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Artificial intelligence (AI), as a field defined broadly 
by the engineering of computerized systems able to 

perform tasks that normally require human intelligence, 
has substantial potential in the medical imaging field 
(1). Machine learning and deep learning algorithms have 
been developed to improve workflows in radiology or to 
assist the radiologist by automating tasks such as lesion 
detection or medical imaging quantification. Workflow 
improvements include prioritizing worklists for radiolo-
gists (2,3), triaging screening mammograms (4), reducing 
or eliminating gadolinium-based contrast media for MRI 
(5,6), and reducing the radiation dose of CT imaging by 
advancing image noise reduction (7–9). Automatic lesion 
detection by using machine learning has been applied to 
many imaging modalities and includes detection of pneu-
mothorax (10,11), intracranial hemorrhage (12), Al-
zheimer disease (13), and urinary stones (14). Automatic 

quantification of medical images includes assessing skel-
etal maturity on pediatric hand radiographs (15), coro-
nary calcium scoring on CT images (16), prostate clas-
sification at MRI (17), breast density at mammography 
(18), and ventricle segmentation at cardiac MRI (19,20). 
Yet substantial implementation and regulatory challenges 
have made application of AI models in clinical practice 
difficult and limited the potential of these advancements. 
Nearly all limitations can be attributed to one substan-
tial problem: lack of available image data for training and 
testing of AI algorithms.

Currently, most research groups and companies have 
limited access to medical images, while the small sample 
sizes and lack of diverse geographic areas hinder the gen-
eralizability and accuracy of developed solutions (21). 
Although small data sets may be sufficient for training 
of AI algorithms in the research setting, large data sets 
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Artificial intelligence (AI) continues to garner substantial interest in medical imaging. The potential applications are vast and include the 
entirety of the medical imaging life cycle from image creation to diagnosis to outcome prediction. The chief obstacles to development and 
clinical implementation of AI algorithms include availability of sufficiently large, curated, and representative training data that includes 
expert labeling (eg, annotations). Current supervised AI methods require a curation process for data to optimally train, validate, and test 
algorithms. Currently, most research groups and industry have limited data access based on small sample sizes from small geographic areas. 
In addition, the preparation of data is a costly and time-intensive process, the results of which are algorithms with limited utility and poor 
generalization. In this article, the authors describe fundamental steps for preparing medical imaging data in AI algorithm development, 
explain current limitations to data curation, and explore new approaches to address the problem of data availability.
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with high-quality images and annotations are still essential 
for supervised training, validation, and testing of commercial 
AI algorithms. This is especially true in the clinical setting 
and is well outlined by Park and Han (22).

Most health care systems are not adequately equipped to 
share large amounts of medical images. Even when develop-
ment is possible, medical data are often stored in disparate 
silos, which is not optimal for medical AI development that 
can be broadly used in clinical practice(s). Furthermore, 
simply achieving access to large quantities of image data is 
insufficient to allay these shortcomings. Adequate curation, 
analysis, labeling, and clinical application are critical to 
achieving high-impact clinically meaningful AI algorithms. 
We describe a process of labeling, curating, and sharing medi-
cal image data for AI algorithm development, followed by 
an in-depth discussion of alternative strategies to 
achieve responsible data sharing and applications 
in AI algorithm development for optimal clini-
cal impact. To date, to our knowledge, this is the 
first work that gives an overview of the process 
of medical imaging data preparation for machine 
learning.

Conflicts of Interest
Data and information were controlled by au-
thors who are not industry employees. Two au-
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H.H., and M.P.L.) are advisors and stockhold-
ers of the same company. However, for this 
project none of the authors received financial or 
research support from the industry and the cur-
rent project itself also was not funded.

Data Preparation Overview
Before medical images can be used for the development of an 
AI algorithm, certain steps need to be taken. Typically, approval 
from the local ethical committee is required before medical data 
may be used for development of a research or a commercial AI 
algorithm. An institutional review board needs to evaluate the 
risks and benefits of the study to the patients. In many cases 
existing data are used, which requires a retrospective study. Be-
cause the patients in this type of study do not need to undergo 
any additional procedures, explicit informed consent is gener-
ally waived. With clinical trials, each primary investigator may 
need to provide approval to share data on their participants. 
In case of a prospective study, where study data are gathered 
prospectively, informed consent is necessary. After ethical ap-
proval, relevant data needs to be accessed, queried, properly 
de-identified, and securely stored. Any protected health infor-
mation needs to be removed both from the Digital Imaging 
and Communications in Medicine (DICOM) metadata, as 
well as from the images (23). If the data are intended for open-
source research efforts, then additional human inspection of 
each image is standard because some images contain free-form 
annotations that have been scanned and cannot be removed 
reliably with automated methods. The quality and amount of 
the images vary with the target task and domain. The next step 
is to structure the data in homogenized and machine-readable 
formats (24). The last step is to link the images to ground-truth 
information, which can be one or more labels, segmentations, 
or electronic phenotype (eg, biopsy or laboratory results). The 
entire process to prepare medical images for AI development is 
summarized in Figure 1.

Accessing and Querying Data
Developers of AI algorithms are typically not located within a 
hospital and therefore often do not have direct access to medical 
imaging data through the picture archiving and communication 
system (PACS), especially when AI researchers are developing 

Abbreviations
AI = artificial intelligence, DICOM = Digital Imaging and Commu-
nications in Medicine, PACS = picture archiving and communication 
system

Summary
Supervised artificial intelligence (AI) methods for evaluation of 
medical images require a curation process for data to optimally train, 
validate, and test algorithms. The chief obstacles to development and 
clinical implementation of AI algorithms include availability of suf-
ficiently large, curated, and representative training data that includes 
expert labeling (eg, annotations).

Essentials
	n Image data availability is an important hurdle for implementation 

of artificial intelligence (AI) in the clinical setting.
	n AI researchers need to be aware of the data source and potential 

biases, which may affect generalizability of AI algorithms.
	n New approaches such as federated learning, interactive reporting, 

and synoptic reporting may help to address data availability in the 
future; however, curating and annotating data, as well as computa-
tional requirements, are substantial barriers.

Figure 1:  Diagram shows process of medical image data handling.
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and Accountability Act, or HIPAA, and the European General 
Data Protection Regulation, both retrospectively and prospec-
tively gathered data require proper de-identification. Sensi-
tive information includes but is not limited to name, medical 
record number, and date of birth. A complete list of the 18 
HIPAA identifiers is shown in Table 1. Identifiable informa-
tion is commonly present in the DICOM metadata (header) 
and multiple tools are available to automatically remove this 
information (29). DICOM de-identification profiles are 
defined for a range of applications and used as the basis for 
de-identification workflows implemented in the Radiologi-
cal Society of North America Clinical Trial Processor and the 
Cancer Imaging Archive (30). Besides the DICOM metadata, 
protected health information may also be embedded in images, 
which is often the case with US examinations or radiographs 
that are scanned into a health care system. Removal of em-
bedded information requires more advanced de-identification 
methods such as optical character recognition (31) and hu-
man review for handwriting on scanned images not always 
recognized by automated methods. Care must also be taken 
not to inadvertently mix data sets, because doing so increases 
the individual risk of reidentification through cross-linking of 
nonrelated data points (32). Finally, medical data can be ano-
nymized with k-anonymity, which transforms an original data 
set containing protected health information to prevent poten-
tial intruders from determining the patient’s identity (33). For 
posting radiology data in open-source research efforts, the DI-
COM metadata is often removed completely or converted to 
another format such as Neuroimaging Informatics Technology 
Initiative, or NIFTI, which retains only voxel size and patient 
position. Totally removing the DICOM metadata for open-
source research efforts prevents privacy issues but reduces the 
value of data, because metadata is important for AI algorithm 
development.

Important protected health information that can be poten-
tially overlooked, yet can act as “identity signatures,” include the 
HIPAA items full-face photos and comparable images, as well 
as biometric identifiers (ie, retinal scan and fingerprints). For 
example, head and neck CT data can qualify as comparable im-
ages. With widespread volumetric acquisition and ease of three-
dimensional reformatting, the soft-tissue kernels or filters allow 
facial reconstruction that can identify the patient. Until there is 
a secure digital encryption method to alter identification with-
out compromising clinical information, those making data pub-
licly available need to take potential biometric signatures into 
consideration.

Data Storage
Data are commonly transferred to either a local data storage 
(single-center study) or an external data storage (multicenter 
study or commercial AI development). Data are usually stored 
at an on-premise server; however, with current cloud-based de-
velopments, data are increasingly stored in the cloud. Advan-
tages of on-premise data storage include data safety and avail-
ability, but the potential of sharing data with other institutions 
is limited. Cloud-based data storage, on the other hand, is be-

commercial algorithms. Access to PACS environments is lim-
ited to accredited professionals such as physicians, technologists, 
PACS managers, and clinical scientists. Making data accessible 
to AI developers is challenging and requires multiple steps, in-
cluding de-identification of data (described later). The ideal ap-
proach is collaboration between clinicians and AI developers, 
either in-house or through collaborative research agreements.

Once data are accessible to AI developers, different strategies 
are available to search for medical images and clinical data. Cus-
tom search queries may, for example, consist of strings, inter-
national classification of disease codes, and current procedural 
terminology codes. Data can be systematically searched and ex-
tracted from hospital PACS and electronic medical records by 
using PACS or radiology information system search engines. For 
example, many PACS vendors allow user access to metadata such 
as annotations, creator, series and image number, and unique 
target lesion names and relations. These data can be exported 
in some PACS and further managed by other systems such as 
electronic medical records, cancer databases, and oncologist or 
other provider databases (25). Alternatively, software packages 
are available to simplify the process of data querying (26–28).

De-Identification
Although written informed consent from patients is not always 
necessary, according to the U.S. Health Insurance Portability 

Table 1: Protected Health Information Identifiers according 
to the Health Insurance Portability and Accountability Act

Identifier
Name
Address*
All elements (except years) of dates related to an individual†

Telephone numbers
Fax number
E-mail address
Social Security number
Medical record number
Health plan beneficiary number
Account number
Certificate or license number
Any vehicle or other device serial number
Device identifiers and serial numbers
Web URL
Internet Protocol (IP) address
Finger or voice print
Photographic image‡

Any other characteristic that could uniquely identify the  
  individual

Source.—Reference 101.
* All geographic subdivisions smaller than state, including street 
address, city, county, and zip code.
† Including birth date, admission date, discharge date, date of 
death, and exact age if older than 89 years.
‡ Photographic images are not limited to images of the face.
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Although extracting structured labels from the radiology 
report text by using natural language processing may be ulti-
mately the most scalable approach, researchers need to be cau-
tious of the error rates both in the natural language processing 
techniques and the original text reports. In large quantities, it 
is known that AI algorithms can be trained on relatively low-
quality data, but knowing the true ground truth for a given 
task to correlate with the imaging findings is the ideal (Fig 2). 
Medical imaging alone is considered ground truth for certain 
diagnoses, including intracranial hemorrhage, fractures, renal 
stone, and aortic dissection. However, the majority of findings 
is not definitive on the basis of imaging examinations alone 

coming more secure, improves the possibilities of sharing data, 
and provides data backup. Disadvantages of cloud-based stor-
age include costs and the need for a fast internet connection.

Resampling Medical Images
Image perception of medical image data are relatively complex 
compared with nonmedical image perception tasks. Most con-
volutional neural networks for classification of images are trained 
and tested on two-dimensional images with fewer than 300 3 
300 pixels (34). Medical images, however, exceed these dimen-
sions; the in-plane spatial resolution is generally higher than 
300 3 300 pixels, and many medical image studies are three-
dimensional instead of two-dimensional. Training convolutional 
neural networks with images larger than 300 3 300 pixels is 
possible; however, computers with strong computational power 
are necessary. This problem is most relevant in high-resolution 
applications; examples include CT of the inner ear or full-field 
digital mammography. Solutions include downsampling of the 
image resolution or patch-based evaluation of only image parts 
with relevant information (eg, focus on the aortic region in an 
algorithm developed for aortic dissection segmentation). How-
ever, patch-based methods frequently have high computational 
demands and are time consuming to train. Model training can 
also be simplified by classifying labels to healthy (scale 0) and 
diseased at different levels; for example, from less severely dis-
eased (scale 2) to more severely diseased (scale 4) (35).

Besides DICOM files, which contain metadata and image 
slices, other file types are also available. AI development with 
raw MRI or CT data (before images are reconstructed) is gaining 
interest and has a potentially valuable role. Advantages include 
an increased amount of information captured in raw data, and 
disadvantages include the large storage space needed and diffi-
cult interpretation of raw data without reconstructed images.

Choosing Appropriate Label and Ground Truth 
Definition
Current AI algorithms for medical image classification tasks are 
generally based on a supervised learning approach. This means 
that before an AI algorithm can be trained and tested, the 
ground truth needs to be defined and linked to the image. The 
term ground truth typically refers to information acquired from 
direct observation (such as biopsy or laboratory results). Im-
age labels are annotations performed by medical experts such 
as radiologists. These annotations can be considered ground 
truth if imaging is the reference standard (eg, pneumothorax). 
Choosing the appropriate label for a given imaging AI applica-
tion requires a balance between finding the best discriminating 
categories (ie, normal vs emergent) and clinically relevant gran-
ularity (ie, subtype of liver lesion) depending on the desired 
task. With the exception of AI methods that enhance image 
quality, medical images in isolation are generally not suitable 
for developing diagnostic AI models unless associated with a 
diagnosis through the free-text radiology report (which require 
additional labeling strategies discussed below), expert consen-
sus, segmentation, or an applied ground truth label such as 
electronic phenotyping (1).

Figure 2:  Diagram shows value hierarchy of imaging annotation. Most 
useful but least abundant is ground truth (pathologic, genomic, or clinical 
outcome data). Prospective annotation is incredibly valuable due to avail-
ability of contemporaneous information (clinical and/or laboratory data). 
By comparison, retrospective annotations are least valuable.

Figure 3:  Image in posterior-anterior direction shows nonspecific 
abnormality on chest radiograph. Application of most accurate label for 
nonspecific finding such as opacity in left lung (circle) is challenging in 
absence of other clinical and laboratory data.
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result, most centers attempting to use retrospective data are 
faced with large volumes of imaging studies and narrative re-
ports that require substantial effort to label. Currently, there 
are many approaches to perform retrospective labeling, rang-
ing from simple manual labeling by radiologists to automated 
approaches that can extract structured information from the 
radiology report and/or electronic medical record (41).

Outside of medical applications, manual labeling is a com-
monly used approach in acquiring labeled imaging data for AI 
applications. Large corporations often hire nonexperts to hand 
review and label large amounts of data needed to support au-
tomated services such as ranking web search results, providing 
recommendations, or displaying relevant ads (42,43). This ap-
proach can be effective in medical imaging as well, but is imprac-
tical in most cases when used on large populations because it is 
extremely time consuming (and costly) to use medical experts, 
particularly for advanced modalities such as CT, PET, or MRI. 
When a relatively small number of images are needed for AI de-
velopment, medical expert labeling and segmentation may be 
feasible. Segmentation performance can be evaluated by using 
either the Dice coefficient or the more advanced simultaneous 
truth and performance level estimation, or STAPLE, algorithm 
(44). The STAPLE algorithm compares segmentations and com-
putes a probabilistic estimate of the true segmentation. For nar-
rowly focused applications such as colonic polyp classification 
and kidney segmentation, crowdsourcing of labels by nonexperts 
may be feasible (45,46). Heim et al (47) compared segmenta-
tions of the liver performed by nonexperts, engineers with do-
main knowledge, medical students, and radiologists. Despite the 
finding that the crowd needed more time, accuracy was similar 
between these groups. Crowdsourcing challenges include inac-
curacy with anatomic variations and pathologies, quality con-
trol, and ethical issues such as sharing medical images with the 
crowd. Crowd-sourced labeling is mostly performed with web-
based tools, which are freely available (48,49).

One solution is to extract information from the report of 
imaging findings through rule-based natural language process-
ing (50,51) or recurrent neural networks (52,53). One of the 
most useful natural language processing methods is called topic 
modeling, which summarizes a data set with a large amount 

and requires further follow-up, pathologic diagnosis, or clinical 
outcomes to achieve ground truth (ie, lung cancer, liver mass, 
pneumonia, etc). For example, an opacity on a chest radio-
graph has an extensive differential. It is difficult to know the 
ground truth without obtaining surgical, pathologic, genomic, 
or clinical outcome data (Fig 3). There are also situations in 
which one modality may support a diagnosis but require de-
finitive confirmation by using another modality. For example, 
a head CT might have findings supporting a diagnosis of 
stroke, but an MRI could definitively confirm. Depending on 
the ultimate task or purpose of the AI algorithm, ground truth 
definition may require confirmatory clinical labeling beyond 
the radiology opinion or report such as a pathologic or surgical 
report, clinical outcome, or both. Accumulation of this clini-
cal information for a large number of patients can be resource 
intensive and is often referred to as electronic phenotyping 
(36). Querying of nonimaging data such as clinical outcomes 
and patient demographics can often not be performed through 
PACS, but requires extraction of information from electronic 
medical records.

In general, imaging data can be labeled in a variety of ways 
including structured label(s), image annotations, image seg-
mentations, and/or electronic phenotypes (1,37). More often, 
application of the imaging diagnosis based on expert interpre-
tation or a consensus of experts based on a reinterpretation of 
the images, or free-text report is used (10). Another approach 
to labeling is through the use of segmentations including, for 
example, outlining lung nodules at CT of the chest (Fig 4).

Ground Truth or Label Quality
Accurate ground truth definition or image labels for a large 
number of radiology examinations are required to build accu-
rate medical imaging AI models (38,39). There are guidelines 
for reporting diagnostic imaging aiming toward structured re-
porting, which would immensely reduce the effort needed to 
extract useful imaging labels. At present, however, the over-
whelming majority of reports remain composed of free text 
(40). Novel semantic reporting systems that aim to index and 
codify free-text reports in real time are being developed, but 
are currently not widely available for large populations. As a 

Figure 4:  Axial images show medical image segmentations performed by experts. (a) CT examination of patient with lung nodule. (b) Nodule 
is independently and blindly segmented by three medical experts with free open-source software package (Horos, version 3.3.5; Nimble d/b/a 
Purview, Annapolis, Md). (c) Magnified image of segmentations. There are differences between segmentations; however, these differences are small 
and not clinically relevant.
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Data Set Types
Similar to conventional regression modeling, AI models are 
trained by inputting medical images linked to ground truth 
outcome variables (eg, pneumothorax). Generally, the training 
imaging data set is larger than the validation and testing data 
sets in ratios of 80:10:10 or 70:15:15. To ensure generaliz-
ability of the AI algorithm, bias of the training data set should 
be limited. If an AI algorithm is trained with images from a 
European institution and the algorithm is used in an Asian 
population, then performance may be affected by population 
or disease prevalence bias. Similarly, if all the imaging training 
data were acquired by using one kind of imaging machine, it 
may not work as well on machines from other manufacturers, 
known as vendor or single-source bias. It is thus advised to use 
images from multiple diverse sources, or at least images rep-
resenting the target population or health system in which the 
algorithm is to be deployed. After the algorithm is trained, a 
validation data set is needed to fine-tune the algorithm hyper-
parameters and to check for overfitting. Note that validation 
in AI algorithm development has a different meaning than in 
conventional statistical modeling. Here, validation means tun-
ing of the algorithm until the final performance of the model 
is evaluated with a testing data set. Multiple internal valida-
tion methods are available; however, independent validation 
in an external data set is preferred over internal validation to 
properly evaluate generalizability (63). Even if an electronic 
phenotype is available (eg, biopsy results of a lung nodule), 
annotations are needed for training and validation data sets to 
inform the algorithm of the location of the specific lung nod-
ule to allow the algorithm to better understand the images. 
The testing data set functions as the reference standard and 
is used to evaluate the performance of the algorithm. In mul-
tiple conditions, imaging is the reference standard (eg, pneu-
mothorax), where high-quality annotations are needed for the 
testing imaging data set because this data set functions as the 
reference standard. The quality and veracity of the testing data 
set is arguably more important than that of the training set 
because this data set is used for performance testing and regu-
latory approval.

Data Set Size
To ensure generalizability, large training data sets are often es-
sential. For specific targeted applications or populations, rel-
atively small data sets (hundreds of cases) may be sufficient. 
Large sample sizes are especially required in populations with 
substantial heterogeneity or when differences between imag-
ing phenotypes are subtle (35). The algorithm performance for 
computer vision tasks increases logarithmically with increased 
training data volume (64,65). Therefore, a proper sample size 
is needed. The main questions for the power calculation in-
clude  the following: (a) which cases need to be included in 
the sample to allow for generalizability in a larger population, 
and (b) how many cases are needed to show an effect (66). The 
sample size calculation for test data sets should use traditional 
power calculation methods to estimate the sample size. In gen-
eral, the development of generalizable AI algorithms in medical 
imaging requires statistically powered data sets in the order of 

of text to obtain gross insight over the data set. This approach 
characterizes document content based on key terms and es-
timates topics contained within documents. For example, 
documents associated with “brain MRI” would comprise key 
terms such as axial, contrast, MRI, sagittal, brain, enhancement, 
et cetera. Another class of architectures, recurrent neural net-
works, are neural network–based models that can be trained 
on a small sample of reports and rapidly achieve performance 
levels of the state-of-the-art more traditional natural language 
processing tools (54,55). Recurrent neural networks represent 
an important improvement to language modeling because a 
dependency of a word in narrative language can occur long 
distances apart, such as “No evidence for acute or subacute in-
farction.” In this example, the “No” is far from the target “in-
farction.” It can be confusing for traditional natural language 
processing tools but picked up with recurrent neural networks 
(54). As a result, strategies for extracting structured labels from 
unstructured text have emerged that have shown a great deal 
of promise for limited applications to apply structured labels in 
large populations and generate large labeled data sets of imag-
ing studies (2,56).

Because radiology reports are most often unstructured and 
not created specifically for the development of AI algorithms, 
the extracted information contains noise (ie, has a relatively 
low quality). Neural networks can still be relatively robust 
when trained with noisy labels (57). However, one should be 
careful when using noisy labels for the development of clini-
cally applicable algorithms because every labeling error could 
be translated to a decrease in algorithm accuracy. It is estimated 
that 2%–20% of radiology reports contain demonstrable errors 
(58).

Lastly, there is a trend toward interactive reporting where 
the radiologist report contains hypertext directly connected 
to image annotations (59). Such annotations have been used 
effectively for labeling of open-source data sets (60). Mea-
surements can be performed in advance of radiologists by ra-
diology preprocessors that improve annotation quality while 
saving radiologists time (61). Preliminary work on prospec-
tive labeling is showing that two-diameter measurements 
and ovals are better than one-diameter measurements and 
much better than arrows (62). In addition to structured re-
porting, to the level of synoptic reporting, this should con-
tribute significantly to increased prospective expert-labeled 
data. Interactive reporting is becoming more common where 
radiologists routinely label images in three dimensions and 
connect directly to hypertext descriptions in their report.  
This may be a potential solution to the local labeling issue with 
research just beginning. Nevertheless, substantial collaborative 
efforts may ultimately be needed to arrive at widely adopted 
reporting and standardization of labeling of imaging studies 
such that interoperability of data sets and subsequent models 
is possible.

Data Sets
Development of AI algorithms by using supervised learning 
requires large and heterogeneous training, validation, and test-
ing data sets.
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from different geographic areas would include a wide variety 
of imaging machines, ethnicities, and pathologies, single-
institutional data are commonly used due to lack of access to 
multi-institutional data. Many medical centers lack motivation  
and resources to share data with other institutions or com-
panies that develop AI algorithms due to regulatory and pri-
vacy issues, although medical image data can be shared without 
violating General Data Protection Regulation or HIPAA 
regulations with proper de-identification methods and secure 
data handling. Currently, medical image data are stored in iso-
lated decentralized silos, limiting the development of gener-
alizable unbiased AI algorithms, which could theoretically be 
solved by having centralized data storage systems. When data 
are being made available to AI developers, appropriate data 
management is essential. Wilkinson et al (71) describe the 
FAIR (findability, accessibility, interoperability, and reusabil-
ity) principle for good data management.

Open-Source Data Sets
An increasing number of data sets has been open sourced to ad-
dress the problem of data access in medical research. Data sets 
are available in a wide range of domains from neuroimaging 
(72–77), breast imaging (36,78), chest radiographs (41,79), 

hundreds of thousands or millions, which is problematic for 
many researchers and developers.

One partial solution for this problem may be semisupervised 
learning. Fully annotated data sets are needed for supervised 
learning, whereas semisupervised learning uses a combination 
of annotated and unannotated images to train an algorithm 
(67,68). Semisupervised learning may allow for a limited num-
ber of annotated cases; however, large data sets of unannotated 
images are still needed.

Another potential future solution to increase data sample 
size may be the generation of synthetic data through generative 
adversarial networks (69). Generative adversarial networks have 
the potential to synthesize unlimited numbers of high-quality 
realistic images that can be added to training data sets for devel-
opment of detection and classification algorithms. First results 
in synthesized radiographs and mammograms are promising. 
However, limited evidence is available, especially when abnor-
malities are present on images (69,70).

Data Sources
Most academically developed AI algorithms in medical imag-
ing have been trained, validated, and tested with local data 
from a single institution (1). Whereas multi-institutional data 

Table 2: Large Open-Source Medical Imaging Data Sets

Data Set Description Image Types
No. of  
Patients Ground Truth

Single or Multiple 
Institutions

American College of Radiology Imaging Network  
National CT Colonography Trial (ACRIN 6664) 
(102)

CT 825 Pathology (biopsies) Multiple

Alzheimer’s Disease Neuroimaging Initiative (103) MRI, PET .1700 Clinical (follow-up) Multiple
Curated Breast Imaging Subset of the Digital Database 

for Screening Mammography (36)
Mammography 6671 Pathology (biopsies) Multiple

ChestX-ray8, National Institutes of Health chest x-ray 
database (41)

Radiography 30 805 Imaging reports Single

CheXpert, chest radiographs (79) Radiography 65 240 Imaging reports Single
Collaborative Informatics and Neuroimaging Suite (104) MRI Clinical (follow-up) Multiple
DeepLesion, body CT (60) CT 4427 Imaging Single
Head and neck PET/CT (105) PET/CT, CT 298 Pathology (biopsies),  

clinical (follow-up)
Multiple

Lung Image Database Consortium image collection 
(106)

CT, radiography 1010 Imaging, clinical for a 
subset

Multiple

MRNet, knee MRI (80) MRI 1370 Imaging reports Single
Musculoskeletal bone radiographs, or MURA (107) Radiography 14 863 Imaging reports Single
National Lung Screening Trial (108) CT, pathology 26 254 Clinical (follow-up) Multiple
PROSTATEx Challenge, SPIE-AAPM-NCI Prostate  

MR Classification Challenge (109)
MRI 346 Pathology (biopsies), 

imaging
Multiple

Radiological Society of North America Intracranial  
Hemorrhage Detection (110)

CT 25 000 Imaging Multiple

Cancer Genome Atlas Kidney Renal Clear Cell  
Carcinoma data collection (111)

CT, MRI 267 Pathology (biopsies),  
clinical (follow-up)

Multiple

Virtual Imaging Clinical Trial for Regulatory Evaluation 
(112)

Mammography, 
digital breast 
tomosynthesis

2994 Imaging Multiple

Note.—AAPM = American Association of Physicists in Medicine, NCI = National Cancer Institute, SPIE = Society of Photo-Optical 
Instrumentation Engineers.



Willemink et al

Radiology: Volume 295: Number 1—April 2020  n  radiology.rsna.org	 11

who have access to training data sets with images from pa-
tients in developed countries (84).

Data Format
The two key types of formats relevant to AI application devel-
opment are image data formats and image annotation formats. 
Nearly all PACS store medical images in DICOM format, 
which is the international standard for image objects. How-
ever, groups who collect images may convert them from DI-
COM to other formats such as portable networks graphics, or 
PNG, tagged image file format, or TIFF, or NIFTI for ease of 
distribution. However, one should keep in mind that impor-
tant DICOM metadata are removed with these conversions. 
Image converting programs are sufficiently prevalent and ac-
cessible that there is usually no problem accessing and using 
image data acquired from multiple institutions in AI applica-
tion development.

Unlike with image data, image annotations are not stored in 
a single common format. A major limitation of current com-
mercial imaging systems that acquire image annotations (eg, for 
tracking cancer lesions [85–91]) is that they generally do not 
store annotations in a format that permits reuse for AI devel-
opment. Image annotations are commonly stored in PACS and 
other systems as DICOM presentation state objects (92), which 
often vary among vendors and from which it is difficult to ex-
tract regions of interest, and usually these objects do not contain 
image labels. Even if they use DICOM structured reporting, 
or DICOM-SR (93), which provides different use case–spe-
cific templates for storing explicit details of image annotations, 
similar kinds of annotation data across systems may be stored 
by using different types of DICOM SR templates that thwart 
interoperability and reuse of annotations for AI development 
when acquiring them from different sites or even from differ-
ent commercial systems within a single site. An important image 
annotation format for saving regions of interest is the DICOM 
segmentation map format (92,94), which is part of the DICOM 
standard. For nongraphic annotations, namely image labels such 
as radiologic findings or diagnoses, the annotation and image 

knee MRI (80), body CT (60), and others; a list of well-known 
open-source data sets is given in Table 2. Whereas open-source 
data sets stimulate the development of novel AI algorithms in 
the medical imaging field, there are important limitations. First, 
there is a wide variety of number and quality of images and 
availability of metadata and clinical information. Second, some 
open-source data sets are (partly) acquired by using outdated 
machines, contain low-quality images, lack expert labeling or 
data curation, or have a sample size that is too small to reach 
high-quality algorithms that can be used clinically. Moreover, 
many open-source data sets are restricted to noncommercial 
(research only) use (79). This is a major limitation for research-
ers wishing to develop marketable algorithms, as commercial 
adoption is a common avenue for clinical deployment.

Bias
One of the most important limitations of training AI algo-
rithms based on data from a single institution or from mul-
tiple institutions in a small geographic area is sampling bias. 
If an AI algorithm trained this way is applied to a different 
geographic area, then results of the algorithm may be unreli-
able due to differences between the sample population and 
target population (81). Other sources of bias include dif-
ferences in age, proportions of race and sex, use of imaging 
machines (vendors, types, acquisition protocols), and preva-
lence of diseases. There may even be biases that researchers 
are unaware of, such as variations in local practice. For many 
medical applications there is a substantial variability between 
experts who evaluate images, which is true in clinical prac-
tice because it is inherent when labels and segmentations are 
manually created. This variability may result in biased labels 
and segmentations that may be mitigated by having multiple 
experts evaluating the same case (82,83). However, substan-
tial costs and time delays often limit image assessment by 
multiple experts. Another important reason for using training 
data from a widespread geographic region is the availability 
of AI algorithms to patients in developing countries. Most AI 
algorithms are developed by research groups and companies 

Figure 5:  Diagram shows centralized versus federated learning. (a) Current artificial intelligence (AI) model development is through centralized 
model, in which de-identified data are transferred to centralized data storage system where AI algorithm can be developed. (b) In the future, feder-
ated learning may be used, in which data stays in each hospital. With federated learning, instead of transferring data outside each hospital, data stays 
in hospitals and AI model is sent to and trained in hospitals.
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Data Label Relationship to Future Implementation
It may never be possible to constrain medical imaging to a fi-
nite number of labels deterministically. While most of the AI 
research and solutions in medical imaging today are still carried 
out solving specific isolated tasks and based on curated data la-
beling, this is an approach at odds with the desired future state 
of a continuous learning environment enabling the autono-
mous incremental adaption to an ever more complex medical 
system. Practically, this will require the infrastructure to up-
date the prediction model to take into account different data 
distributions or new information. Data curation and labeling 
strategies will therefore adapt to new AI techniques continu-
ously learning from streaming (even multimodal) data, which 
will challenge any static approach to data labeling and training.

Conclusion
Image data availability is an important hurdle for implemen-
tation of artificial intelligence (AI) in the clinical setting. AI 
researchers need to be aware of the data source and potential 
biases, which may affect generalizability of AI algorithms. New 
approaches such as federated learning, interactive reporting, 
and synoptic reporting may help to address data availability in 
the future. However, curating and annotating data, as well as 
computational requirements, are substantial barriers.
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