al.,
2008). Fang and Cao found a close association between
HPAI outbreaks and minimum distance to the nearest na-
tional highway in China (Fang et al., 2008; Cao et al., 2010).
However, results of similar studies in Europe did not show
this association (Si et al., 2010).

2.5 Global trade and economy

At the start of the 20th century, with development of the
transport network, strengthening of international coopera-
tion and division of labor, the rise of the World Trade Or-
ganization (WTO) and other trade organizations, global
trade increased tremendously. International merchandise
trade increased 3- to 4-fold from 1980 to 2000, with the
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main contribution from Asia (up to a 5-fold increase)
(Sutherst, 2004). For nearly a century, Asia has been con-
sidered the epidemic focus of new and old infectious dis-
eases, with repeated devastating events (Guan et al., 2002;
Li et al., 2004; Smith et al., 2006). Frequent economic and
trade exchange increases the possibility of infectious dis-
ease outbreaks. Both Asian and other countries are likely to
face the problem of long-distance spread of pathogens and
diffusion of new viruses along livestock trade routes.

2.5.1 Agquaculture industry

Since 1997, HPAI H5N1 epidemics have broken out in
poultry in Asia (Li et al., 2004; Smith, et al., 2006; Chen et
al., 2006), and this has resulted in enormous damage to the
poultry industry in Southeast Asia (Gilbert et al., 2008).
According to WHO statistics, as of March 2011, HPAI
HS5N1 has spread to more than 63 countries, resulting in 535
people infected and 316 deaths (http://www.who.int/cst/
disease/avian_influenza/country/cases_table_2011_03_25/
en/index.html).According to technical documents published
by the United Nations Environment Programme Convention
on Migratory Species (UNEP/CMS), the source of HPAI
H5N1 was intensively-fed poultry, and virus mutation re-
sulted from these extreme rearing environments. Poultry
production in Asian countries can be classified into four
categories, namely, backyard farming, free range, green-
house cultivation and enclosure breeding. According to an
investigation by Songserm et al. (2006) in Thailand, all the
above methods, except for enclosure breeding, pose risks of
H5NT1 viral infection. A follow-up study by Biswas and
Gilbert showed a higher risk of infection in backyard farm-
ing and free range breeding, and infected migratory birds
and water containing the virus may have infected poultry
(Biswas et al., 2009; Gilbert et al., 2006). According to sta-
tistics, about 80% of poultry production is by backyard
farming in Asian and African countries (Aini, 1990; Permin
et al., 2002). Through 2005, there were 140 million birds
infected with the H5N1 virus, resulting in about a $10 bil-
lion loss in Asian countries (Gilbert et al., 2008; Food and
Agriculture Organization, 2005). Effective epidemic control
methods include large-scale containment killings. As of
2010, more than 260 million chickens and other poultry-
birds have been killed worldwide, producing economic
losses totaling about $20 billion (http://www.fao.org/
news/story/en/item/41287/icode/). The poultry industry in
China has an annual output of nearly 15 billion birds, in-
cluding about 5.6 billion chickens, 760 million ducks and
300 million geese (Martin et al., 2011). These are all sensi-
tive to HPAI H5N1 (Keele et al., 2009), and the mortality
rate is near 100% upon infection (Alexander, 2000, 2007,
Webster et al., 1987). Losses from an epidemic outbreak
over a large area would be immeasurable.

2.5.2 Disease spread risks of international trade
Globally, there were about 350 million live plants and wild-
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life species traded yearly (Karesh et al., 2007). Approxi-
mately 4 million live birds are transported annually, and
most of these are from Southeast Asian countries (Karesh et
al., 2005). It is generally agreed that the main mode of
transmission for avian flu is via various forms of poultry
trade, which includes legitimate trade and illegal transac-
tions (Alexander, 2000; Capua et al., 2006; Olsen et al.,
2006; Van et al., 2005; Wang et al., 2006). Studies have
shown that the major risk of avian flu in Europe is from bird
migration, and the main risk in Asia is from the poultry
trade (Kilpatrick et al., 2006). There are greater risks in
wildlife trade, including induced epidemic outbreaks in are-
as with crowds of people, livestock epidemics, and strong
negative impacts on international economies, trade, the
livestock industry, and national wildlife ecosystems (Karesh
et al., 2005). Since the mid-1990s, outbreaks of infectious
diseases, including mad cow disease (BSE), foot-and-mouth
disease (FMD), avian flu, swine flu and others, have caused
losses of about $80 billion to the global economy and trade
industries (Karesh et al., 2005). At the beginning of 2003,
the UN Food and Agriculture Organization stated that more
than a third of meat traded was embargoed worldwide. Wild
animals are considered the source of more than 70% of
emerging infectious diseases (Kuiken et al., 2005), and dif-
fusion of a series of new viruses has been triggered by var-
ious forms of trade. HIV is believed to be derived from hu-
man feeding on non-human primates (Gao et al., 1999). The
Ebola virus is transmitted via human contact with great apes
(Leroy et al., 2004), SARS coronavirus is induced by inter-
national trade in small carnivores (Bell et al., 2004), and
monkeypox in the U.S. originates from imports of exotic pet
rodents from Ghana (Guarner et al., 2004). Chytridiomyco-
sis, derived from the African clawed frog that has been
commercially traded, has eliminated nearly 30% of am-
phibians worldwide (Weldon et al., 2004).

2.6 Other human activities

Emergence and reemergence of a given type of infectious
disease may be related to socioeconomic pressures, such as
collapse of the public health system, lack of disease control
strategies, and disturbances resulting from ecological and
demographic changes (Taubes, 1997; Gubler, 1998; Reiter,
2001). Other human activities, including population growth,
intensive agricultural development and changes in vaccine
technology, are likely to alter the evolution and spread of
influenza virus (Vandegrift et al., 2010). In addition, popu-
lation age and size, and demographic components, such as
numbers of workers or students, can affect the spread of
influenza (Stefano et al., 2010). Influenza is closely related
to age structure of the population. Avian and seasonal flu
have different features across the population age distribu-
tion. Specifically, victims tend be the young and the elderly.
Children and young adults are major flu victims. Statistics
on influenza A (H5N1) virus infection in February 2008
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indicated that the average age of cases is 18 years.

3 Discussions and conclusions
3.1 Discussion

3.1.1 Interaction between natural and human factors

Natural factors affect human activities; climate change can
directly influence human behaviors such as by seasonal and
other migration, and summer and winter lifestyles. Human
behavior directly affects disease transmission. Seasonal
outbreaks of avian influenza in Europe show that people are
spending more time on outdoor activities in winter
(Halstead, 1996). Alternately, in temperate regions, a grow-
ing number of summer gastroenteritis cases in developing
countries have been connected with the fact that people
prefer to picnic or cook outdoors because of increasingly
higher temperatures (Altekruse et al., 1998). Rainfall, espe-
cially of the heavy variety, can increase the frequency and
intensity of drinking water contamination. Climate can af-
fect water sources and sanitation, water shortages can in-
crease the probability of people using contaminated water
sources, and these factors may add to cases of intestinal
infectious diseases (Zhang et al., 2008). Human activities
also change natural factors, which indirectly influence the
occurrence and transmission of infectious diseases. Re-
search (Zell, 2004) shows that the spread of infectious dis-
ease is affected by the spread or location change of patho-
gen-infected hosts or insects, and sometimes by both; the
role of human activity cannot be ignored in this process.
Tang and colleagues analyzed climate change and health
statistics of 45 countries in Africa and 113 countries else-
where. Their research shows that income level can regulate
the negative influence of climate change over an average
life span. With increased income, the impact of climate
change on average life expectancy is gradually decreased.
This impact is greater in African or developing countries
than in others (especially developed ones), and the effect of
climate change on health is much greater than on economic
levels (Tang et al., 2010).

3.1.2  Human adaptation activities and infectious diseases

Long-distance travel, such as to escape heat or cold, acts as
an efficient carrier of pathogens. Upon entering a new area
or environment, people often become vulnerable to patho-
gens because of a lack of immunity. In addition, human
intervention introduces new pathogens and vectors to the
area, disturbs ecological systems, and causes certain en-
demic diseases to become epidemic across continents and
oceans. Population migration caused by extreme weather or
meteorological disasters is often accompanied by infectious
disease outbreaks. For example, heavy rain and storms can
contaminate drinking water sources, expand the habitats of
vector-borne infectious disease hosts, or increase frequency
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of contact with humans. During weather-related disasters,
low population immunity levels and poor health conditions,
along with the gathering of large numbers of people, readily
cause outbreaks of epidemics and infectious diseases. It is
believed that climate change can put tremendous pressure
on worldwide supplies of food and clean water, particularly
in Africa and Southeast Asia. This would further stimulate
farmland encroachment, deforestation, dam building and
other activities, thereby reducing local biological diversity,
destroying the ecological environment, and producing ram-
pant vector-borne diseases and zoonosis.

3.2 Conclusions

Under the impetus of global change in both natural and hu-
man activities, the occurrence and spread of infectious dis-
ease have been altered. Natural factors, especially climatic
forcing, influence the outbreak and spread of many infec-
tious diseases. Climate factors, including temperature, pre-
cipitation, humidity and sunshine, can affect pathogens,
hosts and disease vectors, thereby influencing the occur-
rence and spread of disease. Furthermore, extreme weather
events, such as El Nifio/La Nifia-Southern Oscillation and
the QBO, are related to the transmission of infectious dis-
eases. Droughts, floods and other meteorological disasters
are also closely related to the occurrence and spread pat-
terns of various such diseases. The spread of these diseases
is associated with land cover type; for example, the first
cases of avian influenza are often associated with wetlands
and water. Further, vegetation distribution can modify out-
breaks, through influencing the food sources of host animals.
Many natural factors often work together to affect disease
transmission. For example, global warming may signifi-
cantly impact the hydrosphere via heavy rainfall, floods,
storms, heat waves and droughts.

Human activity is an indirect driving force affecting the
spread of infectious diseases. Among these activities, inter-
national travel and population migration from rural areas to
cities are root causes of disease spread. Rapid urbanization
accompanied by lagging urban infrastructure, and high risks
of infectious disease resulting from urban land use change
will alter the pattern of disease and death. Land use changes
including agricultural encroachment, deforestation, road and
dam building, wetland transformation, mining and urban
expansion, have triggered a series of disease outbreaks and
changed the transmission pattern of many endemics. Rapid
development of aviation, road and railway transportation,
not only speeds up the rate of disease spread, but also ex-
pands its range. In addition, frequent trade increases the
possibility of outbreaks of infectious diseases, and provides
the means for long-distance spread of pathogens and diffu-
sion of new pathogens along livestock trade routes. Human
activities, including demographic characteristics and health
systems, can affect the spread of infectious diseases.
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