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Osteoarthritis is one of the most common chronic dis-
eases, with more than 230 million individuals affected 

worldwide (1). Osteoarthritis is a whole-joint disorder 
that most commonly occurs in the knee and hip joints of 
middle-age to older people (2). For hip osteoarthritis, inci-
dence, severity, and treatment have increased in the United 
States as the population has aged (3). The diagnosis and 
grading of the severity of hip osteoarthritis rely on a variety 
of clinical findings and findings at imaging. Radiography 
of the pelvis is the most commonly used primary imaging 
technique in patients suspected of having hip osteoarthri-
tis (4). Radiographic features of hip osteoarthritis include 
joint-space narrowing (JSN), osteophytes, subchondral 

sclerosis, subchondral cysts, and flattening of the femo-
ral head. Altman et al (5) published an atlas of individual 
radiographic features of osteoarthritis as a guideline for 
semiquantitatively grading these features. However,  
accurate assessment of these features is time consuming 
and requires expertise, and reproducibility in the hands of 
inexperienced or untrained readers is limited (6,7).

The potential benefit of artificial intelligence in clini-
cal routine radiologic diagnostics remains to be investi-
gated. Artificial intelligence may be particularly useful 
in the context of large epidemiologic studies that require 
detailed structural assessment by expert radiologists’ 
readings. A previous study (6) demonstrated the feasibility 
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Background: A multitask deep learning model might be useful in large epidemiologic studies wherein detailed structural assessment of 
osteoarthritis still relies on expert radiologists’ readings. The potential of such a model in clinical routine should be investigated.

Purpose:  To develop a multitask deep learning model for grading radiographic hip osteoarthritis features on radiographs and 
compare its performance to that of attending-level radiologists.

Materials and Methods:  This retrospective study analyzed hip joints seen on weight-bearing anterior-posterior pelvic radiographs from 
participants in the Osteoarthritis Initiative (OAI). Participants were recruited from February 2004 to May 2006 for baseline measure-
ments, and follow-up was performed 48 months later. Femoral osteophytes (FOs), acetabular osteophytes (AOs), and joint-space nar-
rowing (JSN) were graded as absent, mild, moderate, or severe according to the Osteoarthritis Research Society International 
atlas. Subchondral sclerosis and subchondral cysts were graded as present or absent. The participants were split at 80% (n = 3494), 
10% (n = 437), and 10% (n = 437) by using split-sample validation into training, validation, and testing sets, respectively. The 
multitask neural network was based on DenseNet-161, a shared convolutional features extractor trained with multitask loss func-
tion. Model performance was evaluated in the internal test set from the OAI and in an external test set by using temporal and geographic 
validation consisting of routine clinical radiographs.

Results:  A total of 4368 participants (mean age, 61.0 years 6 9.2 [standard deviation]; 2538 women) were evaluated (15 364 hip 
joints on 7738 weight-bearing anterior-posterior pelvic radiographs). The accuracy of the model for assessing these five features was 
86.7% (1333 of 1538) for FOs, 69.9% (1075 of 1538) for AOs, 81.7% (1257 of 1538) for JSN, 95.8% (1473 of 1538) for 
subchondral sclerosis, and 97.6% (1501 of 1538) for subchondral cysts in the internal test set, and 82.7% (86 of 104) for 
FOS, 65.4% (68 of 104) for AOs, 80.8% (84 of 104) for JSN, 88.5% (92 of 104) for subchondral sclerosis, and 91.3% (95 of 
104) for subchondral cysts in the external test set.

Conclusion:  A multitask deep learning model is a feasible approach to reliably assess radiographic features of hip osteoarthritis.
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eral hip replacement, hip fracture, rheumatoid arthritis, Paget 
disease, severe development dysplasia, or poor image quality 
(Fig 1). Inclusion and exclusion criteria for OAI participants 
can be found in Appendix E1 (online).

Radiographs were obtained at baseline (n = 4341) and at 
4-year follow-up (n = 3397). The participants were split by us-
ing split-sample validation into training, validation, and testing 
sets of 80% (n = 3494), 10% (n = 437), and 10% (n = 437), 
respectively.

For joint localization training, bounding boxes were placed 
at the center of the femoral head in a random subset of hips 
(n = 8776). Hips were split by using split-sample validation for 
training, validation, and testing at 80% (n = 7002), 10% (n = 
877), and 10% (n = 897), respectively, with unique participants 
per data set.

Temporal and geographic validation was performed on a test 
set with clinical routine weight-bearing anterior-posterior pel-
vic radiographs from the University of California, San Francisco 
Medical Center (San Francisco, Calif ), selected from a subgroup 
of patients who underwent hip injections in 2013 and 2014 
(n = 36) and had clinical osteoarthritis and pain at the time of 
image acquisition, and a random selection of radiographs from 
December 2018 to January 2019 (n = 20). This resulted in 104 
hip readings.

Image Readings
Clinical readings were specifically performed for this study, 
whereas OAI readings were performed for an ancillary OAI 
study (11). Readers were blinded to clinical information and 
other imaging results. FOs, AOs, JSN, subchondral sclerosis, 
and subchondral cysts were assessed as described in the Osteo-
arthritis Research Society International atlas (5). Medial and 
lateral JSN, superior and inferior AOs, superior and inferior 
FOs, acetabular and subchondral cysts, and acetabular and 
subchondral sclerosis were combined; the more severe grade 
served as the final grade. Subchondral sclerosis and subchon-
dral cysts were graded as present or absent; and osteophytes 
and JSN were graded as absent, mild, moderate, or severe.

For OAI readings, two musculoskeletal imaging fellow-
ship–trained radiologists (P.M.J. and L.N., with 5 and 7 
years of experience reading pelvic radiographs, respectively) 
read all radiographs independently over 14 months. Initial 
training and calibration of readings were performed by a 
rheumatologist (L.N.) and a musculoskeletal imaging fel-
lowship–trained radiologist (T.M.L.) (each with 25 years of 
experience in reading pelvic radiographs). Radiographs were 
assessed with both visits paired together in known chrono-
logic order. In cases of agreement, these readings served as 
ground truth; in cases of disagreement, readings were adju-
dicated by a radiologist (T.M.L.) to establish ground truth. 
Interreader reliability between both readers was assessed 
for both points and each feature by using linearly weighted  
Cohen k. When a reader determined that he or she could 
not accurately classify both joints of the pelvic radiograph 
for all features, the radiograph was excluded for poor image 
quality and was reviewed by the second reader, who con-
firmed this assessment for all radiographs.

Abbreviations
AO = acetabular osteophyte, AUC = area under receiver-operating 
characteristic curve, CI = confidence interval, FO = femoral osteophyte, 
JSN = joint-space narrowing, OAI = Osteoarthritis Initiative

Summary
A multitask deep learning model, trained with 15 364 hip joints 
and five hip osteoarthritis features per radiograph, solved multiple 
classification tasks simultaneously and assessed those features with 
a reliability similar to that of attending-level radiologists.

Key Results
	n A multitask deep learning model can reliably assess five ra-

diographic hip osteoarthritis features per joint on radiographs 
(femoral osteophytes [FOs], acetabular osteophyte [AOs], joint 
space narrowing [JSN], subchondral sclerosis, and subchondral 
cyst).

	n The accuracy of the model for assessing these five features varied 
depending on the evaluated feature: 89% for FOs, 76% for AOs, 
83% for JSN, 96% for subchondral sclerosis, and 97% for sub-
chondral cyst.

of deep learning–based algorithms to evaluate radiographs 
for the presence or absence of radiographic hip osteoarthri-
tis. However, in clinical practice, the evaluation of disease 
severity in the affected joint is crucial for patient manage-
ment. For radiographic knee osteoarthritis, studies have in-
vestigated the potential of deep learning to classify radiologic 
severity on radiographs by using Kellgren-Lawrence scores 
(8,9). Kellgren-Lawrence scores are condensed grading for the 
variety of associated radiographic osteoarthritis features. To al-
low for a thorough radiologic assessment of osteoarthritis, an 
artificial intelligence that could evaluate the multiple individual 
features of osteoarthritis on radiographs would be desirable and 
could help radiologists evaluate radiographs of hip osteoarthritis. 
In machine learning, this approach translates into multitask 
learning. Multitask learning is considered a main future trend 
for deep learning in radiology (10).

The goal of this study was to develop and validate a multitask 
deep learning approach to automatically extract radiographic 
features of osteoarthritis in the hip, specifically femoral osteo-
phytes (FOs), acetabular osteophytes (AOs), JSN, subchondral 
sclerosis, and subchondral cysts, from radiographs and com-
pare its performance to that of attending-level musculoskeletal 
radiologists.

Materials and Methods
All participants provided written informed consent. The insti-
tutional review boards of the four participating U.S. centers 
approved this Health Insurance Portability and Accountability 
Act–compliant study.

Data Sets
This retrospective study analyzed 15 364 hip joints by using 
7738 weight-bearing anterior-posterior pelvic radiographs 
from 4368 participants of the Osteoarthritis Initiative (OAI), 
a prospective, observational study. Participants were recruited 
from February 2004 to May 2006 and formed a consecutive se-
ries. A total of 428 participants were excluded because of bilat-
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276 GB DDR4-SDRAM and 4-T V100 32 GB graphical 
processing units (Nvidia, Santa Clara, Calif ) running Linux 
system (Ubuntu 14.04; Canonical, London, England) with 
CUDA 9.0 (Nvidia).

A Microsoft Common Objects in Context pretrained Reti-
naNet implemented in TensorFlow, version 1.7 (open source, 
Google Brain, Mountain View, Calif ), was trained to depict 
both hip joints, excluding joints with total hip replacement 
(12,13). The detected image of one hip was cropped, contrast-
stretched, and resized to 224 3 224 pixels. The multitask model 
was based on an ImageNet pretrained DenseNet-161 serving 

For the external test set, readings were performed indepen-
dently over 3 consecutive days by a musculoskeletal imaging 
fellowship–trained radiologist (M.P., with 8 years of experience 
in reading pelvic radiographs) and T.M.L. The median between 
both served as ground truth.

Model Architecture and Model Training
Preprocessing, model implementation, and evaluation were 
performed in Python 3.6 (open-source; Python Software 
Foundation, Wilmington, Del) by using 64-core Intel-Xeon 
Gold-6130-CPU at 2.10 GHz (Intel, Santa Clara, Calif ), 

Figure 1:  Flowchart showing participant selection from the Osteoarthritis Initiative (OAI) database.

Figure 2:  Deep learning architecture overview. First (step 1), a RetinaNet was trained to reliably depict right and left hip on a radiograph. For this step, the radiograph 
was resized to 640 3 640 pixels. Then (step 2), the cropped hip image was resized to 224 3 224 pixels and used as the input for an ImageNet-pretrained DenseNet 
that served as a shared convolutional features extractor. Fully connected layers were trained for each radiographic osteoarthritis (OA) feature in a multitask deep learning 
approach (step 3) with hard parameter sharing to assess the severity of femoral osteophytes (FOs), acetabular osteophytes (AOs), joint-space narrowing (JSN), subchon-
dral cysts (SUBCYST), and subchondral sclerosis (SUBSCL) to obtain the final assessment (step 4).
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Statistical Analysis
Bounding box placement was evaluated with intersection over 
union for the validation set and test set and for correct place-
ment on radiographs without bounding boxes by C.E.v.S. 
(a radiologist in training with 3 years of experience in read-
ing pelvic radiographs). Final model performance was evalu-
ated on the internal test set and external clinical data set. To 
evaluate the model precision, F1 scores, confusion matrices, 
and receiver-operating characteristics were calculated by using 
scikit-learn 0.19 (scikit-learn.org); linearly weighted Cohen k 
values with 95% confidence intervals (CIs) were calculated 
with statsmodels (0.9, statsmodels.org; open source) (20,21). 
Precision is defined as true-positive results divided by the sum 
of false-positive and true-positive results. Recall is defined as 
true-positive results divided by the sum of true-positive and 
false-negative results. F1 score is defined as the harmonic mean 
of precision and recall. Receiver-operating characteristics were 
calculated from the softmax function of absence of a feature. 
The model was trained, evaluated, and visualized by C.E.v.S., 
an information technology engineer (7 years of experience in 
data analysis and visualization).

Results

OAI Data Set and Clinical Data Set
A total of 15 364 hip joints observed on 7738 weight-bearing 
anterior-posterior pelvic radiographs in 4368 participants in 
the OAI were included (mean age, 61 years 6 9 [standard de-
viation]; 1830 men [41.9%] and 2538 women [58.1%]; mean 
body mass index, 28.3 kg/m2 6 4.6). In the external test set, 
participants were mean age 53 years 6 17; 36 participants were 
women (64.3%). Table 1 provides an overview of participant 
characteristics. Table 2 summarizes the radiographic osteoarthri-
tis feature grades and their frequencies within the two data sets.

Interreader reliability between the two readers of the train-
ing, validation, and test sets from the OAI was assessed for 
each feature and each point. Baseline visit and follow-up visit 

as a shared convolutional features extractor implemented in 
PyTorch (open source) 0.41 and fastai 1.03 (open source) us-
ing a multitask loss (Fig 2) (14–18). Code can be found online 
(https://github.com/Rad-190925/Code).

Gradient-weighted class activation maps after the last convo-
lutional layer depicted network decision-making processes (19).

Table 1: Demographic Characteristics from the Data Sets from the Osteoarthritis Initiative and the External Test Set

Participant Characteristics Training Set (n = 3494) Validation Set (n = 437) Test Set (n = 437) External Test Set (n = 56)
Baseline age (y) 60.9 6 9.2 61.3 6 9.3 61.6 6 8.9 52.7 6 17.0
Sex
  Women 2036 (58.3) 246 (56.3) 255 (58.4) 36 (64)
  Men 1458 (41.7) 191 (43.7) 182 (41.7) 20 (36)
Baseline body mass index (kg/m2) 28.3 6 4.6 28.3 6 4.6 28.1 6 4.4 27.1 6 5.1
No. of radiographs 6190 773 775 56
No. of hip readings 12 296 1530 1538 104
KL scores
  0 8893 (72.3) 1068 (69.8) 1072 (69.7) 63 (60.6)
  1 1598 (13.0) 220 (14.4) 214 (13.9) 14 (13.5)
  2 925 (7.5) 144 (9.4) 164 (10.7) 12 (11.5)
  3 649 (5.3) 74 (4.8) 60 (3.9) 12 (11.5)
  4 231 (1.9) 24 (1.6) 28 (1.8) 3 (2.9)

Note.—Mean data are 6 standard deviation; data in parentheses are percentages. Training, validation, and test sets were split 80%, 10%, 10%, 
respectively. External test set consisted of clinical routine weight-bearing anterior-posterior pelvic radiographs. KL = Kellgren-Lawrence.

Table 2: Frequencies of Osteoarthritis Feature Grades for 
Hip Joints from the Osteoarthritis Initiative and External 
Test Set

Joints
OAI Data Set  
(n = 15 364)

External Test Set  
(n = 104)

Femoral osteophytes 
  No/no 13 199 (85.9) 75 (72.1)
  Mild/doubtful 1727 (11.2) 19 (18.3)
  Moderate/definite 395 (2.6) 8 (7.7)
  Severe/large 43 (0.3) 2 (1.9)
Acetabular osteophytes 
  No/no 12 066 (78.5) 55 (52.9)
  Mild/doubtful 2409 (15.7) 27 (26.0)
  Moderate/definite 806 (5.2) 20 (19.2)
  Severe/large 83 (0.5) 2 (1.9)
Joint-space narrowing
  No/no 13 065 (85.0) 77 (74.0)
  Mild/doubtful 1233 (8.0) 12 (11.5)
  Moderate/definite 920 (6.0) 12 (11.5)
  Large/severe 146 (1.0) 3 (2.9)
Subchondral sclerosis
  Absent 14 647 (95.3) 100 (96.2)
  Present 717 (4.7) 4 (3.8)
Subchondral cysts 
  Absent 15 018 (97.7) 97 (93.3)
  Present 346 (2.3) 7 (6.7)

Note.—Values are expressed as number of hip joints, with 
percentage in parentheses. External test set consisted of clinical 
routine weight-bearing anterior-posterior pelvic radiographs. 
OAI = Osteoarthritis Initiative.
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and 0.73 (95% CI: 0.69, 0.78) for JSN, 0.56 (95% CI: 0.45, 
0.65) and 0.53 for AOs (95% CI: 0.42, 0.63), 0.47 (95% CI: 
0.32, 0.61) and 0.48 (95% CI: 0.34, 0.62) for subchondral 
cyst, and 0.56 (95% CI: 0.47, 0.66) and 0.54 (95% CI: 0.45, 
0.64) for subchondral sclerosis. Agreement on presence 
or absence of each feature was as follows: for FOs, 87.0% 

radiographs were read together and in known chronologic 
order. Thirty-five percent (2706 of 7738) of the radiographs 
were adjudicated by the third reader. For baseline and fol-
low-up, respectively, the recorded linearly weighted Cohen k 
values were as follows: 0.77 (95% CI: 0.74, 0.82) and 0.73 
(95% CI: 0.69, 0.78) for FOs, 0.71 (95% CI: 0.67, 0.77) 

Figure 3:  Performance of the deep learning model on the test set from the Osteoarthritis Initiative. A, Receiver operating characteristic curves for the detection of radio-
graphic osteoarthritis features: femoral osteophytes (FOS), acetabular osteophytes (AOS), joint-space narrowing (JSN), subchondral cysts (SUBCYST), and subchondral 
sclerosis (SUBSCL). FOS showed the highest area under the receiver operating characteristic curve (0.94). B, Confusion matrix of the deep learning model for grading 
FOS. The overall accuracy was 86.7% (1333 of 1538), with a linearly weighted Cohen k value of 0.62 (95% confidence interval: 0.49, 0.76). Most grading discrepan-
cies occurred between two neighboring grades, whereas only 0.3% (four of 1538) of the cases demonstrated discrepancies between nonneighboring grades.

Table 3: Overview of Deep Learning Model Performance Results on Test Set from Osteoarthritis Initiative

Evaluated Feature Precision (%) F1 Score (%) No. of Joints Sensitivity (%) Specificity (%) Weighted k
Femoral osteophytes 88.7 87.4 1538 74.6 91.1 0.62
  No 95.3 93.2 1306
  Mild 46.4 54.0 180
  Moderate 68 57.5 46
  Severe 80 72.7 6
Acetabular osteophytes 75.8 72.1 1538 69.9 76.4 0.48
  No 88.8 82.2 1166
  Mild 33.0 40.2 267
  Moderate 38.6 42.7 92
  Severe 50.0 31.6 13
Joint-space narrowing 82.6 82.1 1538 60.7 90.8 0.69
  No 92.2 91.5 1286
  Mild 28.4 28.2 164
  Moderate 34 39.3 68
  Severe 79 64.7 20
Subchondral sclerosis 95.7 95.7 1538 47.7 97.9 0.47
  Absence 97.7 97.8 1473
  Presence 50 48.8 65
Subchondral cysts 97.3 97.3 1538 48.1 99.4 0.57
  Absence 98.1 98.8 1484
  Presence 74 58.4 54

Note.—Precision is defined as true-positive findings divided by the sum of false-positive and true-positive findings. Recall is defined as true-positive 
findings divided by the sum of true-positive and false-negative findings. F1 score is defined as the harmonic mean of precision and recall.
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(1190 of 1249) for absent, 46.4% (116 of 250) for mild, 68% 
(23 of 34) for moderate, and 80% (four of five) for severe. 
For AOs, the precision for each grade was 88.8% (891 of 
1003) for absent, 33.0% (117 of 415) for mild, 38.6% (44 
of 114) for moderate, and 50% (three of six) for severe. For 
JSN, the precision for each grade was 92.2% (1168 of 1267) 
for absent, 28.4% (46 of 162) for mild, 34% (32 of 95) 
for moderate, and 79% (11 of 14) for severe. Most grading 
discrepancies occurred between two neighboring grades, as 
demonstrated on Figure 3, B. Grading discrepancies between 
nonneighboring grades occurred in 0.2% (four of 1538) of 
the joints for FOs, 3.0% (47 of 1538) for AOs, and 2.5% (39 
of 1538) for JSN.

Overall, grading FOs showed the highest reliability, with a 
linearly weighted k value of 0.62 (95% CI: 0.49, 0.76). Grading 
of AOs and JSN showed a reliability of 0.52 (95% CI: 0.34, 
0.62) and 0.64 (95% CI: 0.57, 0.80), respectively. Grading sub-
chondral sclerosis had the lowest reliability: 0.47 (95% CI: 0.36, 
0.58). Grading subchondral cysts showed a reliability of 0.57 
(95% CI: 0.45, 0.70). Overall, the reliability of the deep learn-
ing model was moderate to good. An overview of the results with 
precision, recall, F1 score, k values, and sensitivity and specificity 
are shown in Table 3.

Deep Learning Model Performance on External Test Set 
Consisting of Clinical Routine Radiographs and Comparison 
with Radiologists
Applying the RetinaNet to detect hip joints for hip joint localiza-
tion accurately placed bounding boxes in all joints (n = 104). 
As demonstrated by the receiver-operating characteristics in 
Figure 4, A, the model had an AUC of 0.8 or greater for all 
assessing the presence of absence of each evaluated feature.

(13 372 of 15 364; 78.0% [11 992 of 15 364] for specific 
grade); for AOs, 77.3% (11 873 of 15 364; 67.4% [10 355 
of 15 364] for specific grade); for JSN, 84.8% (13 025 of 
15 364; 77.8% [11 955 of 15 364] for specific grade); for 
subchondral sclerosis, 82.2% (12 634 of 15 364); and for 
subchondral cyst, 92.8% (14 252 of 15 364).

Deep Learning Model Performance on OAI Test Set
After training on 7002 bounding boxes on 3544 radiographs, 
the RetinaNet for hip joint localization accurately placed bound-
ing boxes in 100% of validation joints (444 of 444 radiographs 
and 877 of 877 bounding boxes) and 100% of test joints (451 
of 451 radiographs and 897 of 897 bounding boxes), with an 
excellent intersection over union of 0.91 6 0.07 and 0.91 6 
0.06 for the validation and test sets, respectively. The RetinaNet 
model was then applied on an additional 3962 radiographs 
in 7861 hips; it correctly placed the bounding boxes for all cases.

With use of the DenseNet to assess overall presence or  
absence of each feature, the overall accuracy and area under 
the receiver operating characteristic curve (AUC) were as  
follows, respectively: 88.9% (1368 of 1538) and 0.94 (95% CI: 
0.92, 0.96) for FOs, 80.1% (1232 of 1538) and 0.86 (95% CI: 
0.83, 0.89) for AOs, 86.1% (1324 of 1538) and 0.91 (95% 
CI: 0.89, 0.94) for JSN, 95.8% (1473 of 1538) and 0.90 
(95% CI: 0.85, 0.95) for subchondral sclerosis, and 97.6% 
(1501 of 1538) and 0.93 (95% CI: 0.88, 0.98) for subchon-
dral cysts. The receiver-operating characteristic curves for all 
features are shown on Figure 3, A.

The overall accuracy achieved for grading FOs, AOs, and 
JSN on a scale with four severity grades was 86.7% (1333 of 
1538), 69.9% (1075 of 1538), and 81.7% (1257 of 1538), 
respectively. For FOs, the precision for each grade was 95.3% 

Figure 4:  Performance of the deep learning model on the external test set consisting of clinical routine radiographs compared with radiologists. A, Receiver-operating 
characteristic curves for the detection of radiographic osteoarthritis features: femoral osteophytes (FOs), acetabular osteophytes (AOs), joint-space narrowing (JSN), 
subchondral cysts (SUBCYST), and subchondral sclerosis (SUBSCL). JSN showed the highest area under the receiver operating characteristic curve (0.98). B, Confusion 
matrix of the deep learning model for grading JSN. The overall accuracy was 80.8% (84 of 104), and the interreader reliability with the ground truth as assessed by two 
radiology readers was good, with a linearly weighted Cohen k of 0.74 (95% confidence interval: 0.62, 0.85).
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Model Interpretation and Visualization
Gradient-weighted class activation maps after the last convolu-
tional layer of the model were overlaid with the radiograph to 
show the relevance of specific areas for the model classification. 
As demonstrated in Figure 5, the model focused on the re-
gion of the osteoarthritis abnormality for its assessment. These 
findings indicate that the model learned to assess the correct 
features instead of learning image correlations. Figure 6, A, B, 
shows examples of grading discrepancies that included radio-
graphs of poor image quality from the OAI data set, possibly 
causing incorrect classifications. Figure 6, C, D, shows one of 
the two joints with grading discrepancies between nonneigh-
boring grades of the external test set.

Discussion
A multitask deep learning model that reliably grades sever-
ity of hip osteoarthritis features might be desirable, par-
ticularly for large epidemiologic studies that require detailed 
structural assessment by expert radiologists. Therefore, we de-
veloped and validated a multitask deep learning model to 
automatically assess femoral osteophytes (FOs), acetabular 
osteophytes (AOs), joint-space narrowing (JSN), subchondral 
sclerosis, and subchondral cyst. The accuracy of the model for 

The accuracy and AUC were 82.7% (86 of 104) and 0.94 
(95% CI: 0.89, 0.98) for grading FOs, 65.4% (68 of 104) and 
0.8 (95% CI: 0.72, 0.88) for AOs,  80.8% (84 of 104) and 0.98 
(95% CI: 0.96, 1) for JSN, 88.5% (92 of 104) and 0.86 (95% 
CI: 0.70, 1) for subchondral sclerosis, and 91.3% (95 of 104) and 
0.92 (95% CI: 0.86, 0.98) for subchondral cysts.

The interreader reliability between deep learning model 
assessment and ground truth as measured by linearly weighted 
Cohen k was 0.64 (95% CI: 0.49, 0.79) for FOs, 0.53 (95% CI: 
0.39, 0.66) for AOs, 0.74 (95% CI: 0.63, 0.85) for JSN, 0.29 
(95% CI: 0.02, 0.57) for subchondral sclerosis, and 0.53 (95% 
CI: 0.27, 0.79) for subchondral cysts.

To compare, the agreement between reader 1 and reader 
2 was 68.3% (71 of 104) for FOs, 55.8% (58 of 104) for AOs, 
71.1% (74 of 104) for JSN, 51.9% (54 of 104) for subchondral 
sclerosis, and 96.2% (100 of 104) for subchondral cysts.

The interreader reliability between the two readers as mea-
sured by linearly weighted Cohen k was 0.58 (95% CI: 0.45, 
0.71) for FOs, 0.45 (95% CI: 0.33, 0.58) for AOs, 0.62 (95% 
CI: 0.49, 0.75) for JSN, 0.07 (95% CI: 0.0, 0.14) for subchon-
dral sclerosis, and 0.76 (95% CI: 0.53, 0.98) for subchondral 
cysts. Table 4 gives an overview of these results.

An example of the grading for JSN is given on Figure 4, B.

Table 4: Overview of Deep Learning Model Performance Results on External Test Set

Evaluated Feature Precision (%) F1 Score (%) No. of Joints Sensitivity (%) Specificity (%) Weighted k
Femoral osteophytes 83.3 82.6 104 83 91 0.64
  No 93 92 75
  Mild 60 62 19
  Moderate 60 67 8
  Severe 0 0 2
Acetabular osteophytes 65.8 65.1 104 76 76 0.53
  No 78 77 55
  Mild 46 52 27
  Moderate 67 57 20
  Severe 0 0 2
Joint-space narrowing 83.9 81.9 104 89 87 0.74
  No 96 91 77
  Mild 33 37 12
  Moderate 64 69 12
  Severe 60 75 3
Subchondral sclerosis 95.9 91.4 104 75 89 0.29
  Absence 99 94 100
  Presence 21 33 4
Subchondral cysts 91.9 91.6 104 43 95 0.53
  Absence 96 96 97
  Presence 38 40 7
KL grades 65.7 63.0 104 0.67
  0 80 80 45
  1 72 63 32
  2 33 37 12
  3 38 30 12
  4 27 43 2

Note.—External test set consisted of clinical routine weight-bearing anterior-posterior pelvic radiographs. Precision is defined as true-posi-
tive findings divided by the sum of false-positive and true-positive findings. Recall is defined as true-positive findings divided by the sum of 
true-positive and false-negative findings. F1 score is defined as the harmonic mean of precision and recall. KL = Kellgren-Lawrence.
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leading to higher sensitivity and specificity for grading knee 
osteoarthritis. However, Kellgren-Lawrence scores represent 
a condensed grading and do not accurately reflect the vari-
ety of imaging features that are associated with osteoarthri-
tis (22). Further studies investigated the potential of deep 
learning models to assess more than one feature. One of 
these studies evaluated the potential of an AlexNet-based 
model as a convolutional feature extractor to detect abnor-
malities, anterior cruciate ligament tears, and meniscal tears 
at MRI without grading severity (23).

We used a multitask deep learning approach to grade the 
severity of radiographic hip osteoarthritis features with hard 
parameter sharing on the basis of DenseNet to achieve grading 
reliabilities similar to and succeeding those previously reported 
for Kellgren-Lawrence scores.

Our deep learning model showed varying grading reli-
abilities depending on the evaluated radiographic feature. 
We recorded higher reliabilities for grading of FOs and 
JSN and lower reliabilities for the assessment of AOs, 

assessing these five features varied depending on the evaluated 
feature and was 86.7% for FOs, 69.9% for AOs, 81.7% for 
JSN, 95.8% for subchondral sclerosis, 97.6% for subchondral 
cyst on an internal test set and 82.7% for FOs, 65.4% for AOs, 
80.8% for JSN, 88.5% for subchondral sclerosis, and 91.3% 
for subchondral cyst on the external test set.

Previous studies investigated the potential of deep learn-
ing to assess osteoarthritis in radiographs. Xue et al (6) used 
a VGG-16 model for binary hip osteoarthritis classification 
of pelvic radiographs without preprocessing into normal or 
abnormal and achieved high diagnostic accuracy. Two other 
studies used approaches to assess the severity of knee os-
teoarthritis with Kellgren-Lawrence scores on radiographs 
from the Multicenter Osteoarthritis Study and the OAI: 
Tiulpin et al (9) used a Siamese network architecture to 
evaluate the medial and lateral sides of the knee for a final 
Kellgren-Lawrence grade classification achieving moderate 
grading reliability; and Norman et al (8) used DenseNets 
and additionally capitalized on demographic information, 

Figure 5:  Heat maps for osteoarthritis feature assessment. A, C, Radiographs and, B, D, gradient-weighted class 
activation maps with activation after the last convolutional layer of the DenseNet overlaid with the radiograph serving as 
heat maps (red indicating higher activation, blue indicating lower activation). The heat maps show that the neural net-
work focused on the region of the abnormality for its assessment. A, B, Moderate joint-space narrowing (arrows). The heat 
map in B shows that the whole joint-space region was considered in determining narrowing of the joint space (arrows). C, D, 
Acetabular subchondral cyst (arrow). The heat map shows that the neural network focused its attention on this area.
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Our study had limitations. First, ground truth was obtained 
from radiology readings. Although expert radiology readings 
are the best standard of reference for many applications, they 
might contain variability. Second, the deep learning model 
used only a single frontal-view pelvic radiograph for its assess-
ment, even though in clinical practice additional views, such 
as dedicated hip radiographs, are acquired for osteoarthritis 
evaluation. Third, the agreement for mild and moderate JSN 
was low, even though this is the defining feature to differentiate 
between Kellgren-Lawrence grades 2 and 3. Fourth, the model 
did not assess other underlying abnormalities that are relevant 
to osteoarthritis grading, such as avascular necrosis, protru-
sion acetabuli, and inflammatory arthritis. Finally, low-quality 
studies were excluded, which possibly affected the diagnostic 
performance of the model.

In conclusion, our study demonstrated the feasibility of a 
multitask deep learning approach to grading hip osteoarthritis 
features on radiographs and showed that its performance was 
similar to that of expert radiologists. This model may be useful 

subchondral cyst, and subchondral sclerosis in both our 
deep learning model and our radiology readings. Similarly, 
in previous clinical studies, interreader reliability was lower 
for the radiographic assessment of subchondral sclerosis and 
AOs and interreader reliabilities were higher for JSN and 
FOs (24,25). Overall, these findings indicated that some 
osteoarthritis imaging features are likely more challenging 
to evaluate for both deep learning models and radiologists. 
However, the lower performance of the deep learning model 
could potentially be related to less reliable radiology read-
ings for specific features because these served as ground 
truth. Artificial intelligence may be particularly useful in 
the context of large epidemiologic studies requiring detailed 
structural assessment by expert radiologists’ readings. Fur-
ther studies are warranted to advance current deep learn-
ing models and to investigate the effect of deep learning to 
aid diagnostics in radiology. However, some studies already 
show potential benefits of deep learning–aided diagnostics 
for some applications (23,26).

Figure 6:  Examples of grading discrepancies. A, C, Radiographs and, B, D, gradient-weighted class activation maps 
with activation after the last convolutional layer serving as heat maps (red indicating higher activation, blue indicating lower 
activation). A, B, Radiographs with poor image quality from the Osteoarthritis Initiative that possibly led to incorrect 
classification of this radiograph (ground truth: moderate femoral osteophyte [arrow]; model assessment: no osteophyte). 
C, D, One of two cases of grading discrepancies between nonneighboring grades from the external test set that were 
graded as mild femoral osteophyte by both readers but as severe femoral osteophyte by the deep learning model. 
Arrow points to a hyperdense area that led the model to come to this decision as shown by the heat map.
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in large epidemiologic studies for structural assessment of hip 
osteoarthritis features.
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