
Received: October 18, 2019. Revised: November 26, 2019. Accepted: December 16, 2019

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

745

Human Molecular Genetics, 2020, Vol. 29, No. 5 745–755

doi: 10.1093/hmg/ddz309
Advance Access Publication Date: 10 January 2020
General Article Two

G E N E R A L A R T I C L E T W O

Longitudinal metabolomic analysis of plasma enables
modeling disease progression in Duchenne muscular
dystrophy mouse models
Roula Tsonaka1, Mirko Signorelli1,2, Ekrem Sabir2, Alexandre Seyer3,
Kristina Hettne2, Annemieke Aartsma-Rus2 and Pietro Spitali2,*
1Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands, 2Department
of Human Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands and 3Profilomic SA,
Boulogne-Billancourt 92100, France

*To whom correspondence should be addressed. Tel: +31 715269437; Fax +31 715268285; Email: p.spitali@lumc.nl

Abstract

Duchenne muscular dystrophy is a severe pediatric neuromuscular disorder caused by the lack of dystrophin. Identification
of biomarkers is needed to support and accelerate drug development. Alterations of metabolites levels in muscle and
plasma have been reported in pre-clinical and clinical cross-sectional comparisons. We present here a 7-month longitudinal
study comparing plasma metabolomic data in wild-type and mdx mice. A mass spectrometry approach was used to study
metabolites in up to five time points per mouse at 6, 12, 18, 24 and 30 weeks of age, providing an unprecedented in depth
view of disease trajectories. A total of 106 metabolites were studied. We report a signature of 31 metabolites able to
discriminate between healthy and disease at various stages of the disease, covering the acute phase of muscle degeneration
and regeneration up to the deteriorating phase. We show how metabolites related to energy production and chachexia (e.g.
glutamine) are affected in mdx mice plasma over time. We further show how the signature is connected to molecular targets
of nutraceuticals and pharmaceutical compounds currently in development as well as to the nitric oxide synthase pathway
(e.g. arginine and citrulline). Finally, we evaluate the signature in a second longitudinal study in three independent mouse
models carrying 0, 1 or 2 functional copies of the dystrophin paralog utrophin. In conclusion, we report an in-depth
metabolomic signature covering previously identified associations and new associations, which enables drug developers to
peripherally assess the effect of drugs on the metabolic status of dystrophic mice.

Introduction
Duchenne muscular dystrophy (DMD) is a rare neuromuscular
disorder affecting 1 in 5000 male births (1). Patients with DMD
become wheelchair dependent by the age of 10–12 years of age
and die prematurely due to cardio-pulmonary complications in

the 2nd–4th decade. The disease is caused by mutations in the
dystrophin encoding DMD gene (2). There is currently no cure for
the disease; however, the implementation of standards of care
and chronic use of corticosteroids has significantly improved
patients’ quality of life. In recent years, a number of therapeutic
compounds have been tested in clinical trials in DMD (3), and
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two compounds received conditional and accelerated approval
by the EU (4) and USA (5) regulatory authorities, respectively.

Therapies currently in development for DMD aim to slow
down disease progression, which poses challenges on evaluating
drug efficacy in clinical trials. While DMD is a progressive disease
leading to the irreversible loss of function in patients, the func-
tional decline during the duration of a clinical trial (6–24 months)
as picked up with functional outcome measures is generally
limited and can vary greatly between patients. In fact, many
clinical trials failed to pick up a therapeutic effect (i.e. slower
disease progression). This could be due to poor drug potency, but
also to non-optimal trial design, insensitive and/or non-optimal
outcome measures and to inter-individual variability in patients’
performance. Retrospective analysis showed that the power of
clinical trials has been overestimated, due to assumptions that
later turned out to be incorrect. For example, a recent phase 3
trial failed with an observed power of 0.53 in contrast to a pre-
specified power of 0.9 (6).

These failures led to a number of research initiatives aimed
at identifying biomarkers in blood and urine to be used as sur-
rogate or secondary endpoints in clinical trials. Recent research
has enabled the identification of multiple proteins (7–14) and
miRNAs (15–19) able to separate healthy and DMD cases in
cross-sectional studies. These studies have shown the diagnostic
potential of these biomarkers without assessing their value in
monitoring disease progression. So far, only a few studies have
explored whether metabolites in the blood stream could serve
as biomarkers in DMD patients (20–22) and DMD animal models
(23,24). The focus of those studies has mainly been on the identi-
fication of a metabolic signature between healthy and disease in
a cross-sectional manner. However, it is also important to know
the long-term trajectories of these biomarkers, and how they
correlate to or are predictive of pathology and function. There-
fore, we here focus on the identification of longitudinal changes
representative of disease progression in mice derived plasma
samples. We present a prospective 7-months longitudinal study
in which we obtained plasma samples from wild-type (WT) and
mdx mice (the most used murine model of DMD carrying a
nonsense mutation in the Dmd gene) at five different time points.
We identified a signature of 31 metabolites in plasma able to
discriminate between mdx and WT at different stages of the
disease. We further compared the identified 31 metabolites in
dystrophin negative mice carrying 2, 1 or no functional copies of
the Utrn gene, encoding utrophin, which is a dystrophin paralog
able to compensate to some extent for lack of dystrophin in
mice. In fact, utrophin upregulation is one of the therapeutic
approaches in development for DMD (25).

The presented study is the first of its kind with multiple
phased longitudinal samples spanning a period of 7 months.
The collected data show that metabolomic signatures are able
to detect a disease progression signature beyond the known
degeneration/regeneration phase known to occur in the first
10–12 weeks of the disease. The identified signature further
shows how pathways targeted by drugs in development such
as metformin could be monitored by studying the metabolomic
signature in peripheral blood.

Results
WT and mdx mice were included in the experiment starting from
4 weeks of age. Plasma samples were obtained at five time points
at 6, 12, 18, 24 and 30 weeks of age as indicated in Figure 1A.
Skeletal muscles were isolated after sacrifice at 30 weeks of
age. Mouse weight was recorded before and after fasting. Mdx

mice were on average heavier compared with WT mice (Fig. 1B).
H&E staining on tibialis anterior muscles obtained at 30 weeks
of age showed an increase percentage of fibrotic/inflamma-
tory/necrotic tissue compared with healthy mice, confirming
the expected alterations due to the lack of dystrophin (Fig. 1C).
A metabolomic approach was taken to identify non-invasive
biomarkers during mdx mice disease progression. This analysis
provided a list of 106 metabolites, most of which were amino
acids, peptides and analogs (Fig. 1D). We performed unsuper-
vised clustering on all samples as initial data exploration to
assess whether clustering of WT and mdx mice could indicate
the presence of a signature able to separate the two strains.
Indeed, a reasonable clustering was observed between the two
genotypes with a good but not complete separation of WT and
mdx mice (Fig. 1E). This initial exploration showed that a poten-
tial signature is present in the data. To visualize the strength of
correlations in the data set, we clustered the correlation matrix
across metabolites showing that some correlation exist in the
data set (Fig. 1F).

Given the availability of up to five repeated measurements
per mouse, we analyzed all metabolites with linear mixed mod-
els that account for the longitudinal nature of the data. We
tested for differences in mean profiles at any time point between
mdx and WT mice by testing whether both the main effect of
group and its interaction terms with time are null. A comparison
between the obtained and expected P-values (in case of no differ-
ence between groups) highlighted the presence of many metabo-
lites differentially represented in mdx mice (Fig. 2A). A total
of 31 metabolites showed significant differences between mdx
and WT mice (FDR <5%). The majority of differences between
mdx and WT mice were observed between weeks 12 and 24,
with only minor differences observed at 6 weeks of age. Seven
metabolites showed overall reduced relative levels in mdx com-
pared with WT, while the remaining 24 were increased in mdx.
Dipeptides normally highly represented in muscle tissue such
as carnosine and anserine (Fig. 2B and C) showed a persistent
increase in mdx compared with WT, while amino acids such
as ornithine and glutamine (Fig. 2D and E) were reduced in mdx
mice in accordance with previous reports in patients (20,21). A
list of the significant differences between mdx and WT for each
time point is presented in Supplementary Material, Table S1,
while trajectory plots for metabolites are presented in Figure 2
and Supplementary Material, Figure S1. Only citrulline and tryp-
tophan showed significant differences at all time points, with an
inversion in directional changes at 6 weeks of age compared with
the later sampling times (Supplementary Material, Figure S1).
Metabolites in the guanidinoacetic acid, creatine and creatinine
axis were elevated in mdx mice (Fig. 2F–H). While the elevation
of creatine in mdx mice is in line with the previously reported
elevation in patients (21,22), guanidinoacetic acid was previously
reported to be reduced in patients (21). Creatinine showed a
non-significant trend towards an increase in mdx mice, again
showing a difference compared to patients (21). Supplementary
Material, Figure S2 shows the individual mice trajectories for
the significant associations presented in Figure 2. A number of
nucleosides derivatives (methyladenosine, methylguanine and
cytidine) were elevated in mdx mice as well multiple metabolites
involved in amino acid conversions were significantly affected
(Supplementary Material, Figure S1).

Pathway analysis of the data was performed with the global
test. A total of 25 pathways were found to be significant (Sup-
plementary Material, Table S2). Pathways affected showed that
some of the metabolites belonging to the same pathways pro-
vided a significant and opposite contribution to the pathway
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Figure 1. Overview of the study and obtained data. (A) Scheme showing the study design. Vertical arrows indicate at what age blood samples were obtained. (B) Line

graph showing the weight progression in mdx and WT mice during the study. Weight before fasting is plotted on the y-axis, while age in weeks is plotted on the x-axis.

(C) The percentage of unhealthy tissue composed of fibrotic tissue inflammatory infiltrate, and necrotic fibers was quantified after H&E staining of sections obtained

from the tibialis anterior muscle of 30-weeks-old mdx (n = 4) and WT (n = 5) mice. (D) Table showing the counts of metabolites for each class identified by the analytical

platform. (E) Heat map with all samples showing hierarchical clustering on both columns and rows based on Euclidean mean distance. Genotype and sampling time

(in weeks) is presented for each column. (F) Heatmap of the Pearson correlation across metabolites in all samples shows moderate correlation across the identified

metabolites.



748 Human Molecular Genetics, 2020, Vol. 29, No. 5

Figure 2. (A) Q-Q plot showing the enrichment in high −log10 observed P-global (black dots) for each metabolite compared with the expected distribution. (B–E) Line

plots of scaled data showing examples for elevated levels of carnosine and anserine in mdx mice compared with WT mice, and decreased levels of ornithine and

citrulline in mdx plasma. (F–H). Line plots of scaled data showing the plasma levels of guanidinoacetic acid, creatine and creatinine in mdx mice compared with WT

mice.

significance (Fig. 3A–D). Interestingly, network analysis showed
how several metabolites with reduced plasma levels in mdx mice
were amino acids downstream the NO precursor arginine, which
was found to be elevated in mdx mice (Fig. 3E).

The data obtained in mdx mice revealed the presence of a
metabolic endo-phenotype in these mice. The observed changes
were consistent for the whole study duration supporting a role of
these metabolites in disease progression. To further test whether
the 31 metabolites identified in the comparison between mdx
and WT mice were associated with disease trajectories and
disease severity, we studied mdx mice carrying 0, 1 or 2 functional
copies of the dystrophin paralog utrophin, as utrophin gene
dosage has been linked to disease progression in mdx mice (26).
Plasma samples were obtained at 6, 12, 18, 24 and 30 weeks of age
for mice carrying either 1 or 2 functional Utrn alleles, while for
double knock-out mice samples were only obtained at 6 weeks of
age given the severe phenotype of these mice. The levels of pro-
pionylcarnitine and methylimidazoleacetic acid appear to relate
to the number of functional Utrn copies (P < 0.05); however, the
association was not significant after multiple testing correction
(FDR > 5%). Line plots for propionylcarnitine and methylimida-
zoleacetic acid are presented in Figure 4, while line plots for the

other 29 metabolites are presented in Supplementary Material,
Figure S3. Double knock-out mice showed elevated levels of
both metabolites at baseline compared with mice carrying at
least one Utrn functional allele. Furthermore, mice carrying one
functional Utrn gene showed higher levels of propionylcarnitine
and methylimidazoleacetic acid compared with the mice with
two functional alleles. Specifically, propionylcarnitine showed
elevation at 12 (P = 0.02) and 24 weeks (P = 0.07) of age, while
methylimidazoleacetic acid showed a significant increase at
24 weeks (P = 0.007). Interestingly, changes between mdx and
WT mice were also identified for the same time points with
propionylcarnitine being elevated at 12 weeks of age in mdx mice
and methylimidazoleacetic acid being elevated at 18, 24 and 30
(Fig. 4C and D).

Discussion
DMD is rare genetic condition caused by mutations in the DMD
locus resulting in the lack of dystrophin protein. A number
of omics studies have been performed especially in skeletal
muscle tissue obtained from patients and animal models
to understand the biology of the disease, to identify drug
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Figure 3. (A–D) Examples of pathways affected. Each panel shows a different pathway. Metabolites contributing to the pathway are graphed as bars at the bottom

of each panel. The P-values displayed on the y-axis show how significant is the contribution of each metabolite to the pathway score. Bars in green are associated

with the WT group (higher in WT mice), while bars in red are associated with the mdx group (higher in mdx mice). Hierarchical clustering is based on the absolute

correlation distance between metabolites. Thick lines indicate a metabolite of a cluster of metabolites significantly contributing to the overall global test score. (E)

Example of network involving significant amino acids identified in this study. Metabolites significantly affected are represented in yellow. The network was build using

the Metscape app in Ctytoscape.

targets and more recently to understand what molecules
could be used as biomarkers. While the analysis of muscle
biopsies provides direct information about the muscle, less
invasive readouts are needed in order to provide objective

biological information during disease progression and drug
testing. The focus of biomarker research is the identification
of pharmacodynamic biomarkers able to show dose-response
to medicinal drugs, as well as biomarkers associated with
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Figure 4. (A and B). Line graphs of normalized data showing the effect of utrophin dosage on the plasma levels of propionylcarnitine and methylimidazoleacetic acid.

(C and D). Corresponding bar graphs showing the change in propionylcarnitine and methylimidazoleacetic acid in mdx mice compared with WT mice.

disease progression in order to anticipate disease milestones
and eventually substitute clinical endpoints in clinical trials.
Most of the omics research focused on the identification of
genetic modifiers (27), gene expression by microarray (28–32)
and RNAseq (19), protein abundance by mass spectrometry
(8,33–35) and affinity assays (7,9–11,36,37). Studies of metabolites
involving muscle tissues have been somewhat less covered with
one study showing analysis of muscle biopsies obtained from
multiple forms of muscular dystrophy (38) and a few studies
reporting changes in dystrophic mice (24) and golden retriever
muscular dystrophy (GRMD) dogs (39). These studies clarified
the pathophysiology of the disease including the energy deficit
in DMD.

Clear associations included the impaired energy production
in DMD muscle such as the reduction in glutamine levels in mus-
cle tissue (38). Glutamine is mostly produced by muscle mass
in the body (40), and it is one of the major energy sources for
muscle cells (41). Glutamate/glutamine levels have been found
to be increased in mdx muscle consistently at 3, 6 and 12 months
of age (42,43) but reduced in DMD patients muscle (38). The
described increase of glutamine levels in mdx muscle is opposed
to our observation in plasma, where a persistent reduction is
present starting from week 12 up to 30 weeks of age. It is
possible that mice may compensate for the lack of energy in

muscle fibers, caused by the known reduction in creatine con-
centration (43), with increased glutamine consumption; the aug-
mented glutamine use by muscle would then be mirrored by
reduced glutamine levels in circulation, such as in cachectic
conditions (44,45). In DMD patients, glutamine levels are reduced
in muscle (38) but unaffected in plasma (21), consistent with the
inability of patients’ muscle to increase glutamine metabolism
and compensate for the known reduction of creatine (46–48)
and its energy buffering capacity. Glutamine synthesis depends
on intermediates of the tricarboxylic acid (TCA) cycle such as
fumarate, which has been shown to be reduced in DMD muscle
biopsies (38), and alpha-keto glutarate. Metabolites of the TCA
cycle have been shown to be affected in dystrophic mice (49)
and dystrophic dogs (39). Further evidence from gene expression
studies in GRMD dogs (50) but also from proteomic profiling in
patients’ blood (10) show that enzymes of the TCA cycle are
affected in DMD. Glutamine reduction can also be linked to the
pathway leading to the synthesis of nitric oxide synthase (nNOS),
a key player in DMD pathophysiology (51). Indeed, glutamine
can be converted into citrulline, which is the only precursor for
arginine synthesis (52). Our data show that both glutamine and
citrulline are reduced in mdx mice, while arginine levels are ele-
vated. Arginine is then converted in nitric oxide by nNOS, a direct
dystrophin binder, which is typically displaced by the lack of
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dystrophin (53). Interestingly, supplementation of arginine and
metformin showed improved muscle function in an open-label
proof of concepts study (54). A follow-up double blind placebo
controlled study was then planned substituting arginine with
citrulline with the same intent (55). These metabolites could
therefore be explored as pharmacodynamic readouts in such
trials. Reduced glutamine levels could also be due to the reduced
glutamine synthetase activity, which has been connected to the
extrahepatic (and in particular muscular) ammonia detoxifica-
tion (56), a pathway particularly significant in our data set.

Reduced energy capacity is also evident by the previously
published evidence that the guanidinoacetic acid—creatine—
creatinine axis is affected in DMD (22,57) and that the ratio
between creatine and creatinine is associated with patients per-
formance (21). Interestingly, mdx mice show increased plasma
levels of all three metabolites, while patients show increased cre-
atine and reduced guanidinoacetic acid and creatinine, underlin-
ing again the differences in metabolic capacity of mdx muscles
compared with DMD muscles.

We further show that histidine, one of the glucogenic amino
acids, is reduced in mdx mice plasma. Reduction of histidine
levels could be related to the synthesis of carnosine, which is
synthesized by carnosine synthase starting from histidine and
beta-alanine. Carnosine levels were shown to be reduced in
mdx muscles (43) and we report here an increase of carnosine
levels in blood leading to postulate a release/leakage of carno-
sine to the blood stream in mdx mice. Carnosine is a dipeptide
highly present in muscle, which is linked to muscle buffering
capacity in muscle fibers. Elevated synthesis of carnosine via
carnosine synthase could deplete histidine levels in an attempt
to improve muscle buffering. This theory could be supported by
the increased anserine levels in the plasma of mdx mice, which
could also be produced by carnosine synthase starting from 3-
methylhistidine.

By comparing mice carrying different functional utrophin
copies, we did not identify metabolites able to separate
mice with different functional Utrn copy number. However,
propionylcarnitine and methylimidazoleacetic acid showed
elevated profiles in more severely affected mice. The elevation
of propionylcarnitine could be linked to the mitochondrial dys-
function. In type 2 diabetes, propionylcarnitine has been shown
to be the predictive of mitochondrial dysfunction in muscle
(58); DMD patients show some molecular characteristics of
metabolic syndrome such as elevated serum leptin levels (7,59),
and propionylcarnitine could indicate the known mitochondrial
dysfunction associated with the lack of dystrophin. On the other
hand, increased levels of methylimidazoleacetic acid could be
related to performance via the histamine metabolism. Indeed,
methylimidazoleacetic is the end product of the histamine
catabolism, which is related to blood vessel dilation and
permeability. Treatment with histamine and serotonin showed
a beneficial effect on dystrophic mice (60). The net effect of
histamine is however unclear as the improvement could also
be due to the serotonin, which is in fact synthesized starting
from tryptophan, which we describe here to be reduced in mdx
compared with WT mice.

Our data partly overlap with recently published data
(23,24,57) in dystrophic mice, such as alterations in metabolites
mapping to the TCA cycle and glutamine identified in 4 to
6 months old Dmdmdx-4Cv mice (23) or the creatine increase
identified in mdx BL10 mice (24). However, the differences across
analytical platforms (such as in the study by Lee-McMullen et al.
where NMR is used), study design (our study is longitudinal while
previous studies are cross-sectional), genetic background (we

use BL10 mdx, while Joseph et al. report on Dmdmdx-4Cv) and sam-
ple numbers are likely responsible for the different observations.

A strong point in our study is the availability of repeated
measurements; published studies so far showed only single
measurements per individual mouse, therefore limiting the pos-
sibility to model disease progression at the individual level. A
weak point is the number of animals involved, which is limited
to five per group but in line with previous publications; however,
the availability of repeated measurement allowed us to increase
the power to reliably identify the metabolic signature (61).

In this study, we have provided an in depth characterization
of the circulating metabolites in four mouse models of DMD.
The longitudinal follow-up of mice over a period of 30 weeks
allowed us to model individual trajectories over the different
phases of the disease, encompassing the highly regenerative
phase up to the deteriorating phase. This enabled us to show
that peripheral metabolic changes are less evident in young mice
where performance is less affected but histological findings
are more pronounced; in contrast, metabolites show a stronger
signature at later stages when histology is improved but perfor-
mance is worsening. We have shown how different metabolites
are connected to the pathophysiology and to the mechanism of
action of nutraceuticals and pharmaceuticals in development in
the DMD space. The collected data will be helpful to evaluate the
effects of drugs targeting dysregulated metabolic pathways such
as the application of citrulline and metformin or serotonin and
histamine. Furthermore, detailed reconstruction of metabolic
flux over time could enable to propose therapeutic agents with
potential beneficial effect in dystrophinopathies.

Materials and Methods
Mice

WT and mdx mice (five per group) were included in the experi-
ment starting from 4 weeks of age. Only male mice were included
in the experiment. Mice were kept in individually ventilated
cages and were fed ad libitum with chow and had free access to
water. Blood samples were obtained via the tail vein when mice
were 6, 12, 18 and 24 weeks of age and from the eye at week 30.
Mice were fasted for 4–6 h before sampling; during this time, they
had free access to water. Mice were anesthetised with isoflurane
before sampling, and a solution of lidocaine and adrenaline
was applied on the tail cut before they were allowed to wake
up from anaesthesia. Blood samples were obtained in heparin
lithium tubes. Mice were sacrificed by cervical dislocation after
the last sample was collected at 30 weeks of age. Muscles were
then collected as well, and H&E staining was performed to
quantify the proportion of unhealthy tissue (fibrosis, necrosis
and inflammation) over the total as previously described (62). To
test whether differences in disease severity existed, we included
mice with different copy number of functional utrophin alle-
les. Five mice per group were included. Plasma samples were
obtained at 6, 12, 18, 24 and 30 weeks of age for mice carrying 1 or
2 functional copies of utrophin, while for double knock-out mice,
only samples at 6 weeks of age were collected. Double knock-out
mice were sacrificed at 6 weeks of age as they were too severely
affected to be kept. The experiment was evaluated and approved
by the local animal welfare committee under DEC number 13154.

Sample preparation and data acquisition

Plasma samples were kept on ice and centrifuged at 18 000g for
5 min at 5◦C. After centrifugation, the supernatant was aliquoted
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and frozen at −80◦C pending use. The sample order of the sample
preparation and the analytical batch was randomized to avoid
bias. The procedure for data acquisition has been previously
described for the analysis of human plasma (21). Briefly, plasma
samples were introduced into a Transcend 1250 LC (Thermo
Fisher Scientific) fitted with a Sequant ZICpHILIC 5 μm, 2.1 ×
150 mm column (Merck). This was then coupled to a Q-Exactive
mass spectrometer (Thermo Scientific) in both positive and
negative ionization modes, alternatively.

Data analysis (peak picking and features annotation) was per-
formed using TraceFinder 3.1 (Thermo Fisher Scientific). Anno-
tation was based on the exact m/z ratio of the pseudo-molecular
[M + H] + or [M − H] − ions in positive and negative mode, respec-
tively (±5 ppm mass tolerance); retention time and isotopic pat-
tern were also used to align to an in-house database of authentic
standard compounds. The obtained data set was cleaned based
on several parameters as described by Dunn et al. (63). The
coefficients of variation of the areas of chromatographic peaks
of features in QC samples (pool of each sample analyzed every
five samples) should be below 30%, the coefficient of correlation
between QC dilution factors (series of dilution of the QC sample)
and areas of chromatographic peaks should be above 0.7 and
the ratio of chromatographic peak areas of biological to blank
samples above a value of 3.

After LC-MS analysis of samples and annotation of features,
QC samples were re-injected for higher energy collisional disso-
ciation MS/MS experiments in positive and negative ion modes
on the same instrument set in targeted mode using inclusion
lists. Only features that match with the MS/MS spectrum of
the corresponding chemical standard were kept. These annota-
tions correspond to the level 1 according to the Metabolomics
Standards Initiative (64). Relative quantification was finally per-
formed by comparing raw areas of identified compounds. For
metabolites detected and identified in both negative and pos-
itive modes, only the data obtained in negative mode were
included in the data analysis given that most metabolites were
detected in that mode. Data are available as Supplementary
Material with Supplementary Material, Table S3 providing the
data used to compare WT and mdx mice and Supplementary
Material, Table S4 reporting the data used to compare mdx mice
with different functional copies of utrophin.

Statistics

A preliminary analysis of the raw metabolomics data highlighted
considerable differences in the order of magnitude of metabolite
concentrations; to correct for this, auto-scaling was employed to
normalize the raw data, dividing the concentration levels of each
metabolite at each time point by its standard deviation (65).

Visual exploration of the normalized data was performed by
generating a heatmap where both samples and metabolites were
clustered using the average linkage method in combination with
the Euclidean distance. We employed linear mixed models (66)
to study the dynamic evolution of each metabolite over time and
to identify differences between WT and mdx mice at different
time points. We considered a linear mixed model where the
concentration of a metabolite in sample j from individual i, yij,
depends on time (categorical), strain (WT and mdx) and their
interactions as fixed effects, as well as on mice-specific random
intercepts ui0 andslopes ui1:

yij = β0 + β1w12ij + β2w18ij + β3w24ij + β4w30ij

+ mdx
(
β5 + β6w12ij + β7w18ij + β8w24ij + β9w30ij

)

+ ui0 + ui1tij + εij,

where w12ij, w18ij, w24ij, and w30ij are dummy variables indicat-
ing whether sample j was obtained at week 12, 18, 24 or 30, mdxi

is a dummy whether mouse i is mdx (1) or WT (0), tij denotes
time (in weeks), ui0 ∼ N

(
0, σ 2

0

)
and ui1 ∼ N

(
0, σ 2

1

)
are Gaussian

random effects and εij ∼ N
(
0, σ 2

5

)
is a Gaussian error term. The

statistical significance of differences between WT and mdx mice
at any time point was assessed by testing the null hypothesis
H0 : β5 = β6 = β7 = β8 = β9 = 0 with the likelihood ratio test
statistic; the P-values obtained from such test (‘p-global’) were
then adjusted with the Benjamini–Hochberg method (FDR) (67)
to account for multiple testing. Metabolites with statistically
significant profiles between the two groups (FDR < 5%) were
further investigated testing differences between the two groups
at each time point using the Wald test.

For the 31 metabolites that displayed significant differences
between WT and mdx comparison, we further checked whether
differences existed between mdx mice with different utrophin
copy numbers, focusing our attention on mice with 1 and 2 copy
numbers (due to the fact that all mice with 0 copy numbers
were sacrificed after week 6 and no samples were thus available
for the subsequent time points). We considered a linear mixed
model where the concentration of each metabolite depends on
time (categorical), strain (mdx mice with 1 or 2 copy numbers)
and their interactions as fixed effects, as well as on mice-specific
random intercepts and slopes. The statistical significance of
differences between the two mice groups at any time point was
tested with the likelihood ratio test, and P-values were adjusted
with the Benjamini–Hochberg method (FDR) (67).

Pathway analysis was performed with the global test (68). As
pathway analyses pipeline are developed for cross-sectional but
not for longitudinal data, for each mouse, we derived a sum-
mary of the trajectories described by the metabolites computing
the area under the profile of each metabolite. WikiPathways
were used as source for the metabolic pathways (69). Pathway
information from WikiPathways was mined using an internal
workflow that interacts with the application programming inter-
face services of WikiPathways (70). Workflows created with the
open source software Taverna Workbench (71) can be found
at http://www.myexperiment.org/packs/689. All pathways and
corresponding metabolites were downloaded. P-values from the
global test were adjusted using the max T test correction (72).

Cluster analysis of the metabolites was performed using Mor-
pheus (73). The statistical analyses described in this paper were
performed using R. We used the R package nlme (74) to estimate
the linear mixed models and the R package globaltest (68) to
compute the global test. Network visualization was performed
using the MetScape App (75) in Cytoscape (76).

Supplementary Material
Supplementary material is available at HMG online.
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A., Krjutškov, K., Hart, J.R., Westholm, J.O., O’Donovan, L.,
Roos, A. et al. (2018) Comprehensive RNA-Sequencing Anal-
ysis in Serum and Muscle Reveals Novel Small RNA Signa-
tures with Biomarker Potential for DMD. Mol. Ther. – Nucleic
Acids, 13, 1–15.

20. Srivastava, N.K., Annarao, S. and Sinha, N. (2016) Metabolic
status of patients with muscular dystrophy in early phase
of the disease: in vitro, high resolution NMR spectroscopy
based metabolomics analysis of serum. Life Sci., 151, 122–129.

21. Spitali, P., Hettne, K., Tsonaka, R., Sabir, E., Seyer, A., Hemerik,
J.B., Goeman, J.J., Picillo, E., Ergoli, M., Politano, L. and
Aartsma-Rus, A. (2018) Cross-sectional serum metabolomic
study of multiple forms of muscular dystrophy. J. Cell. Mol.
Med., 22, 2442–2448.

22. Boca, S.M., Nishida, M., Harris, M., Rao, S., Cheema, A.K., Gill,
K., Wang, D., An, L., Gauba, R., Seol, H. et al. (2016) Correction:
Discovery of Metabolic Biomarkers for Duchenne Muscular
Dystrophy within a Natural History Study. PLoS One, 11,
e0159895.

23. Joseph, J., Cho, D. and Doles, J. (2018) Metabolomic analyses
reveal extensive progenitor cell deficiencies in a mouse
model of Duchenne muscular dystrophy. Metabolites, 8, 61.

24. Lee-McMullen, B., Chrzanowski, S.M., Vohra, R., Forbes, S.C.,
Vandenborne, K., Edison, A.S. and Walter, G.A. (2019) Age-
dependent changes in metabolite profile and lipid satura-
tion in dystrophic mice. NMR Biomed., 32, 1–11.

25. Guiraud, S., Squire, S.E., Edwards, B., Chen, H., Burns, D.T.,
Shah, N., Babbs, A., Davies, S.G., Wynne, G.M., Russell, A.J. et
al. (2015) Second-generation compound for the modulation
of utrophin in the therapy of DMD. Hum. Mol. Genet., 24,
4212–4224.

26. van Putten, M., Kumar, D., Hulsker, M., Hoogaars, W.M.H.,
Plomp, J.J., van Opstal, A., van Iterson, M., Admiraal, P., van
Ommen, G.J.B., ’t Hoen, P.aC and Aartsma-Rus, A. (2012)
Comparison of skeletal muscle pathology and motor func-
tion of dystrophin and utrophin deficient mouse strains.
Neuromuscul. Disord., 22, 406–417.



754 Human Molecular Genetics, 2020, Vol. 29, No. 5

27. Bello, L. and Pegoraro, E. (2019) The “usual suspects”:
genes for inflammation, fibrosis, regeneration, and muscle
strength modify Duchenne muscular dystrophy. J. Clin. Med.,
8, 649.

28. Pescatori, M., Broccolini, A., Minetti, C., Bertini, E., Bruno, C.,
D’amico, A., Bernardini, C., Mirabella, M., Silvestri, G., Giglio,
V. et al. (2007) Gene expression profiling in the early phases
of DMD: a constant molecular signature characterizes DMD
muscle from early postnatal life throughout disease progres-
sion. FASEB J., 21, 1210–1226.

29. Chen, Y.W., Zhao, P., Borup, R. and Hoffman, E.P. et al. (2000)
Expression profiling in the muscular dystrophies: identifi-
cation of novel aspects of molecular pathophysiology. J. Cell
Biol., 151, 1321–1336.

30. Roberts, T.C., Blomberg, K.E.M., McClorey, G., Andaloussi,
S.EL, Godfrey, C., Betts, C., Coursindel, T., Gait, M.J., Edvard
Smith, C. and Wood, M.J. (2012) Expression analysis in mul-
tiple muscle groups and serum reveals complexity in the
MicroRNA Transcriptome of the mdx mouse with implica-
tions for therapy. Mol. Ther. – Nucleic Acids, 1, e39.

31. Bakay, M., Zhao, P., Chen, J. and Hoffman, E.P. (2002) A web-
accessible complete transcriptome of normal human and
DMD muscle. Neuromuscul. Disord., 12 Suppl 1, S125–S141.

32. Marotta, M., Ruiz-Roig, C., Sarria, Y., Peiro, J.L., Nuñez,
F., Ceron, J., Munell, F. and Roig-Quilis, M. (2009) Muscle
genome-wide expression profiling during disease evolution
in mdx mice. Physiol. Genomics, 37, 119–132.

33. Hathout, Y., Marathi, R.L., Rayavarapu, S. et al. (2014) Discov-
ery of serum protein biomarkers in the mdx mouse model
and cross-species comparison to Duchenne muscular dys-
trophy patients. Hum. Mol. Genet., 23, 6458–6469.

34. Cynthia Martin, F., Hiller, M., Spitali, P., Oonk, S., Dale-
bout, H., Palmblad, M., Chaouch, A., Guglieri, M., Straub, V.,
Lochmüller, H. et al. (2014) Fibronectin is a serum biomarker
for Duchenne muscular dystrophy. Proteomics – Clin. Appl., 8,
269–278.

35. Doran, P., Wilton, S.D., Fletcher, S. and Ohlendieck, K. (2009)
Proteomic profiling of antisense-induced exon skipping
reveals reversal of pathobiochemical abnormalities in dys-
trophic mdx diaphragm. Proteomics, 9, 671–685.

36. Mariot, V., Joubert, R., Hourdé, C., Féasson, L., Hanna, M.,
Muntoni, F., Maisonobe, T., Servais, L., Bogni, C., Le Panse, R.
et al. (2017) Downregulation of myostatin pathway in neuro-
muscular diseases may explain challenges of anti-myostatin
therapeutic approaches. Nat. Commun., 8, 6–13.

37. Lourbakos, A., Yau, N., De Bruijn, P., Hiller, M., Kozaczynska,
K., Jean-Baptiste, R., Reza, M., Wolterbeek, R., Koeks, Z., Ayo-
glu, B. et al. (2017) Evaluation of serum MMP-9 as predictive
biomarker for antisense therapy in Duchenne. Sci. Rep., 7,
17888.

38. Srivastava, N.K., Yadav, R., Mukherjee, S. et al. (2018) Per-
turbation of muscle metabolism in patients with muscular
dystrophy in early or acute phase of disease: in vitro, high
resolution NMR spectroscopy based analysis. Clin. Chim. Acta,
478, 171–181.

39. Abdullah, M., Kornegay, J.N., Honcoop, A., Parry, T.L., Balog-
Alvarez, C.J., O’Neal, S.K., Bain, J.R., Muehlbauer, M.J.,
Newgard, C.B., Patterson, C. and Willis, M.S. (2017) Non-
targeted metabolomics analysis of golden retriever muscu-
lar dystrophy-affected muscles reveals alterations in argi-
nine and proline metabolism, and elevations in glutamic
and oleic acid in vivo. Metabolites, 7, 1–19.

40. Newsholme, P., Lima, M.M.R., Procopio, J., Pithon-Curi, T.C.,
Doi, S.Q., Bazotte, R.B. and Curi, R. (2003) Glutamine and

glutamate as vital metabolites. Brazilian J. Med. Biol. Res. = Rev.
Bras. Pesqui. medicas e Biol., 36, 153–63.

41. Zielke, H.R., Zielke, C.L. and Ozand, P.T. (1984) Glutamine: a
major energy source for cultured mammalian cells. Fed. Proc.,
43, 121–125.

42. Griffin, J.L., Williams, H.J., Sang, E., Clarke, K., Rae, C. and
Nicholson, J.K. (2001) Metabolic profiling of genetic disor-
ders: a multitissue 1H nuclear magnetic resonance spectro-
scopic and pattern recognition study into dystrophic tissue.
Anal. Biochem., 293, 16–21.

43. Martins-Bach, A.B., Bloise, A.C., Vainzof, M., Rahnamaye Rab-
bani, S. (2012) Metabolic profile of dystrophic mdx mouse
muscles analyzed with in vitro magnetic resonance spec-
troscopy (MRS). Magn. Reson. Imaging, 30, 1167–1176.

44. Kinscherf, R., Hack, V., Fischbach, T., Friedmann, B., Weiss, C.,
Edler, L., Bärtsch, P. and Dröge, W. (1996) Low plasma glu-
tamine in combination with high glutamate levels indicate
risk for loss of body cell mass in healthy individuals: the
effect of N-acetyl-cysteine. J. Mol. Med., 74, 393–400.

45. Kuhn, K.S., Muscaritoli, M., Wischmeyer, P. and Stehle, P.
(2010) Glutamine as indispensable nutrient in oncology:
experimental and clinical evidence.. Eur. J. Nutr., 49, 197–210.

46. Younkin, D.P., Berman, P., Sladky, J., Chee, C., Bank, W. and
Chance, B. (1987) 31P NMR studies in Duchenne muscular
dystrophy: age-related metabolic changes. Neurology., 37,
165–9.

47. Newman, R.J., Bore, P.J., Chan, L., Gadian, D.G., Styles, P.,
Taylor, D. and Radda, G.K. (1982) Nuclear magnetic resonance
studies of forearm muscle in Duchenne dystrophy. Br. Med. J.
(Clin. Res. Ed)., 284, 1072–4.

48. Barbiroli, B., Funicello, R., Iotti, S., Montagna, P., Ferlini, A. and
Zaniol, P. (1992) 31P-NMR spectroscopy of skeletal muscle in
Becker dystrophy and DMD/BMD carriers. J. Neurol. Sci., 109,
188–195.

49. Lindsay, A., Chamberlain, C.M., Witthuhn, B.A., Lowe, D.A.,
Ervasti, J.M. (2019) Dystrophinopathy-associated dysfunc-
tion of Krebs cycle metabolism. Hum. Mol. Genet., 28,
942–951.

50. Brinkmeyer-Langford, C., Chu, C., Balog-Alvarez, C., Yu, X.,
Cai, J.J., Nabity, M. and Kornegay, J.N. (2018) Expression pro-
filing of disease progression in canine model of Duchenne
muscular dystrophy. PLoS One, 13, e0194485.

51. Cacchiarelli, D., Martone, J., Girardi, E., Cesana, M., Incitti, T.,
Morlando, M., Nicoletti, C., Santini, T., Sthandier, O., Barberi,
L. et al. (2010) MicroRNAs involved in molecular circuitries
relevant for the Duchenne muscular dystrophy pathogen-
esis are controlled by the Dystrophin/nNOS pathway. Cell
Metab., 12, 341–351.

52. Ligthart-Melis, G.C. and Deutz, N.E.P. (2011) Is glutamine still
an important precursor of citrulline? Am. J. Physiol. Endocrinol.
Metab., 301, E264–E266.

53. Molza, A.-E., Mangat, K., Le Rumeur, E., Hubert, J.-F., Menhart,
N. and Delalande, O. (2015) Structural basis of neuronal
nitric-oxide synthase interaction with Dystrophin repeats 16
and 17. J. Biol. Chem., 290, 29531–29541.

54. Hafner, P., Bonati, U., Erne, B., Schmid, M., Rubino, D.,
Pohlman, U., Peters, T., Rutz, E., Frank, S., Neuhaus, C. et
al. (2016) Improved Muscle Function in Duchenne Mus-
cular Dystrophy through L-Arginine and Metformin: An
Investigator-Initiated, Open-Label, Single-Center, Proof-Of-
Concept-Study. PLoS One, 11, e0147634.

55. Hafner, P., Bonati, U., Rubino, D., Gocheva, V., Zumbrunn, T.,
Gueven, N. and Fischer, D. (2016) Treatment with l-citrulline
and metformin in Duchenne muscular dystrophy: study



Human Molecular Genetics, 2020, Vol. 29, No. 5 755

protocol for a single-centre, randomised, placebo-controlled
trial. Trials, 17, 389.

56. He, Y., Hakvoort, T.B.M., Köhler, S.E., Vermeulen, J.L.M., de
Waart, D.R., de Theije, C., ten Have, G.A.M., van Eijk, H.M.H.,
Kunne, C., Labruyere, W.T., et al. (2010) Glutamine Synthetase
in muscle is required for glutamine production during fast-
ing and Extrahepatic ammonia detoxification. J. Biol. Chem.,
285, 9516–9524.

57. Thangarajh, M., Zhang, A., Gill, K., Ressom, H.W., Li, Z., Vargh-
ese, R.S., Hoffman, E.P., Nagaraju, K., Hathout, Y. and Boca,
S.M. (2019) Discovery of potential urine-accessible metabo-
lite biomarkers associated with muscle disease and corti-
costeroid response in the mdx mouse model for Duchenne.
PLoS One, 14, e0219507.

58. Abu Bakar, M.H. and Sarmidi, M.R. (2017) Association of
cultured myotubes and fasting plasma metabolite profiles
with mitochondrial dysfunction in type 2 diabetes subjects.
Mol. Biosyst., 13, 1838–1853.

59. Rodríguez-Cruz, M., Cruz-Guzmán, O.R., Escobar, R.E., López-
Alarcón, M. (2016) Leptin and metabolic syndrome in
patients with Duchenne/Becker muscular dystrophy. Acta
Neurol. Scand., 133, 253–260.

60. Mynatt, R.L., Noland, R.C., Elks, C.M., Vandanmagsar, B.,
Bayless, D.S., Stone, A.C., Ghosh, S., Ravussin, E., Warfel,
J.D. (2019) The RNA binding protein HuR influences skele-
tal muscle metabolic flexibility in rodents and humans.
Metabolism, 97, 40–49.

61. Fitzmaurice, G.M., Laird, N.M. and Ware, J.H. (2011) Applied
longitudinal analysis. Applied longitudinal analysis; Wiley,
Hoboken, New Jersey, 2011.

62. van, M., de Winter, C., van Roon-Mom, W., van Ommen, G.-J.,
’t Hoen, P.aC. and Aartsma-Rus, A. (2010) A 3 months mild
functional test regime does not affect disease parameters in
young mdx mice. Neuromuscul. Disord., 20, 273–80.

63. Dunn, W.B., Broadhurst, D., Begley, P., Zelena, E., Francis-
McIntyre, S., Anderson, N., Brown, M., Knowles, J.D., Halsall,
A., Haselden, J.N. et al. (2011) Procedures for large-scale
metabolic profiling of serum and plasma using gas chro-
matography and liquid chromatography coupled to mass
spectrometry. Nat. Protoc., 6, 1060–1083.

64. Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R.,
Daykin, C.A., Fan, T.W.M., Fiehn, O., Goodacre, R., Griffin,
J.L. et al. (2007) Proposed minimum reporting standards for
chemical analysis. Metabolomics, 3, 211–221.

65. van den Berg, R.A., Hoefsloot, H.C.J., Westerhuis, J.A.,
Smilde, A.K. and van der Werf, M.J. (2006) Centering, scal-
ing, and transformations: improving the biological infor-
mation content of metabolomics data. BMC Genomics, 7,
142.

66. McCulloch, C.E., Searle, S.R. and Neuhaus, J.M. (2008) Gener-
alized, Linear, and Mixed Models, 2nd Edition; Wiley, Hoboken,
New Jersey, (2008).

67. Benjamini, Y. and Hochberg, Y. (1995) Controlling the
False Discovery Rate: A Practical and Powerful Approach
to Multiple Testing. Source J. R. Stat. Soc. Ser. B, 57,
289–300.

68. Goeman, J.J., Van de, S., De Kort, F. and van Houwellingen, H.C.
(2004) A global test for groups fo genes: testing association
with a clinical outcome. Bioinformatics, 20, 93–99.

69. Slenter, D.N., Kutmon, M., Hanspers, K., Riutta, A., Windsor,
J., Nunes, N., Mélius, J., Cirillo, E., Coort, S.L., DIgles, D. et
al. (2018) WikiPathways: A multifaceted pathway database
bridging metabolomics to other omics research. Nucleic Acids
Res., 46, D661–D667.

70. Kelder, T., Pico, A.R., Hanspers, K., van Iersel, M.P.,
Evelo, C. and Conklin, B.R. (2009) Mining biological
pathways using WikiPathways web services. PLoS One, 4,
e6447.

71. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers,
D., Owen, S., Soiland-Reyes, S., Dunlop, I., Nenadic, A., Fisher,
P. et al. (2013) The Taverna workflow suite: designing and
executing workflows of web services on the desktop, web
or in the cloud. Nucleic Acids Res, 41, W557–W561.

72. Westfall, P.H. and Troendle, J.F. (2008) Multiple testing with
minimal assumptions. Biometrical J., 50, 745–755.

73. https://software.broadinstitute.org/morpheus .
74. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. and R Core Team

(2018) Linear and Nonlinear Mixed Effects Models. R package nlme
version 3.1-137. Comprehensive R Archive Network (CRAN),
(2018).

75. Karnovsky, A., Weymouth, T., Hull, T., Tarcea, V.G., Scardoni,
G., Laudanna, C., Sartor, M.A., Stringer, K.A., Jagadish, H.V.,
Burant, C. et al. (2012) Metscape 2 bioinformatics tool for
the analysis and visualization of metabolomics and gene
expression data. Bioinformatics, 28, 373.

76. Shannon, P. (2003) Cytoscape: a software environment for
integrated models of biomolecular interaction networks.
Genome Res., 13, 2498–2504.

https://software.broadinstitute.org/morpheus

	Longitudinal metabolomic analysis of plasma enables modeling disease progression in Duchenne muscular dystrophy mouse models
	Introduction
	Results
	Discussion
	Materials and Methods
	Mice
	Sample preparation and data acquisition
	Statistics

	Supplementary Material
	Funding


