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Variable Impedance Control
of Powered Knee Prostheses
Using Human-Inspired
Algebraic Curves
Achieving coordinated motion between transfemoral amputee patients and powered pros-
thetic joints is of paramount importance for powered prostheses control. In this article,
we propose employing an algebraic curve representation of nominal human walking data
for a powered knee prosthesis controller design. The proposed algebraic curve represen-
tation encodes the desired holonomic relationship between the human and the powered
prosthetic joints with no dependence on joint velocities. For an impedance model of the
knee joint motion driven by the hip angle signal, we create a continuum of equilibria
along the gait cycle using a variable impedance scheme. Our variable impedance-based
control law, which is designed using the parameter-dependent Lyapunov function frame-
work, realizes the coordinated hip-knee motion with a family of spring and damper
behaviors that continuously change along the human-inspired algebraic curve. In order
to accommodate variability in the user’s hip motion, we propose a computationally effi-
cient radial projection-based algorithm onto the human-inspired algebraic curve in the
hip-knee plane. [DOI: 10.1115/1.4043002]

1 Introduction

Coordinating the motion of transfemoral amputee patients and
powered prosthetic joints is of vital importance for powered pros-
theses control. In order to achieve such coordinated motion pat-
terns, the two important issues of (i) representing the human
walking gait and (ii) enforcing the desired walking gait via a
proper control scheme need to be addressed.

In the rehabilitation robotics literature, there are two classes of
human gait cycle representation. The first class, proposed in
Refs. [1]–[6], divides the gait cycle into several periods, each with
their own distinct controllers. In order to enforce the desired gait
motion patterns, switched impedance schemes are employed in a
way that the closed-loop dynamics are forced to behave with a
series of finite states consisting of passive spring and damper
behaviors [1,6]. Due to the passive nature of the closed-loop
dynamics, the advantage of such impedance-based schemes is the
inherent stability of the interaction between the powered prosthe-
sis and the amputee in each state of the finite state machine.

Despite the advantages of the proposed switched impedance-
based strategies in Refs. [1]–[6], one shortcoming of such
schemes is that they rely on nonunified representations of walking
gait. Consequently, there are dozens of control parameters and
transition rules that must be tuned across users and activities [5].
In order to automate the control parameter tuning procedure, tech-
niques such as fuzzy logic-based expert systems [7] and adaptive
dynamic programming [8] have been proposed in the literature. A
second shortcoming stems from the fact that desynchronizing per-
turbations increase patient’s risk of falling if the nonunified
impedance-based controller switches to the wrong state with the
wrong control scheme. Indeed, switched impedance-based control
techniques that create isolated equilibria for the powered pros-
thetic joint dynamics rely on being able to estimate the precise
time for switching from one finite state to another. A potential

remedy for the need to determine switching times is based on cre-
ating a continuum of equilibria along the normal human walking
gait and continuously evolving on the continuum, instead of hav-
ing a series of isolated equilibria.

In contrast to the first class, there is a second class of wearable
robot controllers that employ unified representations of the entire
human gait cycle [9–16]. Unified gait controllers do not suffer the
aforementioned shortcomings of the nonunified gait control
schemes. In Ref. [9], the authors employed the center of pressure
to unify the stance phase of the gait. Assuming a rocker foot
geometry, the center of pressure-based gait in Ref. [9] is a holo-
nomic representation of the human stance period. A holonomic
gait, which separately unifies the stance phase and swing phase
of walking, was proposed in Ref. [17]. The gait in Ref. [17],
however, uses the patient’s Cartesian coordinates as the phase var-
iables and thus is difficult to measure with onboard sensors. In
order to remove the need for measuring the patient’s Cartesian
coordinates, the authors in Ref. [16] have proposed two different
representations using the hip angle measurement. The first one is
a piecewise holonomic representation of the human walking gait
cycle.

The second representation in Ref. [16], which unifies the stance
and swing phases of walking, is a velocity-based (nonholonomic)
gait representation using the thigh phase portrait. This second rep-
resentation method was later experimentally verified in Ref. [18]
via a single sensor. As another unified walking gait cycle repre-
sentation, the authors in Refs. [12] and [13] proposed a thigh
angle integral-based representation of walking. However, the inte-
gral term in Refs. [12] and [13] needs to be reset at the beginning
of every gait cycle to prevent accumulation of drift due to varia-
tion in thigh kinematics. Furthermore, the integral-based gait in
Refs. [12] and [13] cannot be used for patient’s nonrhythmic
motion control. In order to automate the phase-based control
parameter tuning in real-time, the authors in Ref. [19] proposed
using an extremum seeking control, which is run in parallel to the
phase-based control scheme in Refs. [12] and [13].

Motivated by the fact that healthy hip-knee angular trajectories
create closed and nonintersecting orbits during walking (see
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Fig. 1), we employed algebraic curves and the 3 L algorithm from
the pattern recognition literature [20] to generate a unified holo-
nomic representation of the human gait cycle in our preliminary
work [21]. In particular, our human gait cycle representation,
which encodes the nominal coordination between the hip and
knee angles during normal level walking, is the zero set of bivari-
ate implicit polynomials (IPs). We remark that our proposed alge-
braic curve fitting in Ref. [21] is closely related to the recent work
in Ref. [22], where the authors use an elliptical path in the hip-
knee plane to prescribe a normal walking gait for a lower limb
exoskeleton during the swing phase. Our algebraic curve represen-
tation, however, unifies the entire gait cycle, including both the
stance phase and the swing phase. Furthermore, unlike the ellipti-
cal path in Ref. [22], which is an open curve converging to infin-
ity, our proposed algebraic curves are closed and bounded, which
correspond to periodic human gait cycles. The closed and
bounded curve properties cannot be achieved with standard one-
dimensional polynomial fitting methods, as the one in Ref. [22].
In an earlier work [23], we employed a symbolic algebraic tool,
which is based on computing the resultant of polynomials,
for removing phase variables from autonomous bipedal robot
parametric gaits. However, this approach, similar to Ref. [22],
cannot be practically used for generating closed algebraic curves
from human walking data due to large degrees of generated
polynomials.

Based on our preliminary work in Ref. [21], we propose
employing the algebraic curve representation of nominal walking
data for powered knee prosthesis controller design in this article.
In order to take into account the variability that is observed during
walking, we improve our earlier human-inspired algebraic curve
generation algorithm in Ref. [21]. In particular, in order to take
into account the fact that hip-knee walking profiles vary during
walking, we employ variable geometric contraction and dilation
factors, in contrast to constant values in our preliminary work.
The variable contraction/dilation factor ensures that the level-sets
of the generated implicit polynomials have sufficient distance
from each other in a way that step-by-step variability does not sig-
nificantly perturb the algebraic distance from the normal walking
data. Having obtained a unified holonomic representation of walk-
ing data via algebraic curves, in the next step, we consider an
impedance model of the knee joint motion driven by the hip angle
signal. We then create a continuum of equilibria along the human-
inspired algebraic curve using a variable impedance scheme. Our
variable impedance-based control law, which is designed using
the parameter-dependent Lyapunov function framework, realizes
the coordinated hip-knee motion with a family of spring and
damper behaviors that continuously change along the human-
inspired algebraic curve. In order to accommodate the variability

in user’s hip motion, we propose a radial projection-based algo-
rithm onto the human-inspired algebraic curve in the hip-knee
plane. The algebraic curve representation makes the radial projec-
tion algorithm computationally efficient, with guaranteed conver-
gence in a finite number of steps.

The rest of this paper is organized as follows: first, we briefly
review preliminaries from algebraic curves and present the 3 L
algorithm for fitting such curves to nominal hip-knee walking data
in Sec. 2. Next, in Sec. 3, for an impedance model of the knee
joint motion driven by the hip angle signal, we present our control
problem formulation and demonstrate that the knee joint closed-
loop dynamics take the form of a linear parameter varying (LPV)
dynamical system, which is subject to disturbances that change
continuously along the human-inspired algebraic curve and are
dependent on the hip joint motion speed. Thereafter, in Sec. 4, we
propose a parameter-dependent Lyapunov function approach for
designing variable stiffness and damping gains along the human-
inspired algebraic curve. Additionally, we present a radial
projection-based algorithm in order to address variability in the
user’s hip motion and show the simulation results. In Sec. 5, we
present our numerical results. Finally, we conclude this paper
with final remarks and outline of possible future research direc-
tions in Sec. 6.

Notation: Given two vectors (matrices) a and b, we denote by
[a; b] the vector (matrix) ½a>; b>�> where ð�Þ> is the transpose
operator. Given a square symmetric matrix X, we denote its maxi-
mum (minimum) eigenvalue by kmaxðXÞ (kminðXÞ).

2 3 L Algorithm for Fitting Human Data to Algebraic

Curves

In this section, we review some preliminaries on algebraic
curves and use the 3 L algorithm for fitting closed algebraic curves
to human data. The 3 L algorithm presented in this section is an
extension of the 3 L algorithm in our preliminary work in
Ref. [21]. A comprehensive treatment of algebraic curves and
their properties may be found in Refs. [24] and [25].

2.1 Algebraic Curves. Algebraic curves are defined by
means of bivariate IPs. Given a finite integer n, an IP

hðqH; qKÞ ¼
X

ij

aijq
i
Hqj

K; 0 � iþ j � n (1)

is a function of qH; qK, where aij are real numbers. The degree of
polynomial hðqH; qKÞ in Eq. (1) is the maximal value of iþ j for

Fig. 1 (a) Nominal human hip-knee path taken from Winter’s normal cadence walking data [26],
subdivided into four functional modes of stance flexion/extension, preswing, swing flexion, and
swing extension and (b) the body diagram of the walking sagittal plane: qH and qK represent the
hip and knee angles, respectively
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which aij 6¼ 0. Here, we assume that IP h is of degree n. Every IP
of degree n has ðnþ 1Þðnþ 2Þ=2 coefficients.

Given an IP hðqH; qKÞ and a point ðqH0
; qK0
Þ, value hðqH0

; qK0
Þ

is called the algebraic distance of the point ðqH0
; qK0
Þ to the zero

set of hðqH0
; qK0
Þ. Moreover, the zero set of IP hðqH; qKÞ given by

Eq. (1) is defined to be

ZðhÞ :¼ fðqH; qKÞ 2 R2jhðqH; qKÞ ¼ 0g (2)

A real algebraic curve is the zero set of a nonzero real bivariate
polynomial h. The degree of an algebraic curve is defined to
be the degree of its associated bivariate implicit polynomial.
Algebraic curves of degree 1, 2, 3, 4, …, are called lines, conics,
cubics, quartics, � � �, respectively.

Since we are interested in studying periodic human walking
gait profiles, it is desirable to have closed and bounded algebraic
curves. The following well-known lemma provides the necessary
condition for having a closed and bounded algebraic curve.

LEMMA 1. (see Ref. [25]) An algebraic curve is a closed and
bounded plane curve only if it is of even degree.

2.2 3 L Algorithm for Fitting Algebraic Curves to Human
Walking Data. In this section, we fit algebraic curves to the data
points obtained from a healthy gait according to Winter’s normal
cadence walking data [26]. Our fitting algorithm is taken from the
pattern recognition literature and is known as the 3 L algorithm
[20]. The 3 L algorithm presented in this section is a generaliza-
tion of the algorithm in our preliminary work in Ref. [21].

2.2.1 Fitting Algebraic Curves to Human Datasets as a
Quadratic Optimization Problem. Consider an ordered, closed set,
H0, of N0 planar data points ðqHl

; qKl
Þ. In the set H0, if ðqHl

; qKl
Þ

corresponds to time instant tl and ðqHlþ1
; qKlþ1

Þ corresponds to time
instant tlþ1, then tl < tlþ1. Here, the set H0 represents the path in
the hip-knee plane, which is taken from the Winter’s normal
cadence walking data [26] (see Fig. 1). The set of ordered data
points ðqHl

; qKl
Þ; 1 � l � N0, is the samples of the hip and knee

normal cadence walking trajectories corresponding to increasing
time instants during a given gait cycle. Since the walking gait pro-
file is periodic, we have ðqH1

; qK1
Þ ¼ ðqHN0

; qKN0
Þ. The geometric

center or centroid of the dataset H0 is defined to be the point (see
also Fig. 1)

pc ¼ qHC; qKC½ � :¼

XN0�1

l¼1

qHl

N0 � 1
;

XN0�1

l¼1

qKl

N0 � 1

2
664

3
775

(3)

We would like to find an implicit bivariate polynomial hðqH; qKÞ
of even degree, i.e., n ¼ 2p for some positive integer p, such that
its zero set ZðhÞ approximates the set of human hip-knee data
pointsH0. This approximation problem is equivalent to minimiza-
tion of the error functional [20]

E ¼
X

ðqH ;qKÞ2H0

h2ðqH; qKÞ (4)

It is possible to describe the error functional E in Eq. (4) as
a quadratic function of the coefficients of IP hðqH; qKÞ. In order
to do so, we rewrite IP hðqH; qKÞ ¼

P
ij aijq

i
Hqj

K , where
0 � iþ j � n, using the inner-product

hðqH; qKÞ ¼ m>ðqH; qKÞa (5)

where

m>ðqH; qKÞ :¼½1; qH; qK ; q2
H; qHqK ; q2

K ; � � � ; qn
H;

q
ðn�1Þ
H qK ; q

ðn�2Þ
H q2

K ; � � � ; qHq
ðn�1Þ
K ; qn

K � (6)

is a function of the two variables qH and qK . Moreover

a :¼½a00; a10; a01; a20; a11; a02; …

an0; aðn�1Þ1; aðn�2Þ2; …; a1ðn�1Þ; a0n� (7)

is the vector of IP coefficients with

n0 :¼ ðnþ 1Þðnþ 2Þ=2 (8)

components. Next, using the data points ðqHi
; qKi
Þ 2 H0;

1 � i � N0, we define the following matrix:

MH0
:¼ ½m>1 ; � � � ; m>N0

� (9)

where the row vectors m>i are defined as m>i :¼ m>ðqHi
; qKi
Þ. It is

shown in Ref. [20] that the functional E given by (4) is equal to

E ¼ a>M>H0
MH0

a (10)

Therefore, we would like to find the coefficient vector a such that
the error functional E given by Eq. (10) is minimized. The direct
minimization of E, which is known as the 1 L approach, often fails
to generate an acceptable IP fit to a set of data points due to
numerical instability problems and/or lack of physically meaning-
ful solutions (see Refs. [20] and [27] for a detailed discussion).

2.2.2 Human Data 3L Fitting Algorithm. Using the 3 L fitting
algorithm developed in Ref. [20], we address the aforemen-
tioned numerical shortcomings of the 1 L minimization by intro-
ducing two additional datasets, which can be generated from the
original human walking dataset H0. Being able to vary the two
fictitious datasets on either side of the original normal cadence
walking dataset H0, optimal fitting accuracies of algebraic
curves to human walking data can be achieved. Furthermore, it
can be shown that under suitable conditions, the algebraic
curves generated by the 3 L fitting algorithm are nondegenerate
[20,28,29].

Following the experimental results for pose estimation in
computer graphics literature [20,25], we chose quartic algebraic
curves, i.e., n¼ 4, to be fitted to the hip-knee normal walking
data. However, there is no limitation on the degree of the alge-
braic curve that can be fitted to human walking datasets. The 3 L
algorithm for fitting algebraic curves to human hip-knee walking
data can be described in the following three steps.

2.2.2.1 Step 1: Generation of two fictitious datasets. Given
that the dataset H0, representing the nominal human walking gait
in the hip-knee plane [26], introduces two fictitious datasets close
toH0. The first set, which is denoted by Hþ and is located outside
the datasetH0, has Nþ points and corresponds to the algebraic dis-
tance c (see Sec. 2.1 for the definition of algebraic distance),
where c is a design parameter to be chosen. The second fictitious
dataset, which is denoted by H� and is located inside the dataset
H0, has N� points and corresponds to the algebraic distance—c.
In this article, we have chosen the design parameter to be c¼ 1.

In order to generate the two fictitious datasets Hþ and H� in
this article, we translated the centroid or the geometric center of
the dataset H0 given by Eq. (3) to the origin of the qH � qK plane.
In particular, we translated the original dataset to obtain

Ht
0 ¼

�
qH

qK

� �
� qHC

qKC

� �
:

qH

qK

� �
2 H0

�
(11)

where ½qHC; qKC�> is the centroid of the human datasetH0.
In our preliminary work in Ref. [21], we scaled the translated

dataset Ht
0 by constant scaling factors aþ > 1 and 0 < a� < 1 to

generate Hþ and H�, respectively. The multiplication of the
translated dataset Ht

0 by aþ and a� corresponds to geometric con-
traction and geometric dilation, respectively. For the presented
results in Ref. [21], we chose aþ ¼ 1:02 and a� ¼ 0:98.
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In this article, we employ variable geometric contraction and
dilation factors in order to take into account the fact that hip-knee
walking profiles vary during walking. The variable contraction/
dilation factor ensures that the level-sets of the generated IP h?ð�Þ
have sufficient distance from each other in a way that step-by-step
variability does not significantly perturb the algebraic distance
from the zero level-set of h?ð�Þ. In order to take into account the
aforementioned variability, we have chosen the two radial basis
functions (RBFs)

a6 lð Þ ¼ a6 þ Da16 exp

� l� l1

N

� �2

b2
1

0
B@

1
CA

þ Da26 exp

� l� l2
N

� �2

b2
2

0
B@

1
CA

(12)

as our geometric contraction/dilation factors. In Eq. (12), a6 are
the constant factors used in Ref. [21], the samples l1 and l2 corre-
spond to the walking data at 50% and 75% of the gait cycle, and
Da16 and Da26 enlarge the distance between the two fictitious
datasets withH0.

The end results of the first step are the two datasets

H6 ¼ a6ðlÞ
qHðlÞ
qKðlÞ

� �
� qHC

qCC

� �� �
:

qHðlÞ
qKðlÞ

� �
2 H0

� �
(13)

Remark 1. In steps 2 and 3, we consider Ht
0 and H6 in

Eqs. (11) and (13), respectively, whose geometric centers are
located at the origin of the qH � qK plane. In the final step, the
generated algebraic curve needs to be translated back to the geo-
metric center of human dataset H0.

2.2.2.2 Step 2: Defining the three level-set matrix. Define the
three level-set (3L) matrix

M3L :¼
MH�
MHt

0

MHþ

2
4

3
5 2 <ðNþþN0þN�Þ�n0 (14)

where n0 is the number of coefficients of IP h given by Eq. (8). In
Eq. (14), the matrices MHt

0
, MHþ , and MH� are defined as

MHt
0

:¼
m>ðqt

H1
; qt

K1
Þ

� � �
m>ðqt

HN0
; qt

KN0
Þ

2
64

3
75; MH6

:¼
m>ðq6

H1
; q6

K1
Þ

� � �
m>ðq6

HN6
; q6

KN6
Þ

2
64

3
75 (15)

where the points ðqt
Hl
; qt

Kl
Þ; 1 � l � N0, belong to the dataset

Ht
0 given by Eq. (11). Similarly, the points ðq6

Hl6
; q6

Kl6
Þ;

1 � l6 � N6, belong to the two fictitious datasets in Eq. (13).

2.2.2.3 Step 3: Solving for the unknown implicit polynomials
coefficients. Define the ðNþ þ N0 þ N�Þ component column vec-
tor of algebraic distances

b :¼ ½�c 1N� ; 01N0
; c 1Nþ � (16)

where 1k, for a given integer k, is a column vector of ones belong-
ing to Rk. Consider equation M3La ¼ b, with M3L given by
Eq. (14) and b given by Eq. (16). Computing the pseudo-inverse
solution for the coefficient vector a, we have

a? ¼ ðM>3LM3LÞ�1M>3Lb

The algebraic curve fitted to the human data is the zero set of

h?ðqH; qKÞ ¼ m>ðqH � qHC; qK � qKCÞa? (17)

where m>ð�; �Þ is the function defined by Eq. (6) and pc ¼
½qHC; qKC�> is the centroid of the human dataset H0. The transla-
tion in Eq. (17) corresponds to translation of the geometric center
of the obtained algebraic curve from the origin to the human data-
set centroid, as explained in Remark 1. The human-inspired IP
h?ðqH; qKÞ represents a desired implicit relationship between the
human’s hip angle and the wearable robot knee angle. As the
human’s hip angle qHðtÞ evolves with time, driving h?ðqHðtÞ; qKÞ
to zero via feedback corresponds to coordinating the motion of the
knee with the hip during level walking according to the human
walking closed curve in Fig. 1. The algebraic curve given by IP
h?ðqH; qKÞ represents a holonomic relationship as it only depends
on the joint angles qH and qK , as opposed to the joint angle
velocities.

2.2.3 Discussion of the Obtained Algebraic Curve Fits. Using
the 3 L algorithm with two different types of fictitious datasets,
we obtained two quartic IPs whose zero level sets are depicted in
Fig. 2. Figure 2(a) corresponds to choosing variable geometric
factor functions while Fig. 2(b) corresponds to choosing a con-
stant geometric factor coefficient in step 1 of our algorithm. As it
can be seen from Fig. 2, the shape of the level sets and their values
at different configurations differ from each other in Figs. 2(a)
and 2(b). Moreover, the level sets in Fig. 2(a), which is based on
the improvement over our preliminary work in Ref. [21], are fur-
ther from each other during the stance to swing phase transition.
Furthermore, if the hip-knee configurations are located further
from the nominal Winter’s walking data [30], the level set values
in Fig. 2(a) in comparison with Fig. 2(b) do not grow very large.

Fig. 2 The quartic algebraic curves fitted to Winter’s normal cadence walking data [26]. (a) and (b) correspond to the variable
and constant dilation/contraction geometric factors, respectively. In both figures, the dashed curve represents the Winter’s nor-
mal cadence walking. The level sets of IP h?(qH ;qK ) are labeled with their corresponding algebraic distance in the figure. The
gray band around the zero set of IP h?(qH ;qK ) corresponds to the hip and knee configurations that belong to sublevel set
f(qH ;qK ) : jh?(qH ;qK )j£ c0g, where c0 5 0:5.

101007-4 / Vol. 14, OCTOBER 2019 Transactions of the ASME



The largest deviation of the quartic algebraic curve fits
from Winter’s normal cadence walking data, for both of the fits,
happens during the stance flexion/extension phase at around the
configuration ½0:2677 rad;�0:081 rad�>, where the knee angle
deviates from the nominal value by around 0:04 rad � 2:3 deg for
both the cases. The gray band around the zero set of IP h?ðqH; qKÞ
corresponds to the hip and knee configurations that belong to the
sublevel set fðqH; qKÞ : jh?ðqH; qKÞj � c0g associated with the
algebraic distance c0 ¼ 0:5. As it can be seen from Fig. 2, the level
sets of the fitted IPs h?ðqH; qKÞ do not intersect with each other,
corresponding to the fact that the generated algebraic curves are
nondegenerate. Furthermore, as the algebraic distances from the
zero set Zðh?Þ change in a small manner, the joint angles do not
deviate drastically from the nominal values. This continuity feature
is desirable for controller design; since for small values of
jh?ðqH; qKÞj, the hip-knee configurations are still close to the fitted
algebraic curve.

3 Control Problem Formulation

In this section, we consider an impedance model of the knee
joint motion driven by the hip angle signal. Our control problem
formulation is motivated by the approach in Refs. [1] and [6],
where the impedance-based feedback control is employed to
render the closed-loop dynamics of the powered prosthetic joints
as a series of passive spring and damper behaviors. Due to the pas-
sive nature of the closed-loop dynamics under impedance-based
control laws, the interaction between the powered prosthesis and
the amputee will be inherently stable. However, we depart from
the control framework in Refs. [1] and [6] by creating a contin-
uum of equilibria along the human-inspired algebraic curve
instead of having a series of isolated equilibria. As it will be
shown in this section, the resulting closed-loop knee joint motion
can be described by a LPV dynamical system.

We consider the impedance model

Jkn €qK þ bkn _qK þ kknqK ¼ u (18)

for the knee joint motion, where u is the torque applied to the
powered knee prosthesis. Furthermore, we let the polar represen-
tation of the human-inspired algebraic curve in Eq. (17) be

q�HðrÞ
q�KðrÞ

� �
¼ rðrÞcosðrÞ þ qHC

rðrÞsinðrÞ þ qKC

� �
(19)

where the polar angle r at each point ðq�H; q�KÞ on the human-
inspired algebraic curve is given by

r ¼ arctan2ðq�K � qKC; q�H � qHCÞ (20)

Whenever the hip joint evolves according to the normal human
walking gait, i.e., when qHðtÞ ¼ q�HðrðtÞÞ, driving the output
h?ðqHðtÞ; qKðtÞÞ to zero or sufficiently close to zero will coordi-
nate the motion of the knee with the driving hip angle signal
according to the human-inspired algebraic curve in Fig. 1. One
way to achieve this objective is to make the knee tracking error

eðrðtÞÞ :¼ qKðtÞ � q�KðrðtÞÞ (21)

converge to zero or become sufficiently small along the algebraic
curve. Furthermore, we would like that whenever the amputee
stops moving his/her hip at qH ¼ q�HðrÞ, the knee joint comes to
rest at qK ¼ q�KðrÞ. From the aforementioned discussion, we
would like to create the following continuum of equilibria:

xeðrÞ :¼ q�KðrÞ
0

� �
(22)

for the knee dynamics along the human-inspired algebraic curve.
As it can be seen from Eq. (22), the continuum of equilibria is par-
ameterized by the polar angle r.

In order to derive the knee error dynamics along the continuum
of equilibria xeðrÞ, where x :¼ ½qK ; _qK �>, we define

xdðtÞ :¼ xðtÞ � xeðrðtÞÞ

and take its time derivative to obtain

_xd ¼ Axd þ Buþ deðr; _rÞ (23)

where

A :¼ 0; 1;
�kkn

Jkn

;
�bkn

Jkn

� �
; B :¼ 0;

1

Jkn

� �
(24)

and

de r; _rð Þ :¼ � @xe rð Þ
@r

_r (25)

As the polar angle r evolves along the human-inspired alge-
braic curve, we let our control input take the form

uðrÞ ¼ �ud � ueðrÞ (26)

where ueðrÞ :¼ ðkkn=JknÞq�KðrÞ. The control input ueðrÞ renders
xeðrÞ an equilibrium for the knee joint dynamics.

In order to completely determine the form of our feedback con-
trol scheme, we use the variable state feedback control law

ud ¼ KcðrÞxd (27)

Under the control law in Eqs. (26) and (27), the error dynamics of
the prosthetic knee joint motion become

_xd ¼ AclðrÞxd þ deðr; _rÞ (28)

where AclðrÞ :¼ A� BKcðrÞ:
Creating a continuum of equilibria via the feedback control law

in Eqs. (26) and (27) along the human-inspired algebraic curve
renders the knee closed-loop error dynamics a LPV system

_xd ¼ AclðrÞxd (29)

subject to disturbances of the form deðr; _rÞ given by Eq. (25).
Under the condition of frozen equilibria, i.e., whenever the hip
comes to rest, we have _r ¼ 0. Consequently, from Eq. (25), it
follows that deðr; _rÞ ¼ 0. Therefore, under the frozen equilibria
condition, the knee closed-loop error dynamics take the LPV form
given by Eq. (29).

Remark 2. The polar angle r in Eq. (20), which is defined using
the human-inspired algebraic curve, can be viewed as a gain
scheduling variable (see, e.g., Ref. [31]) that parameterizes the
continuum of equilibria for the powered knee prosthesis
dynamics.

4 Variable Impedance Control Design

Having formulated our control problem in Sec. 3, we first pro-
vide a parameter-dependent Lyapunov function approach for
designing variable impedance gains along the human-inspired
algebraic curve in Sec. 4.1. The results in Sec. 4.1 are applicable
when the human hip evolves according to a nominal gait profile
on the algebraic curve. In order to address variability in the user’s
hip motion, we present a radial projection-based algorithm in
Sec. 4.2.

4.1 Variable Impedance Control Design Using Parameter
Dependent Lyapunov Functions. In this section, we assume that
the hip joint evolves, with a bounded rate of change, along the
algebraic curve according to qHðtÞ ¼ q�HðrðtÞÞ, where q�HðrÞ is
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given by the polar representation in Eq. (19). Under this assump-
tion, we would like to make the tracking error in Eq. (21) practi-
cally stable [32]. Practical stability of the error dynamics means
that the error can be made arbitrarily small via a proper choice of
the state feedback gain KcðrÞ.

We consider the impedance-based variable state feedback

KcðrÞ ¼ ½KpðrÞ; KdðrÞ� (30)

where the variable stiffness KpðrÞ and the variable damping
KdðrÞ are some smooth functions of r, which continuously vary
along the human-inspired algebraic curve.

Since the variable r is an angular variable, the stiffness function
KpðrÞ and the damping function KdðrÞ need to be 2p-periodic
functions of r. In other words, we need to have

Kpðrþ 2pÞ ¼ KpðrÞ; Kdðrþ 2pÞ ¼ KdðrÞ (31)

for all values of r.
Under Eq. (30), the control law given by Eqs. (26) and (27)

takes the form

uðrÞ ¼ KpðrÞeðrÞ þ KdðrÞ _qK � ueðrÞ (32)

where eðrÞ is given by Eq. (21). The obtained control law uðrÞ in
Eq. (32) is a variable impedance control law that does not depend
on a reference velocity, e.g., on _q�KðrÞ. Additionally, under the
proposed control law in Eq. (32), the closed-loop state matrix
takes the form

AclðrÞ ¼ ½0; 1;�apðrÞ;�adðrÞ� (33)

where

ap rð Þ :¼ Kp rð Þ þ kkn

Jkn

; ad rð Þ :¼ Kd rð Þ þ bkn

Jkn

Since the stiffness KpðrÞ and the damping KdðrÞ functions are 2p-
periodic by design, it follows that the closed-loop state matrix
AclðrÞ satisfies the periodicity condition Aclðrþ 2pÞ ¼ AclðrÞ, for
all values of the angular variable r.

In order to study the stability of the LPV closed-loop dynamics
of the knee joint motion, we use a well-established class of
Lyapunov functions, called the parameter-dependent Lyapunov
functions [33]. In particular, we consider the following parameter-
dependent Lyapunov candidate function:

Vðxd; rÞ :¼ xT
d XðrÞxd (34)

where XðrÞ is a symmetric and positive definite matrix, which is
parameterized by the polar angle r. Furthermore, since r is an
angular variable, the matrix XðrÞ should be chosen to satisfy the
periodicity condition Xðrþ 2pÞ ¼ XðrÞ, for all values of r.

As it can be seen from Eq. (34), the parameter-dependent
Lyapunov function Vðxd;rÞ is not only a function of the states of
the powered prosthesis but also a periodic function of the polar
angle variable r, which determines where the knee joint should be
located along the human-inspired algebraic curve. In order to pro-
ceed further, we take the derivative of Vðxd; rÞ along the trajecto-
ries of Eq. (28) and obtain

_Vðxd;rÞ :¼ x>d fXðrÞAclðrÞ þ A>clðrÞXðrÞ þ _XðrÞgxd

þ 2x>d XðrÞdeðr; _rÞ (35)

From Eq. (20), it follows that jrðtÞj � 2p, for all time instants t.
We also assume that the rate of change of the polar angle satisfies

j _rðtÞj � q (36)

for all time instants t, where q is a positive constant. Under the
bounded rate of change condition in Eq. (36), the disturbance term
given by Eq. (25) satisfies

jjde r; _rð Þjj � qj dq�K rð Þ
dr

j; for all r (37)

The values of jdq�KðrÞ=drj, which will be used for designing the
variable impedance gains later, are depicted versus the percentage
of stride in Fig. 3.

When the rate of change of the variable r is bounded but an
upper bound is not known a priori, the following proposition
provides a stability condition, based on a Lyapunov matrix
inequality.

PROPOSITION 1. Consider the closed-loop dynamics in Eqs. (28)
and (33) and assume that the matrix XðrÞ in Eq. (34) is equal to a
symmetric and positive definite constant matrix X. Furthermore,
assume that the rate of change of the variable r is bounded by
j _rðtÞj � q for some unknown constant q. If the Lyapunov
inequality

QðrÞ :¼ XAclðrÞ þ A>clðrÞX < 0 (38)

is satisfied for all r, then,

(i) the continuum of equilibria parameterized by r in Eq. (22)
is exponentially stable under _r ¼ 0; and,

(ii) when _r 6¼ 0, the error xdðtÞ is bounded according to

V xd tð Þ;r tð Þð Þ � V xd 0ð Þ;r 0ð Þ
� 	

exp �f rð Þtð Þ þ
dq�K rð Þ=dr
� 	2

f rð Þ
q2

(39)

for all time instants t> 0, where fðrÞ :¼ kminðQðrÞÞ
kmaxðXÞ �

kmaxðXÞ.
Proof. We provide a sketch of the proof. From the inequality in

Eq. (38) and since the matrix XðrÞ ¼ X is constant, it follows that:

_Vðxd; rÞ � �x>d Qxd þ 2x>d Xdeðr; _rÞ

Therefore, since deðr; _rÞ ¼ 0 when _r ¼ 0, (i) follows. Statement
(ii) follows from a direct application of the comparison lemma
[34] to the above inequality. �

Proposition 1 provides conditions that can be used for designing
the variable stiffness and damping gains along the human-inspired
algebraic curve. From standard results in the nonlinear systems lit-
erature (see, e.g., Theorem 4.6 in Ref. [34]), the Lyapunov matrix
inequality in Eq. (38) is satisfied if and only if for all r the eigen-
values of the matrix AclðrÞ given by Eq. (33) are located in the
open left-half complex plane. This objective will be achieved if
and only if apðrÞ > 0 and adðrÞ > 0 for all values of r. As it will
be discussed in Sec. 5, attenuation of the disturbance deð�Þ in
Eq. (23), which exists due to continuous movement of the

Fig. 3 The values of jdq�K (r)/drj versus the percentage of
stride
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operating equilibrium point along the algebraic curve during
walking, will be achieved if both impedance gains KpðrÞ and
KdðrÞ change continuously with jjdeð�Þjj along the algebraic
curve.

In order to design the variable impedance gains, we also need
to express them in a periodic basis function. Motivated by the
fact that extensive numerical techniques for parameter-
dependent Lyapunov functions have been developed using
polynomials (see, e.g., Refs. [31] and [33]), we propose using
periodic B�ezier polynomials for parameterization of our variable
stiffness and damping gains. We remark that B�ezier polynomials
have been extensively used for encoding the continuous periodic
motion of underactuated mechanical systems as well as the sta-
ble walking gaits of autonomous bipedal robots that are subject
to impulsive ground contact forces [35–37]. From the aforemen-
tioned discussion, we propose using the B�ezier polynomial
parameterizations

Kp rð Þ ¼ 1

2p

XNp

i¼0

kp;i

Np

i

 !
ri 2p� rð Þ Np�ið Þ

Kd rð Þ ¼ 1

2p

XNd

i¼0

kd;i

Nd

i

 !
ri 2p� rð Þ Nd�ið Þ

(40)

for the variable impedance gains. In Eq. (40), Np; kp;i, and Nd; kd;i

are the degrees and coefficients of the B�ezier polynomials, respec-
tively. Due to the periodicity conditions in Eq. (31), it follows that
the following equality constraints should be satisfied:

kp;0 ¼ kp;Np
; kd;0 ¼ kd;Nd

(41)

4.2 Extension of Control Design Under Variability in the
User’s Hip Motion. Under the nominal hip joint motion, i.e.,
when qHðtÞ ¼ q�HðrðtÞÞ, the reference knee joint angle is given by
qKðtÞ ¼ q�KðrðtÞÞ such that the pair ðq�HðrðtÞÞ; q�KðrðtÞÞÞ belongs
to the human inspired algebraic curve, i.e., h?ðq�HðrðtÞÞ;
q�KðrðtÞÞÞ ¼ 0. However, when the user’s hip motion undergoes
variability and is no longer given by the nominal function
qH ¼ q�HðrÞ, determining the reference knee joint angle for the
variable impedance scheme will become nontrivial.

Under the hip motion variability, the pair pðtÞ :¼ ðqHðtÞ; qKðtÞÞ
no longer belongs to the human-inspired algebraic curve. How-
ever, if p(t) evolves in a neighborhood of Zðh?Þ, it is possible to
project it onto the human-inspired algebraic curve and obtain the
reference point

ðq�HðtÞ; q�KðtÞÞ :¼ pZðh?ÞðpðtÞÞ (42)

where pZðh?Þ : R2 ! Zðh?Þ is a proper projection mapping, to be
designed, onto the human-inspired algebraic curve.

A proper projection mapping pZðh?Þ, which provides the refer-
ence points on the human-inspired algebraic curve during walk-
ing, should enjoy several properties: (i) for each complete
revolution of the pair pðtÞ ¼ ðqHðtÞ; qKðtÞÞ on a closed curve in a
neighborhood of the human-inspired algebraic curve, the pro-
jected point pZðh?ÞðpðtÞÞ should undergo a complete revolution on
the human-inspired algebraic curve Zðh?Þ; (ii) each point on the
human-inspired algebraic curve should be mapped onto itself via
the projection mapping, i.e., pZðh?ÞðpÞ ¼ p for all p 2 Zðh?Þ; and
(iii) the projection mapping computation should be fast enough
for control implementation purposes.

Using the geometrical structure that is afforded by the human-
inspired algebraic curve representation of the gait cycle, we pro-
pose a radial projection mapping candidate. In particular, given
the point p ¼ ðqH; qKÞ in a neighborhood of the human-inspired
algebraic curve Zðh?Þ, whose centroid is located at pc, we define
the projection mapping to be

pZðh?ÞðpÞ :¼ RðfpðsÞÞ (43)

where RðfpðsÞÞ is the root with the smallest absolute value of the
one-dimensional function

fp sð Þ :¼ h? pþ s
p� pc

jjp� pcjj

� �
(44)

In Eq. (44), the one-dimensional function fpð�Þ is defined via the
line

Lp :¼ pþ s
p� pc

jjp� pcjj
: s 2 R

� �
(45)

which passes through the point p and the centroid of the human-
inspired algebraic curve Zðh?Þ. It is immediate to see that the pro-
jection mapping pZðh?Þð�Þ in Eqs. (43) and (44) satisfies properties
(i) and (ii). Figure 4 depicts the result of the proposed radial-based
projection algorithm for a deviated walking stride onto the
human-inspired algebraic curve.

The following proposition states that if the point p belongs to a
sufficiently small neighborhood of the algebraic curve, then the
radial projection mapping can be efficiently computed using the
classical bisection root finding algorithm [38].

PROPOSITION 2. Consider the human-inspired algebraic curve
and its centroid. Consider the projection mapping pZðh?Þð�Þ in
Eqs. (43) and (44). In a sufficiently small neighborhood of Zðh?Þ,
the projection mapping pZðh?Þð�Þ is well-defined and can be com-
puted via the bisection root finding algorithm.

Proof. Due to the geometry of the level-sets of the IP
h?ðqH; qKÞ, the zero set of h?ð�Þ is an isolated zero level set. In
other words, there exists an open neighborhood of the closed
curve Zðh?Þ denoted by N such that if q 2 N and h?ðqÞ ¼ 0, then
q 2 Zðh?Þ. Consider an arbitrary point p 2 N and suppose that
fpð0Þ 6¼ 0. Without loss of generality, we assume that fpð0Þ > 0.
In other words, p belongs to the exterior of Zðh?Þ. Since Zðh?Þ is
the only zero set of h?ð�Þ in the neighborhood N and p 2 N , it
follows that the line ‘p in Eq. (45), which passes through p and the
centroid of the closed curve Zðh?Þ, intersects the closed curve
Zðh?Þ at a unique point p�0. Suppose that p�0 ¼ pþ s�0

p�pc

jjp�pc jj. It fol-
lows that fpðs�0Þ ¼ 0. It is now possible to choose a point p0 2 N
on line ‘p, associated with the real number s� < 0, in the interior
of Zðh?Þ such that fpðs�Þ < 0.

Since fpðsÞ is a smooth function of s, we have
fpð0Þ > 0; fpðs�Þ < 0. Furthermore, s�0 is the only root of the func-
tion fpðsÞ in the interval ½s�; 0�. From standard results in numerical
analysis (see, e.g., Ref. [38]), the proof will be concluded. �

Fig. 4 The result of the proposed radial-based projection algo-
rithm for a deviated walking stride onto the human-inspired
algebraic curve and its comparison to the normal walking data.
The dotted point inside the curve represents the centroid of the
algebraic curve. Two example radial lines Lp1

and Lp2
project

points p1 and p2 onto the algebraic curve, respectively.
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5 Simulation Results

We implemented the impedance-based gait control strategy on
an impedance model of the knee dynamics of a human subject. In
particular, the impedance modeling of knee dynamics was based
on the gait data of a healthy 75 kg subject, as derived from body-
mass-normalized data from Winter [30]. Using a variable hip
joint motion time profile, generated by the method proposed in
Ref. [39], we investigated the effectiveness of our continuous
impedance-based scheme and the radial-based projection algo-
rithm in Sec. 4.2. In all of our results, we are working with the
algebraic curve shown in Fig. 2(a), which is an improvement over
our preliminary work in Ref. [21] shown in Fig. 2(b).

5.1 Algebraic Distances Under Hip-Knee Variability. In
order to study the variations of the generated IP level sets under
hip-knee variability during human walking, we generated 100
walking strides using the methodology in Ref. [39]. These profiles
are depicted in Fig. 5(a). The values of the IP h?ðqH; qKÞ on the
generated walking data are depicted in Fig. 5(b). As it can be seen
from Fig. 5(b), the algebraic distances given by h?ð�Þ on the walk-
ing strides located at one standard deviation above and below the
normal walking data [30] are bounded by the maximum algebraic
distance c0 ¼ 4, which happens during the stance to swing transi-
tion (around 60% of the walking stride). As it can be seen from
Figs. 2(a) and 5(a), this algebraic distance corresponds to a geo-
metric distance of around 5 deg to the nominal hip-knee configura-
tion. Therefore, the generated IP is not overly sensitive to normal
variability in human walking data.

5.2 Design of Variable Impedance Gains. In order to design
the variable stiffness and damping gains, we have used fourth and
third order periodic B�ezier polynomials in Eq. (40), respectively.
Moreover, periodic variable stiffness gains will be achieved if the
equality constraints given by Eq. (41) are satisfied. Furthermore,
as implied by Proposition 1, higher values of stiffness to damping

ratios, which will result in higher values of fðrÞ, are needed in
order to attenuate larger values of the disturbance jjdeðr; _rÞjj
along the human-inspired algebraic curve. In order to change the
proportional gain KpðrÞ continuously along with jjdeð�Þjj on the
algebraic curve, the coefficients of the stiffness B�ezier polynomial

are obtained via constrained least-squares optimization to j dq�KðrÞ
dr j,

which is equal to
jjdeðr; _rÞjj
j _rj . Motivated by the observation in Refs.

[1] and [6] that the damping gain, during walking, assumes its
lower (respectively, larger) values when the proportional gain
assumes its larger (respectively, lower) values, the coefficients of
the damping B�ezier polynomial are obtained via constrained least-

squares optimization to maxr
dq�KðrÞ

dr � j
dq�KðrÞ

dr j. In summary, we

find the coefficients of the B�ezier polynomials in Eq. (40) by solv-
ing the following two constrained optimization problems:

minimize
kp;i

Kp �




 dq�K

dr






����

����
2

2

subject to kp;0 ¼ kp;Np

and

minimize
kd;i

Kd � max
r

dq�K
dr
�




 dq�K

dr






 !�����

�����
2

2

subject to kd;0 ¼ kd;Nd

where jj � jj2 denotes the L2-norm. Moreover, Np ¼ 4 and Nd¼ 2.
Figure 6(a) depicts the normalized variable impedance gains by

dividing them by q, which is the upper bound on the rate of
change of the polar angle (see Eq. (36)), versus the percentage of
normal walking stride. The stiffness to damping ratios in our con-
tinuous impedance-based scheme are the highest during the stance
flexion/extension and swing extension phases of walking and are

Fig. 5 (a) 100 walking strides under hip-knee variability according to Ref. [39] and (b) algebraic distances given
by h?( � ), evaluated on the walking strides. In both figures, the solid curves correspond to one standard devia-
tion above and below the human walking data, respectively.

Fig. 6 Implementation of the variable impedance-based scheme for five walking strides deviated from Winter’s normal motion
profile under human hip joint variability: (a) depicts the normalized values of optimized Kp(r) in N�m/deg and Kd (r) in N�ms/deg
during a walking stride, (b) depicts the knee time-profiles and their comparison to the normal walking profile (the black curve),
and (c) depicts the resulting traversed paths in the hip-knee plane
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the lowest during the preswing and swing flexion phases. Interest-
ingly, the stiffness to damping ratios in the conventional switched
impedance-based schemes, first proposed in Refs. [1] and [6], also
assume their highest and lowest values during the similar phases
of walking.

5.3 Implementation of the Variable Impedance-Based
Scheme. The block diagram of the overall scheme is depicted in
Fig. 7. The projection mapping given by Eqs. (43)–(45) provides
the variable impedance-based controller with the reference signal
q�K and the polar angle r. In turn, the variable impedance control-
ler, whose stiffness and damping gains are given by Eq. (40),
drives the error qK � q�KðrÞ toward zero, and by doing so, drives
the algebraic curve distances to zero.

We tested our variable impedance-based scheme for five walk-
ing strides deviated from the Winter’s normal motion profile
under human hip joint variability. Figure 6(b) depicts the knee
time-profiles and their comparison to the normal walking profile
(the black curve). Figure 6(c) depicts the resulting traversed paths
in the hip-knee plane.

6 Conclusions and Future Research Directions

In this article, we employed algebraic curves to represent
human walking gait data and achieve coordinated motion between
transfemoral amputee patients and powered prosthetic joints. For
an impedance model of the knee joint motion driven by the hip
angle signal, we proposed using a variable impedance scheme for
creating a continuum of equilibria along the human-inspired
algebraic curve. Our variable impedance-based control law, which
is designed using the parameter-dependent Lyapunov function
framework, realized the coordinated hip-knee motion with a fam-
ily of spring and damper behaviors that continuously change along
the human-inspired algebraic curve. Exploiting the geometrical
structure of the level-sets of the human-inspired algebraic curve,
we proposed a computationally efficient radial projection-based
algorithm onto the algebraic curve in the hip-knee plane. We
employed the radial projection-based algorithm to accommodate
the variability in the human’s hip motion in our variable
impedance-based scheme. The presented material opens up some
potential research directions.

From a theoretical perspective, the 3 L fitting algorithm or its
extensions might be employed for fitting trivariate (of three varia-
bles) implicit polynomials to hip-knee-ankle human walking data.
Moreover, the variable impedance-based scheme needs to con-
sider the nonlinear dynamics of a powered knee-ankle prosthesis

and use a proper projection algorithm in order to take into account
the variability in human hip motion.

From a control system implementation perspective, the pro-
posed methodology has the potential to be employed for non-
rhythmic motions and thus overcome the limitations of existing
unified gait control methods for powered prostheses. As the pro-
posed radial projection algorithm can be implemented using a
bisection root finding numerical method, it has the potential to be
efficiently implemented on an embedded system in real time.
Finally, we can fit the algebraic curve, using the same 3 L numeri-
cal algorithm, to a global hip measurement for implementation
with an inertial measurement unit.
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