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1. Introduction

In the past decade, rapid development of experimental tech-
niques, namely dynamic force spectroscopy, made available 
a new research methodology to investigate the mechanical 
properties of biological matter [1–3]. Applied to large bio-
logical supramolecular complexes, such as viruses, micro-
tubules, micro- and nanocompartments, and small cellular 

organelles [4–7], dynamic force spectroscopy has enabled 
researchers to interrogate these large-size biological protein 
assemblies mechanically, to probe the limits of their mechan-
ical strength, and to gather valuable information about their 
nanomechanical characteristics, including the critical defor-
mation, Youngs modulus, shear modulus, flexural rigidity, etc 
[6, 8–17]. Although a considerable amount of experimental 
effort has been expended to understand how the mechanical 
response of biological particles depends on their compres-
sive-force induced deformation, many difficulties remain, 
e.g. regarding the interpretation of force-deformation spectra 
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[18]. Experimental resolution in the state-of-the-art single-
molecule forced-deformation assays do not allow researchers 
to extract the molecular level structural details underlying 
dynamic transitions in biological particles, such as buckling 
and structural collapse.

The past decade has witnessed rapid progress in the devel-
opment of computational methods for modeling large biolog-
ical assemblies to understand their unique physico-chemical 
properties (e.g. stiffening, softening, buckling, etc). Among 
these are: finite element analysis (FEA) [14, 19–21], explicit 
and implicit solvent molecular dynamics (MD) simulations 
[22–24], elastic network modeling (ENM) [25–27], and 
various coarse-graining (CG) techniques [28–33]. However, 
these approaches have exhibited a number of drawbacks. For 
example, FEA and ENM approaches do not take into account 
the discrete nature of biological particles’ structures, such 
as a virion (formed by self-assembly of capsid proteins) or 
a microtubule (built by laterally and longitudinally assem-
bled head-to-tail linked αβ-tubulin dimers). Because these 
approaches do not have a thermostat, they cannot capture the 
stochastic nature of biological particles’ mechanical deforma-
tion and collapse. The all-atom MD simulations account for 
the discreteness and stochastic variation of the particles’ struc-
tures, but owing to their immense system size the all-atom 
MD schemes do not allow researchers to follow the dynamics 
of particles in the biologically relevant timescale. Langevin 
simulations of particles’ nanoindentation, in conjunction with 
some of the coarse-grained models, employ force-loading 
rates three orders of magnitude faster than their experimental 
counterparts [28, 31], and so the results of experiments in vitro 
and in silico cannot be compared.

To overcome these limitations, we have developed a new 
computational methodology which allows for nanomanipu-
lation of biological particles in silico [34–36]. This approach 
utilized the simple, yet accurate Cα-based coarse-grained 
self-organized polymer (SOP) model [37, 38] and Langevin 
dynamics to simulate the force loading experiments on a comp-
uter, obtaining a high-resolution detailed molecular picture 
of the entire indentation process, while also allowing extrac-
tion of important mechanical and thermodynamic character-
istics of the system, not accessible from experiment [6, 24,  
36, 39]. The SOP model is a simplified native-topology based 
model of biomolecules which has been used to explore the 
mechanical properties of protein assemblies [24, 36, 39]. 
The  ∼10–100 fold computational acceleration attainable on 
graphics processing units (GPUs) with SOP-GPU software 
allows for using the experimental force protocol and reaching 
biologically relevant timescales up to hundreds of millisec-
onds [34, 40, 41], which makes the results comparable with the 
experimental data. This approach to forced indentation in silico 
has been successfully applied to study the biomechanics of a 
range of biological particles, including CCMV virus capsids 
[36], microtubules [24] and nanocompartment encapsulin [6].

In this work we extended the capabilities of our 
 methodology by developing the TensorCalculator soft-
ware package. This software enables researchers to compute 
the stress distribution in biological matter using the results 
of MD simulations. The approach utilizes an idea of ‘local 

atomic stress’, i.e. when the stress is represented by the deriv-
ative of the total atomic forces acting on a particular atom 
along different directions. Taking the average over all the 
interactions involving this atom mimics the integration over 
all the forces acting on an arbitrary volume element [42]. This 
approach was first introduced by Basinski [43] for the calcul-
ation of shear stress in a simple body-centered cubic lattice. 
Shortly thereafter, Hardy derived this stress measure in a more 
general form [44], which later was adapted by researches in 
their studies of material properties of crystalline substances  
[45–47] and amorphous structures [48]. Ishikura et  al used 
this concept in conjunction with the MD simulations and all-
atom force field to calculate the atomic forces and local atomic 
stresses in short polypeptide chains [49]. To our knowledge, 
there has been only a single study [50], in which this approach 
was used to compute the stress distribution in viral shells.

The dynamics of biological particles evolve on multidi-
mensional energy landscapes. In AFM-based single-particle 
compressive-force experiments, the particle’s dynamics is 
projected along the direction of particle deformation (‘reac-
tion coordinate’), which limits the information obtainable. 
The force-deformation spectra reveal the critical forces and 
critical deformations for the collapse transition, but offer 
little insight as to what caused the transition and do not pro-
vide structural details. Here, we show that dynamic evo lution 
of biological particles can be illuminated by considering 
the propagation and distribution of mechanical stress in the 
particle’s structure. We use cowpea chlorotic mottle virus 
(CCMV) as a suitable model system since it was extensively 
studied previously by us [36, 51] and other research groups 
[20, 27, 31, 52]. We explore the rich dynamics of stress distri-
bution in the CCMV shell tested mechanically by considering 
the most common stress measures used to describe properties 
of materials, including the first principal stress, von Mises 
shear stress, and Tresca shear stress [53, 54]. Our results raise 
questions regarding some of the theoretical approaches used 
to model the dynamics of biological particles, including finite 
element analysis and elastic network models, in which sto-
chastic fluctuations and entropic effects are ignored. We also 
formulate for soft biological particles like CCMV the yield 
condition in terms of the first principal stress comp onents, 
and the failure criterion in terms of von Mises stress or Tresca 
stress.

2. Materials and methods

2.1. Self-organized polymer (SOP) model of a polypeptide 
chain

We employed the native topology Cα-based self organized 
polymer (SOP) model of a polypeptide chain [37, 38]. In the 
SOP model, each protein residue is represented by a bead, 
positioned at the residue’s Cα-atom. The explicit form of the 
total potential energy USOP (force field) expressed in terms of 
the coordinates of the Cα-atoms {ri} = r1, r2, . . . , rN of resi-
dues 1, 2, …, N is given by

USOP = UFENE + UNAT
NB + UREP

NB . (1)
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In equation (1), the first term is the finite extensible nonlinear 
elastic (FENE) potential, which describes the backbone chain 
connectivity (i.e. the covalent bonds holding a polypeptide 
chain together) [37, 38]:

UFENE = −
N−1∑
i=1

k
2

R0 log

[
1 −

(ri,i+1 − r0
i,i+1)

2

R2
0

]
 (2)

where k  =  14 N m−1 is the spring constant, and the tolerance 
in the change of the covalent bond distance is R0  =  2 Å. The 
distance between the next-neighbor residues i and i  +  1, is 
ri,i+1, and r0

i,i+1 is its value in the native structure.
In equation (1), the second and third terms represent all the 

non-bonded interactions between amino acids, which include 
the residue–residue contacts stabilizing the native (folded) 
state (UNAT

NB ; see equation (3) below) and all non-native inter-
actions between residues that do not form contacts in the 
native state (see equation  (4) for UREP

NB  below). To describe 
the native interactions, we use the attractive Lennard-Jones 
potential [37, 38]:

UNAT
NB =

N−3∑
i=1

N∑
j=i+3

εh



(

r0
ij

rij

)12

− 2

(
r0

ij

rij

)6

∆ij. (3)

In equation (3) above, we assume that if the non-covalently 
linked residues i and j (|i − j| > 2) are within the cut-off dis-
tance of 8 Å in the native state, then ∆ij = 1; and ∆ij = 0 
otherwise. The prefactor εh  quantifies the strength of the non-
bonded (non-covalent) interactions.

The third term in equation (1) accounts for the non-bonded 
interactions, which include the non-native interactions (for 
which ∆ij = 0 in equation (3)) and the interactions between 
residues i, i  +  1, and i  +  2, which constrains bond angles and 
models bending flexibility of a polypeptide chain. All the non-
native non-bonded interactions are treated as repulsive using 
the repulsive form of Lennard-Jones potential [37, 38]:

UREP
NB =

N−3∑
i=1

N∑
j=i+3

εl

(
r0

ij

rij

)6

(1 −∆ij) +
N−2∑
i=1

εl

(
σl

ri,i+1

)6

.

 (4)
In equation (4) above, the second term takes into account self-
avoidance of a polypeptide chain. The constant parameters εl 
and σl define the strength and the range of repulsion. We set 
εl = 1 kcal mol−1 and σl = 3.8 Å [37, 38].

2.2. Langevin dynamics simulations

The dynamics of the system are obtained by propagating for-
ward in time numerically the Langevin equations of motion 
for each Cα-particle’s position ri (i  =  1, …, N) in the over-
damped (high-friction or Brownian) limit:

γ
dri

dt
= −∂USOP

∂ri
+ gi(t). (5)

In equation  (5) above, USOP is the total potential energy of 
a biological particle (see equation (1)), gi(t) is the Gaussian 
distributed zero-average random force, and γ is the friction 

coefficient. To generate the Brownian dynamics for a system 
in question, the equations of motion (equation (5)) for each 
Cα-atom are propagated forward with the time step ∆t = 
0.08τH, where τH = ζεhτL/kBT  is the characteristic time of 
a spherical particle’s motion in the overdamped limit. Here, 
τL = (ma2/εh)

1/2 = 3 ps is the characteristic time for the 
underdamped motion of a particle of mass m ≈ 3 × 10−22 g  
(average amino acid residue mass) and radius a ≈ 5 Å 
(average size of amino acid), and parameter εh  sets the energy 
scale. Also, ζ = 50.0 is the dimensionless friction constant for 
amino acid residue in water (η = ζm/τL), and kBT  is temper-
ature [35, 55]. To perform simulations, we set T  =  298 K and 
we used the bulk water viscosity, which corresponds to the 
friction coefficient η = 7.0 × 105 pN ps nm−1. Corresponding 
to this choice of physical parameters, we set ∆t = 40 ps in the 
simulations.

2.3. Nanoindentation in silico

To deform virus particles, we used our recently developed 
approach to nanoindentation in silico [35]. Briefly, the  particle 
is resting on the substrate surface represented by a dense 
network, which interacts with the virus particle through the 
Lennard-Jones potential:

Usurf =

N∑
i=1

M∑
j=1

εsurf



(

σsurf

ri − rsurf
j

)12

− 2

(
σsurf

ri − rsurf
j

)6

 .

 (6)

In equation  (6), rsurf
j  is the position of the jth surface bead 

( j = 1, 2, . . . , M) and σsurf = 10.0 Å. The parameter εsurf con-
trols the strength of adsorption forces holding the particle on 
the surface, and it can be adjusted to model weak, medium 
and strong adsorption. Following our previous work [36], in 
our simulations we set εsurf = 0.2 kcal mol−1 to mimic weak 
adsorption of the CCMV particle.

The cantilever base is represented by a virtual particle con-
nected by a harmonic spring with the spherical bead of radius 
Rtip mimicking the cantilever tip (indenter). The tip inter-
acts with the virus particle via the repulsive Lennard-Jones 
potential:

Utip =

N∑
i=1

εtip

(
σtip

|ri − rtip| − Rtip

)6

 (7)

which produces an indentation on the virus particle’s outer 
surface. In equation (7), ri and rtip are coordinates of the ith 
virus residue and the center of the tip, respectively; εtip =  
1.0 kcal mol−1, and σtip = 1.0 Å. For the cantilever tip, we 
solve the following Langevin equation:

γ
drtip

dt
= −

∂Utip(rtip)

∂rtip
+ κ[(r0

tip − νf t)− rtip]. (8)

In equation  (8), κ is the cantilever stiffness, νf  is the canti-
lever base velocity, rtip

0  is the initial position of the tip center, 
and the friction coefficient γ corresponds to the viscosity 
η = 7.0 × 106 pN ps nm−1. To generate the dynamics of a 
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biological particle, we solved numerically equations (1) and 
(5)–(7) for the biological particle (CCMV shell), and equa-
tions (7) and (8) for the indenter (spherical tip).

2.4. Model systems

2.4.1. CCMV shell. As a suitable model system, we used the 
SOP-based coarse-grained reconstruction of an empty capsid 
of cowpea chlorotic mottle virus (CCMV; protein data bank 
(PDB) entry: 1CWP [56]) described in detail in our previ-
ous study [36]. The CCMV shell consists of 180 identical 
single subunit capsid proteins. The 19.5 KDa (190 amino acid 
sequence) capsid proteins self-assemble into 12 pentameric 
and 20 hexameric structures (pentons and hexons) which form 
an icosahedral virus capsid (protein shell with the triangula-
tion number T  =  3). The empty CCMV capsid is 28.6 nm in 
diameter, with an average shell thickness of 2.8 nm [56]. This 
thick shell comprises a total of 60 trimeric structural units and 
exhibits a pentameric symmetry at the 12 vertices (pentameric 
capsomers) and hexameric symmetry at the 20 faces (hexamer 
capsomers) of the icosahedron. The SOP model parameteriza-
tion for CCMV shell is presented in our previous study [36].

2.4.2. WW-domain. For benchmark testing of the Tensor-
Calculator software, we used the Cα-based SOP model of 
the WW-domain—a short polypeptide chain composed of 34 
amino acid residues (PDB entry: 1PIN [57]) described in more 
detail in our previous study [58, 59]. The WW-domain forms 
an all-β-sheet structure (figure 1). The mechanical unravel-
ing of the WW-domain is described by the reversible single-
step kinetics of unfolding, F ↔ U , from the folded state F to 
the unfolded state U. The SOP model parameterization of the 
WW domain is presented in our previous study [58, 59].

2.5. Force protocol

2.5.1. Nanoindentation of CCMV shell. To mimic the 
dynamic force-ramp conditions utilized in AFM nanoindenta-
tion experiments on the CCMV shell, we set the cantilever 
base to move towards an immobilized particle (CCMV shell) 
with a constant velocity νf  thereby exerting the compressive 
force f = f (t)n in the direction n perpendicular to the particle 
surface. The force magnitude f(t)  =  rft increases linearly in 
time t with the loading rate rf = κνf . To indent the CCMV 
capsid, we used the cantilever tip radius Rtip = 20 nm, νf = 
1.0 μm s−1, and κ = 50 pN nm−1 [36].

2.5.2. Protein forced unfolding. To mechanically unravel the 
bead-and-spring chain and the WW domain, we employed the 
dynamic force ramp. The linearly increasing time-dependent 
pulling force f = f (t)n was applied to the N-terminus, whereas 
the C-terminus was constrained. The force magnitude is given 
by f (t) = κ(νf t −∆x), where ∆x is the displacement of a 
pulled bead from its initial position [40], νf = 0.01 μm s−1, 
and κ = 100 pN nm−1 [58, 59].

3. Results

3.1. TensorCalculator software

3.1.1. Atomic stress tensor. To compute the distribution 
of mechanical stresses in a molecular system in question, 
 TensorCalculator uses the local atomic stress first 
described by Delph [46] and Ishikura et al [49]. Without a kinetic 
term in a vector form, a stress for the ith particle (Cα-atom) reads:

σi =
1

2Ωi

∑
j�=i

Fij ⊗ rij. (9)

In equation (9), Fij is a total (pairwise) force, acting on atom 
i due to atom j, rij = ri − rj is the distance between particles 
i and j, Ωi  is the local atomic volume, and ⊗ denotes the 
tensor product. In equation  (9), the summation over atomic 
forces extends over all the atoms within the interaction range, 
defined by the cut-off distance. We used the 8 Å cut-off dis-
tance for the native interactions (UNAT

NB ; see equation (3)) and 
the 20 Å cut-off for the repulsive interactions (UREP

NB ; see equa-
tion (4)). In the coarse-grained representation of the molecule, 
equation (9) is used to calculate the local stress for each amino 
acid residue (Cα-atom). The total molecular force acting on 
the ith amino acid is calculated by taking the derivative of the 
potential energy USOP (equation (1)). In terms of its comp-
onents, the stress tensor for the ith particle is given by

σαβ
i = − 1

2Ωi

∑
j�=i

∂USOP(r)
∂rij

rαij rβij
rij

 (10)

where α,β = x, y, z  denote components in 3D space. In its 
original form, equation (10) also has the second term which 
accounts for the interaction between the exterior particles 
and interior particles included in the volume Ωi  [46]. Here, 
we use a larger volume for better averaging within the 20 Å 
cut-off radius. On this scale of length, we approach the con-
tinuum limit and the second term becomes negligible. In 
equation  (10), Ωi  is the local atomic volume, which can be 
calculated as [48]:

Ωi =
4π
3

a3
i where ai =

∑
j�=i 1/rij

2
∑

j�=i 1/r2
ij

. (11)

Here ai is an ‘effective radius’ of the ith particle, which in our 
case is equal to the cut-off radius (≈20 Å). The stress tensor 
σαβ (equation (10)) gives the distribution of internal stresses 
in a material [60].

3.1.2. Stress tensor characteristics. The stress tensor is a 
second rank tensor with the components dependent upon the 
choice of coordinate system. However, there are sets of scalar 
quantities associated with the tensor, which do not change upon 
the transformation of coordinates. For the stress tensor, these 
quantities are three stress invariants, as well as three princi-
pal stress components. To obtain these quantities, we need to 
rewrite a stress tensor as a 3 × 3 matrix, and then to solve the 
corresponding characteristic equation [61], which reads:

J. Phys.: Condens. Matter 30 (2018) 044006
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|σ − λ1| = −λ3 + I(1)λ2 − I(2)λ+ I(3) = 0. (12)

In equation (12), 1 is the identity matrix, and

I(1) =
∑
α

σαα

I(2) =
∑
αβ

(σαασββ − σαβσβα)

I(3) = det(σ).

 

(13)

The quantities I(1), I(2), and I(3) in equation (13) are called the 
stress invariants, and in the equation for I(3), det denotes the 
determinant of matrix σ. The roots of characteristic equa-
tion (12), i.e. λ = {λ(1),λ(2),λ(3)}, are the eigenvalues of the 
stress tensor. These are related to the three principal stress 
components as follows:

σ
(1)
i = max{λ(1)

i ,λ(2)
i ,λ(3)

i }

σ
(3)
i = min{λ(1)

i ,λ(2)
i ,λ(3)

i }

σ
(2)
i = λ

(1)
i + λ

(2)
i + λ

(3)
i − σ

(1)
i − σ

(3)
i .

 

(14)

The first invariant I(1) is related to a hydrostatic pressure 
p  =  I(1)/3, whereas the other two invariants I(2) and I(3) have 
no obvious physical meaning. The combination of the stress 
invariants, also known as the von Mises shear stress σvM 
defines the magnitude of the shear stress:

σvM =
[
(I(1))2 − 3I(2)

]1/2
. (15)

The first principal stress σ(1) is related to the maximum ten-
sile stress, whereas the third principal stress σ(3) corresponds 
to the maximum compressive stress. Knowing the principal 
stress components allows for the calculation of the Tresca 
stress:

σTr =
σ(1) − σ(3)

2
. (16)

TensorCalculator computes the first stress invariant I(1)
i  

(equation (13)), the first principal stress σ(1)
i  (equation (14)), 

the von Mises stress σvM
i  (equation (15)), and the Tresca stress 

σTr
i  (equation (16)) for each amino acid i = 1, 2, . . . , N.

3.1.3. Using TensorCalculator. The TensorCalcula-
tor package is an extension of the SOP-GPU software devel-
oped previously in our group [40] for performing the Langevin 
dynamics of biomolecules in a coarse-grained representation. As 
an input, TensorCalculator uses (i) the structure file (in the 
PDB format), which carries information about the particles’ coor-
dinates, (ii) the topology file (in the GROMACS topology format 
[62, 63]), which contains information about the residue–residue 
interactions, and iii) the simulation trajectory (i.e. simulation 
output in the CHARMm-DCD binary format [64]). TensorCal-
culator reads the system coordinates for each time-frame 
from the DCD trajectory file and calculates the distribution of 

Figure 1. Dynamics of tension from protein forced unfolding 
experiments in silico (for colored figure go online). Panel (a): the 
profiles of applied time-dependent pulling force f (t) (blue curve) 
and the unfolding force obtained from the average normal stress 
(F = (4/3)πa2

effσ; red curve) from the simulations of forced 
unfolding of the bead-spring chain (beads connected by harmonic 
springs) at zero temperature, T  =  0 K. The inset shows the profiles 
of the normal stress (red curve), the first invariant (orange curve) 
and the first principal stress (green curve). Panel (b): the profiles 
of applied time-dependent pulling force f (t) (blue curve) and the 
normalized average normal stress (tension; red curve) for a bead-
spring chain from the simulations of forced unfolding at finite 
temperature, T  =  300 K. Panel (c): the profile of applied force (blue 
curve) and normalized average normal stress (tension; red curve) for 
the WW-domain from the simulations of forced unfolding of WW-
domain at finite temperature, T  =  300 K. Structural snapshots 1–3, 
which correspond to the equally numbered regions of the force-time 
curves, show WW-domain in the native folded state (snapshot 1), in 
the partially stretched state (snapshot 2), and in the fully unfolded 
state (snapshot 3) as observed in the pulling simulation.

J. Phys.: Condens. Matter 30 (2018) 044006
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instantaneous amino acid stresses for system’s conformation in 
each frame using equations  (1)–(4) and (10). TensorCal-
culator outputs dynamics of varying stress values for each 
amino acid along a simulation trajectory. Since calculations of 
the atomic tensors are based on the SOP force field, Tensor-
Calculator is fully compatible with the simulation output 
obtained from Langevin dynamics (LD) simulations with the 
SOP force field.
TensorCalculator can also work with any other type 

of trajectory, as long as the input files are in the correct format. 
The code has a modular architecture, which allows for addi-
tion of any potential energy term (force field) without affecting 
other computational modules. TensorCalculator can 
operate in two modes. In the first mode, it computes the atomic 
stress tensors for an existing simulation input (LD run). In this 
mode, TensorCalculator produces the TNSR output file. 
The TNSR file is a text file with the strings format similar to 
that used in PDB; however, instead of coordinate values for 
each particle it contains stress tensor components per par-
ticle for each trajectory frame (moment of time). This is the 
most time consuming part of the program, and it needs to be 
done only once. In the second mode, TensorCalculator 
produces different outputs with the stress tensor components 
reported as scalar quantities. It prints out the average values of 
the stress invariants, the principal components, and von Mises 
stress and Tresca stress along the simulation trajectory.
TensorCalculator produces an output file for visu-

alization of the first invariant, first principal component and 
von Mises/Tresca stresses. The output file for visualization 
uses the PDB file format to write out the scalar stress quanti-
ties in the last four columns per Cα-atom for each frame of 
trajectory. TensorCalculator works in conjunction with 
the visual molecular dynamics (VMD) package [65] and our 
own lab-written scripts (available in TensorCalculator 
repository). Calculation of the scalar stress quantities for 
visualization and graphics can be done independently from 
stress tensors’ calculations, as long as the input TNSR file 
is provided. Therefore, TensorCalculator allows for a 
quick recalculation as many times as necessary, e.g. for dif-
ferent averaging options (cut-offs). Since the values of stress 
tensors per Cα-atom can fluctuate significantly both in space 
and time, different types of averaging can be tried in order 
to make visualization and graphical representation smooth 
and continuous. The running average can be chosen in order 
to smooth out the stress fluctuations along the trajectory. In 
addition, different types of averaging over the particles can be 
specified, e.g. averaging over the structure segments or within 
a cut-off radius, in order to obtain a smooth and continuous 
stress gradient. Examples of configuration files for running 
the TensorCalculator software package for several 
model systems are provided in the code repository (https://
github.com/BarsegovGroup/TensorCalculator.git).

3.1.4. Benchmark tests of numerical accuracy. Before using 

the first stress invariant I(1)
i , the first principal stress σ(1)

i , 

von Mises stress σvM
i  , and Tresca stress σTr

i  to describe the 

dynamics of stress propagation and distribution in the CCMV 
virus particle, we performed benchmark testing of the Ten-
sorCalculator software. First, we carried out test calcul-
ations of the atomic stress tensors using a trajectory of protein 
forced unfolding for a generic polypeptide, which consists of 
34 beads connected by harmonic springs. The potential energy 
of this simple bead-and-spring model is given by the FENE 
potential (see equation (2)). The dynamics of the system was 
described by solving the Langevin equations  of motion for 
each bead (equation (5)) at T  =  0 K and T  =  300 K. For the 
simulations at finite temperature T  =  300 K, we completed 
100 simulation runs, and the final result was averaged over 
all 100 trajectories due to thermal fluctuations (see Materials 
and Methods for the protocol of force application). At zero 
temperature T  =  0 K, a single simulation run needs to be com-
pleted (no thermal fluctuations).

Using the results of pulling simulations for the bead-and-
spring chain, we calculated the atomic stress tensors for each 
bead and for each moment of time (every frame). The values 
of stress tensors were combined for all frames to probe the 
time-dependence of the following stress characteristics: the 
normal stress, stress invariants and principal components of 
stress as described above (see equations (13) and (14)). The 
normal stress (σN) was obtained by projecting the tensor comp-
onent along the direction of pulling (x-axis) roughly equal to a 
vector connecting the C- and N-termini (end-to-end vector). In 
figure 1(a), we display the time-dependent profiles of the stress 
characteristics averaged over the chain (total of 34 beads). To 
directly compare the stress in a molecular chain due to applied 
pulling force, we converted the stress quantity (given in units 
of Pa) into the molecular force or tension (in units of pico-
Newtons) using the formula: F = (4/3)πa2

effσN , where σN is 
the average normal molecular stress and aeff = 1/N

∑
ai is 

the average radius of cross-sectional area of the chain (see 
equation (11)). Because the chain is formed by the beads of 
radius 3.4 Å , aeff ≈ 3.4 Å. We see that the curve of tension F 
practically collapses on the curve of applied pulling force f (t) 
(figure 1(a)). Both quantities show very good agreement at 
zero temperature T  =  0, and at finite temperature T  =  300 K 
(see figures 1(a) and (b)).

Next, we carried out the calculations of the stress measures 
but for the SOP model of the all-β-sheet WW-domain (see 
Materials and Methods) using the output from pulling simula-
tions at T  =  300 K (a total of 100 independent runs). Figure 1(c) 
shows the result of comparison of mechanical tension in the 
WW-domain derived from the normal stress in the molecule 
σN using the formula F = (4/3)πa2

effσN , and the applied 
pulling force f (t). We see that the agreement between the 
molecular tension F computed with TensorCalculator 
and the applied pulling force f (t) is excellent. Both force-time 
curves show force peaks, which mark the unfolding transition 
in the WW-domain. Small differences are due to the non-zero 
shear component of the stress, which is not analyzed in the 
context of protein forced unfolding. At the force maximum 
(peak force) at time t ≈ 1 ms, most of the protein native struc-
ture is disrupted, and so the concept of volume averaging is 

J. Phys.: Condens. Matter 30 (2018) 044006

https://github.com/BarsegovGroup/TensorCalculator.git
https://github.com/BarsegovGroup/TensorCalculator.git


O Kononova et al

7

not valid. Hence, the discussion of stress dynamics is mean-
ingful only before the global transitions occur in the system 
(e.g. unfolding of a protein or structural collapse of a virus 
shell). Taken together, the results of benchmark testing con-
firm the numerical accuracy of the stress measures computed 
with TensorCalculator.

3.2. Analysis of dynamics of stress propagation  
and distribution in CCMV shell

We used the results of in silico nanomanipulation with the 
empty CCMV protein shell, for which we performed uniaxial 
compression of the capsid structure as described in our pre-
vious study of CCMV dynamics [35, 36]. A total of 20 trajec-
tories of nanoindentation of the CCMV capsid were analyzed 
in which a compressive force was indenting the capsid along 
different directions coinciding with the two-, three-, five-, 
quasi-two-, and quasi-three-fold symmetry axes. The results 
obtained were used to compute all the distributions of mechan-
ical stress measures in the capsid structure. To visualize the 
dynamics of stress propagation, we profiled various stress 
measures as functions of particle deformation—a suitable 
reaction coordinate, and analyzed the surface maps of these 
measures. An example of the evolution of mechanical stress in 
the particle’s structure represented by the first stress invariant 
I(1) (equation (13)) is shown in figure 2 along with the force-
deformation curve (FX-curve) for a representative trajectory of 
CCMV indentation along the two-fold symmetry axis.

In general, the stress tensor given by equation (9) contains 
the kinetic energy term 1/(2Ωi)mivi ⊗ vi, where mi and vi are 
the mass and velocity of ith particle, respectively [44, 49]. 
However, for Langevin dynamics in the overdamped (high-
friction) limit this term gives a small constant contribution. 
Although TensorCalculator has the option to include 
the contribution from kinetic energy terms in the calculation 
of stress measures, in this work we ignored this contribution 
because we focused on the stress difference in various por-
tions of the capsid structure having similar kinetic energy. For 
this reason, the calculated stress tensor does not satisfy the 
energy conservation law [45, 46].

3.2.1. Stress dynamics in CCMV shell. The total stress (with-
out the kinetic contribution discussed above) remains almost 
constant while the particle is loaded mechanically (figure 2). 
This might seem counter-intuitive, since the particle is gradu-
ally loaded mechanically with the CCMV capsid response 
force rising up to F  =  0.65 nN as reflected by the FX-curve. 
In this work, we focused on elucidating the role of struc-
tural changes in various portions of CCMV structure in the 
dynamic evolution of mechanical stress, and so we ignored 
the contributions from kinetic energy terms. These terms (not 
included in equations (9) and (10) and (13)–(16)) describe the 
translocation of various portions of CCMV structure due to 
uniaxial compression. We defined the top and bottom portions 
of CCMV structure as the top and bottom particle caps with 
their heights equal to 30% of total particle diameter. This cor-
responds to 8 nm slices at the top and bottom of CCMV as 
measured along the axis of indentation (see inset in figure 2). 

The remaining part of the CCMV capsid is referred to as the 
side portions of the CCMV structure.

Structure analysis as well as calculation and visualiza-
tion of the stress measures with  TensorCalculator 
reveal inhomogeneous stress distribution on the particle’s 
surface. In the course of mechanical deformation, the CCMV 

Figure 2. Evolution of mechanical stress in CCMV capsid from 
forced nanoindentation in silico (for colored figure go online). Top 
panel: the force (F) versus deformation (X) curve (FX-curve; black 
solid line) and the first stress invariants I(1) for an entire CCMV 
capsid (blue solid curve), and for the top portion (red dashed 
curve), bottom portion (orange curve) and side portion of CCMV 
capsid structure (green dashed curve) for a representative trajectory 
of nanoindentation of CCMV along the two-fold symmetry axis 
(see Materials and Methods). The stress invariants do not include 
contributions from the kinetic term. Bottom panel: snapshots of 
the capsid structure numbered 1–4 displaying the propagation and 
inhomogeneous distribution of the stress on the particle’s surface 
corresponding to X  =  0.6, 3.2, 4.8 and 7.0 nm deformations. The 
color code displayed on the far right shows the stress amplitude. In 
the snapshots, the vertical arrows indicate the direction of external 
compressive force and dashed semi-circles show the indenter 
position. Here and in figures 3–5 the results are shown for one 
representative trajectory of CCMV nanoindentation along the two-
fold symmetry axis obtained with the cantilever tip of radius Rtip = 
20 nm and cantilever base velocity νf = 1.0 μm s−1.
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capsid’s top and bottom portions interact with the cantilever 
tip (indenter) and the substrate surface, respectively (see snap-
shot 1 in figure 2). These structure portions rapidly become 
flat (snapshots 2 and 3) and they transmit mechanical stress 
to the side portions of the CCMV shell. At the same time, 
the CCMV capsid’s side portions bend and accumulate most 
of the stress in the course of compression. This is precisely 
reflected in the dynamics of first stress invariant I(1). The pro-
files of I(1) displayed in figure 2 show that corresponding to 
CCMV capsid deformation by X  =  7 nm, the stress invariant 

for top and bottom portions of CCMV structure I(1)
t  and I(1)

b  

decrease by  ∼19% of their initial values, i.e. by ∆I(1)
t ≈ 0.40±  

0.05 MPa and ∆I(1)
b ≈ 0.38 ± 0.07 MPa, respectively. At 

the same time, the first stress invariant for the side portion of 
CCMV structure I(1)

s  increases by ∆I(1)
s ≈ 0.06  ±  0.03 MPa, 

which accounts for only  ∼3% change from its initial value. 
Hence, we can conclude that the stress development and redis-
tribution from the top and bottom portions of the CCMV struc-
ture to the side portions result in the particle’s shape alteration 
under mechanical loading. These shape changes are reflected 
in stress decrease in the top and bottom portions of the capsid 
structure and stress accumulation in the side portion of the 
CCMV structure. This physical picture fully agrees with our 
previous finding regarding formation of multiple cracks (struc-
ture defects) in the side portion of the CCMV shell, eventually 
leading to the particle’s structural collapse. A supplementary 
movie (stacks.iop.org/JPhysCM/30/044006/mmedia) shows 
the appearance of red spots, which correspond to large stress 
accumulation far exceeding the critical values, which leads to 
particle collapse (see movie S1). Hence, the results obtained 
for CCMV show that the stress distribution and the interplay 
between mechanical stress components in the top, bottom and 
side portions of the CCMV capsid set the limits of particle 
mechanical strength and structural stability.

3.2.2. Effect of thermal fluctuation on stress propagation in 
virus shell. The results described in the previous section dem-
onstrate a strong correlation between the CCMV particle’s 
shape alteration and the dynamics of stress propagation in the 
protein capsid. In our previous work, we showed using nano-
manipulation of the CCMV shell in silico that the virus par-
ticle’s stiffness and resistance to external mechanical factors 
are, in part, due to the capsomers’ gradual rearrangement and 
the particle’s structure remodeling near and under the indenter 
(cantilever tip), which also results in a large entropy increase 
[36]. To further address the issue of entropic effects and to 
probe possible interplay among the entropy changes, defor-
mation dynamics, and stress evolution in the CCMV particle’s 
structure, we carried out simulations of CCMV nanoindenta-
tion at zero temperature T  =  0 K. Next, we directly compared 
the results at zero temperature with those obtained at finite 
temperature T  =  300 K.

Surprisingly, the FX-curves displayed in figure 3(a) show 
that, unlike for the T  =  300 K case, the capsid’s structural 
collapse at T  =  0 K occurs at significantly higher force, i.e. 
F*  =  2.25 nN at T  =  0 K versus F*  =  0.65 nN at T  =  300 K. 
To understand the origin of this drastic reduction in the critical 

force for the CCMV shell global transition to the collapsed 
state, we also analyzed and compared the surface maps 
showing the distributions of the first principal stress component 
in the CCMV shell σ(1) at T  =  0 K and 300 K (see snapshots in 
figure 3(a)). Structural snapshots 1–3 which correspond to the 
equally numbered regions in the FX-spectra show a more rapid 
yet gradual change in the stress intensity at finite temperature 
T  =  300 K as compared to zero temperature. Interestingly, as 
is evident from the CCMV structure snapshots for X  =  3.3 
and 6.2 nm deformation, at T  =  0 K the color (stress intensity) 
shows a step-wise (sudden) change as one goes from the top 
portion to the side portion of the CCMV structure.

Figure 3. Nanomanipulations in silico with CCMV capsid at 
different temperatures (for colored figure go online). Panel (a): the 
FX-curves from nanoindentation experiments at zero temperature 
T  =  0 K (blue curve) versus finite temperature T  =  300 K (red curve) 
displaying a dramatic effect of thermal fluctuations on the particle’s 
mechanical properties. Structural snapshots numbered 1–3 show 
changing intensity of the CCMV surface map for the first principal 
stress component for the entire capsid structure σ(1) in the course 
of capsid deformation at X  =  0.4, 3.3 and 6.2 nm. Color code (same 
as in figure 2) is presented next to structure snapshots. More rapid 
propagation of mechanical stress to the side portions of the capsid 
structure due to thermal fluctuations (at T  =  300 K, left snapshots) 
leads to CCMV particle’s collapse at much lower forces. This 
behavior can be directly compared with the results of CCMV forced 
deformation without thermal fluctuation effects (at T  =  0 K, right 
snapshots). Here, the mechanical stress is accumulated only locally 
in the area around the cantilever tip, while the remaining portion of 
CCMV structure is unstressed. Panel (b) and (c): the profiles of the 
first principal stress component for the top portion σ(1)

t  (solid curves) 
and side portion σ(1)

s  (dashed curves) of the CCMV capsid structure 
versus deformation X obtained at zero temperature T  =  0 K (panel 
(b)) and finite temperature T  =  300 K (panel (c)).
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The observed large differences in the stress amplitude and 
dynamic pattern of stress propagation in the CCMV capsid 
structure prompted us to analyze the first principal stress 

components for the top portion σ(1)
t  and side portion σ(1)

s  

of the CCMV structure, which are displayed in figures 3(b) 
and (c) for zero temperature T  =  0 K and finite temper ature 
T  =  300 K, respectively (see also supplementary movie S1). 
In the absence of thermal fluctuations, initially (for small 

deformation X) both the mechanical stress in top and side 

portions σ(1)
t  and σ(1)

s  gradually increase. Later on, at X ≈ 

6.2 nm deformation, the slope of σ(1)
t  decreases, which implies 

that the stress stored in the top portion of the CCMV shell 
propagates slowly to the side portion (figure 3(b); see also 
supplementary movie S2). Quite unexpectedly, the CCMV 
capsid response is dramatically different when the particle is 
deformed at finite temperature T  =  300 K (figure 3(c), sup-

plementary movie S2). Here, thermal fluctuations lead to a 

0.22 MPa difference between σ(1)
t  and σ(1)

s  at small deforma-
tions (figure 3(c)), and they introduce significant inhomoge-
neity in the stress distribution as is evident from the structure 
snapshots displayed in figure 3. In the course of indentation 
up to X  =  6.2 nm deformation, the stress in the top portion of 

the CCMV structure rapidly decreases by ∆σ
(1)
t = 0.32 MPa, 

whereas the stress in the side portion of the CCMV shell 
increases by ∆σ

(1)
s = 0.02 MPa until the CCMV capsid col-

lapse occurs at X  =  6.2 nm. To summarize, the results obtained 
clearly demonstrate that thermal fluctuations modulate the 
mechanical properties of virus shells, which implies that the 
entropic effects are highly important.

3.2.3. First principal stress helps define the yield strength  
of virus particles. The results of the previous section also indi-
cate that the mechanical evolution of the CCMV capsid can be 
described in terms of the deformation-dependent dynamics of 
stress components for different portions of the capsid struc-
ture (i.e. top and side portions). Hence, there is a question 
whether these stress components can be used to determine a 
yield strength for a particle under study, i.e. the critical stress 
at which the material response to external mechanical loading 
changes from elastic to plastic.

We employed nanomanipulations with the CCMV capsid 
in silico to probe the limit of its elasticity. In these sets of 
computer experiments we mechanically tested the CCMV 
particle by performing the simulations of forward indentation 
when the compressive force is ramped up, which were then 
followed by the simulations of backward tip retraction when 
the compressive force is gradually quenched to zero. The sim-
ulations of backward tip retraction were performed starting 
from the partially deformed structures generated in the course 
of forward indentation with X  =  3.8, 6.2, 7.4, and 9.5 nm 
deformation (see figure S2). The profiles of FX curves for two 
representative trajectories with X  =  3.8 and 9.5 nm deforma-
tion are shown in figure  4(a). The lack of hysteresis in the 
FX-curves show that the CCMV particle completely restores 
its initial shape in the course of force-quench tip retraction if 
the deformation in the forward indentation does not exceed 

X  =  5.0 nm deformation. However, when CCMV deformation 
is larger than X � 5.0 nm, the CCMV structure is not fully 
restored in the course of force-quench tip retraction, which 

Figure 4. Forward indentation and backward tip retraction for 
CCMV capsid in silico (for colored figure go online). Top panel: 
the total molecular deformation force (F) as a function of time 
(t) for the forward indentation (blue curve) and backward tip 
retraction (curves shown in magenta and cyan). The inset shows 
the corresponding force-deformation curves (FX-curves) for the 
forward deformation and backward tip retraction (color denotation 
is same). The areas under the Ft-curves shown in magenta and cyan 
areas indicate, respectively, the moments of time for backward 
tip retractions which correspond to the structures deformed by 
X  =  4 and 9 nm. Bottom panel: the average first principal stress 
component for the top portion σ(1)

t  (red curve) and side portion σ(1)
s  

(green curve) of CCMV structure calculated for the full cycle of 
forward indentation and backward tip retraction starting from the 
9 nm deformed structure. The inset shows same stress quantities 
calculated for the full cycle of forward indentation and backward tip 
retraction starting from the 4 nm deformed structure. Highlighted 
cyan and magenta areas denote same intervals of backward tip 
retraction as on the top panel. The retraction simulations for the 
structures obtained at X  <  4.5 nm (dashed curve) deformation 
exhibit almost linear (i.e. elastic) response of the capsid to 
mechanical perturbation (no hysteresis), while for the structures 
obtained after X  =  4.5 nm we observe significant dissipation of 
energy (large hysteresis) meaning that the particle response is 
plastic). The point of transition from elastic to plastic regime 
corresponds to the equality of the stress components for the top and 
side portions of CCMV capsid.
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also results in the increased hysteresis as observed in the FX 
curves. Next, we analyzed the first principal stress comp-
onents σ(1), which showed that for X  <  5.0 nm deformation 
the mechanical stress in the top portion of CCMV structure 
σ
(1)
t  does not decrease beyond the stress level in the side por-

tion of CCMV capsid σ(1)
s . Indeed, the curves of σ(1)

t  and σ(1)
s  

displayed in the inset in figure 4(b) never cross. This result is 
in contrast to indentations exceeding X  =  5.0 nm deformation, 
for which the stress in the side portion of CCMV shell exceeds 

the stress in the top portion of CCMV structure as soon as the 

curves of σ(1)
t  and σ(1)

s  cross (figure 4(b)).
The results of analysis of the first principle stress comp-

onents σ(1) for different elements of the CCMV shell struc-
ture clearly demonstrate that the equality of the first principal 

stresses in the top portion of CCMV σ(1)
t , to which the external 

compressive force is applied through a cantilever tip, and the 
side portions, where structural defects occur and accumulate 
in the course of mechanical deformation σ(1)

s , can be used to 
formulate a yield strength (and yield deformation) criteria for 
virus capsids. Here, we considered the top versus side por-
tions of the CCMV particle, but these results also hold for 
the bottom versus side portions of the CCMV structure (not 
shown).

3.2.4. Von Mises stress and Tresca stress criteria define the 
critical strength of virus particles. It has been shown that 
the von Mises stress tensor is a suitable measure of mechani-
cal strength of brittle isotropic materials, whereas the Tresca 
stress tensor is a good measure for describing the mechanical 
stability of isotropic ductile materials [53, 54]. We analyzed 
the nanomechanics of the virus capsid from the brittle versus 
ductile materials science perspective using the CCMV shell 
as a suitable model system. To that end, we computed and 
analyzed the von Mises stress tensor and Tresca stress tensor 
for the CCMV capsid, using the output from the simulations 
of CCMV nanoindentation. We analyzed the profiles of these 
quantities as functions of particle deformation X. For simplic-
ity, here we consider von Mises and Tresca stress tensors for 
the top portion and for the side portion of the CCMV struc-
ture. A comparison of von Mises and Tresca stress tensors for 
the bottom and side portions of the CCMV shell gave similar 
results (not shown).

The profiles of average von Mises stress σvM for the top 
portion and side portion of the CCMV structure are presented 
in Figure  5 for four representative indentation trajectories, 
where they are overlaid with the corresponding FX-spectra. 
The profiles of Tresca stress σTr for the top and side portions 
of the CCMV shell overlaid with the FX-curves are shown 
in figure  S3. For all four independent measurements, von 
Mises stress for the top portion of CCMV shell σvM

t  mono-
tonically decreases during forced deformation by ∆σvM

t ≈ 
0.39  ±  0.02 MPa, whereas von Mises stress for the side por-
tion of CCMV structure σvM

s  slowly increases by ∆σvM
s ≈ 

0.02  ±  0.01 MPa (figure 5). This means that the mechan-
ical stress generated at the top by the cantilever tip rapidly 
prop agates from the top to the sides of the CCMV shell and 

gradually accumulates in the side portion of the CCMV struc-
ture. As soon as the von Mises stresses for the top and side 
portions become equal σvM

t = σvM
s  (see curves’ intersection 

in figure  5), a subsequent mechanical loading leads to σvM
s  

being greater than σvM
t . From this point on, any additional 

stress propagation and accumulation in the side portion of 
CCMV results in formation of cracks, which then leads to the 
CCMV transition to the globally collapsed state (figure 5).  
Not coincidentally, the characteristic deformation X where 
σvM

t = σvM
s  corresponds to the moment of time at which the 

indentation force begins to decrease. The force decrease sig-
nifies that the CCMV shell is starting to lose its mechanical 
resistance, which eventually results in the collapse transition 
(see FX-curves in figure 5). Hence, the characteristic deforma-
tion X at which σvM

t = σvM
s  corresponds to the regime where 

the particle deformation is approaching the critical deforma-
tion X → X∗. This result is consistent for all nanoindentation 
assays summarized in figure 5. We also analyzed the output 
from nanoindentation simulations for CCMV compressed 
along three-, five-, quasi-two- and quasi-three- fold sym-
metry axes and found similar results (not shown). Therefore, 
we conclude that the equality of von Mises stress for the top 
and side portions is a good predictor of the structural collapse 
transitions in virus shells.

4. Discussion

Large-size biological particles such as virus shells, protein 
fibers, microtubule polymers, etc are composed of elementary 
building blocks that are formed by the association of protein 
domains. For example, the CCMV capsid is composed of 
multiple copies of a 190 amino acid long capsid protein; fibrin 
fibers are formed by fibrin monomers, ∼3500 residue long, 
organized into double-stranded fibrin protofibrils; microtu-
bule polymers are composed of 10–13 protofilaments, each 
formed by  ∼1000 residue long αβ-tubulin dimers. Clearly 
then, biological particles are discrete structures and there is 
a more philosophical question to consider: how large can a 
particle be so that the concepts of continuum mechanics can 
be applied to describe their physical and materials properties? 
For example, Cauchy stress is widely used in materials sci-
ence to study the physical properties of materials undergoing 
small deformations. On the other hand, we have demonstrated 
in our previous studies of the CCMV capsid [36] and microtu-
bule polymer fragments [24] that the long-wavelength global 
modes, which control the displacements of entire structural 
subunits (i.e. hexon and penton capsomers in the CCMV shell 
or microtubule protofilaments in microtubules), and the sym-
metry of their arrangement, rather than atomic level details, 
determine the mechanical properties of biological particles 
and their response to external physical inputs. Hence, large-
size biological particles do permit a continuum representation, 
which allows use of the apparatus of continuum mechanics 
to describe their properties. Yet, computational molecular 
modeling of biological particles requires having a discrete 
representation of the polypeptide chains, either atomic or sim-
plified (coarse-grained) bead-per-residue, and so there is an 
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issue of how continuum measures can be calculated for the 
discrete structures.

We have overcome this problem by employing a concept 
of the atomic stress tensor σ defined by equations  (9) and 
(10), which captures local deformation stresses induced in a 
small volume element Ω of the particle’s structure under the 
influence of local strain. When defined locally for all particles 
i  =  1, 2, …, N where N is the system size (total number of resi-
dues in the system), i.e. atoms (all-atomic modeling) or amino 
acid residues (coarse-grained schemes), the atomic stress 
tensor σi  provides valuable information about the distribution 
of internal tension in the biological material. Furthermore, 
since the tensor components are averaged over the volume 
element Ω of a large 20 Å cut-off radius, they carry informa-
tion about the pair-wise particle-particle interactions between 
the ith particle and other particles within the cut-off sphere 
(see equation (11)). Therefore, the stress tensor components 
are piecewise continuous functions of space and time. Stress 
tensors are typically used in continuum mechanics to analyze 
the effects of small deformation. In our nanomanipulations 
in silico, we too use experimentally relevant slow force-
loading rates, which translate to the cantilever velocities of 
10−1–101 µm s−1, and so the local deformations are of low 
amplitude. Hence, the differences in the stress tensor comp-
onents ∆σi(∆t) for two consecutive structural configurations 

separated by a short time interval ∆t ≈ 40 μs are, indeed, very 
small (see movie S1).

We have developed the TensorCalculator software 
package for the numerical calculation of the local stress 

tensor σi , the stress invariants I(1)
i , I(2)

i , I(3)
i , the principal 

stress components σ(1)
i , σ(2)

i , σ(3)
i , the von Mises stress σvM

i , 
and the Tresca stress σTr

i  given by equations (9)–(16). These 
are important stress measures widely used in materials science 
and mechanical engineering. The stress invariants are charac-
teristics of the tensors which, unlike the tensors components, 
do not change upon the transformation of coordinates. The 
principal values characterize stress components in the direc-
tion of maximum tension or compression, and they are often 
used by engineers to formulate the yield and failure criteria of 
materials. The von Mises stress and Tresca stress are deriva-
tive quantities from the stress invariants and principal stress 
components. These measures are widely used in mechanical 
engineering to define the yield and failure criteria for brittle 
versus ductile materials [53, 54].

In the current version, TensorCalculator uses the 
coordinates and forces on the Cα-atoms from the numerical 
output obtained using the SOP coarse-grained model. With 
little effort, TensorCalculator can be made compat-
ible with the output from the all-atom MD simulations. 
Furthermore, the output from TensorCalculator can be 

Figure 5. Dynamics of deformation (black FX-curves; right y-axes) and evolution of average von Mises stress for the top portion σvM
t  (red 

curves) and side portion σvM
s  (green curves) of CCMV capsid as functions of the capsid deformation X (left y-axes) (for colored figure 

go online). Shown in four panels are the results from four independent nanoindentations of CCMV in silico. The dashed vertical lines 
denote the critical deformations in the X ≈ 7.0–7.5 nm range, which correspond to the specific times at which all the stress from the top 
portion transfers to and accumulates in the side portion of the CCMV shell. These times correspond to the σvM

t  and σvM
s  curves crossing 

in the graphs. Subsequent force loading beyond 7.0–7.5 nm deformation leads to the stress increase in the side portions, at which point the 
cracks in the CCMV structure start to appear (shown in black circles). This leads to the particle’s transition into the collapsed state at X ≈ 
9.0–9.5 nm. The snapshots display the surface maps of von Mises stress before the collapse for X ≈ 7.0–7.5 nm (left snapshots) and after 
the collapse for X ≈ 9.0–9.5 nm (right snapshots).
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made into the input for VMD software, and so the results of 
calculation of various stress measures can be visualized. The 
TensorCalculator package was successfully tested by 
comparing the time-dependent mechanical tension F(t) in a 
generic bead-and-spring chain and a Cα-based SOP-model of 
the all-β-sheet WW-domain with the applied external (time-
dependent) pulling force (or ramped force) f (t) obtained from 
the protein forced unfolding experiments in silico. The results 
presented in figure 1 show that the agreement between applied 
time-dependent force f (t), which can be accessed from the 
pulling simulations, and time-dependent mechanical ten-
sion F(t) in the bead-and-spring and SOP models, computed 
with TensorCalculator, agree very well. This shows a 
high level of numerical accuracy in the calculation of stress 
measures with TensorCalculator. Excellent agreement 
between the stress quantities known exactly and those com-
puted with TensorCalculator has enabled us to explore 
the dynamics of mechanical stress in a soft capsid of cowpea 
chlorotic mottle virus (CCMV).

Using TensorCalculator, we computed and analyzed 
the distributions of mechanical stress measures in the CCMV 
capsid structure, including the first stress invariant I(1)

i , the 
first principal component σ(1)

i , von Mises stress tensor σvM
i  and 

Tresca stress tensor σTr
i , and profiled them as functions of the 

particle deformation X (figures 2–5). To visualize the results, 
we also constructed the CCMV surface maps of these measures 
using VMD (figures 2, 3, and 5, movie S1) [65]. The results 
obtained show that when a virus capsid is loaded mechani-
cally, there are nontrivial stress dynamics in the CCMV par-
ticle, which results in the inhomogeneous stress distribution in 
various portions of the CCMV structure. Analysis of the first 

stress invariant I(1)
i  (figure 2) revealed the interplay between 

the stress in the side portion and top portion of the CCMV 
shell compressed by the cantilever tip (indenter used in AFM). 
It turns out that, similar to energy, the mechanical stress is 
capable of transferring from one portion of the virus struc-
ture to another. We found that the mechanical stress created in 
the top portion of CCMV by the indenting tip-sphere rapidly 
transfers to the side portion of CCMV where it accumulates 
over time (figures 2–5). Another interesting finding is a strong 
correlation between the deformation-induced alterations in 
the CCMV structure and the overall shape and dynamics of 
stress propagation in the protein capsid.

Previously, Zandi and Reguera employed a similar 
approach to calculate the stress distribution in virus capsids 
of different symmetry types [50]. In that study, a virus particle 
was coarse-grained using the bead-per-capsomer representa-
tion; different capsomers were allowed to interact through the 
Lennard-Jones potential with different parameters for pen-
tamers and hexamers; the equilibrium dynamics of capsomer 
particles was described using Monte-Carlo simulations. Zandi 
and Reguera analyzed stress characteristics which included 
different projections of the stress tensor on spherical coordi-
nates giving the in-plane shear stress and out-of-plane radial 
stress. They observed inhomogeneous distribution of stresses 
in capsomers with large stress values attributed to the vertices 
and edges of icosahedra [50].

In this work, we went beyond the equilibrium dynamics 
of virus particles by considering stress propagation in the 
capsid structure subjected to external mechanical loading. 
Specifically, we explored the dynamics of stress propagation 
and accumulation in a virus shell resulting from particle’s 
structure alterations and shape changes as well as capsomers’ 
symmetry breaking. The Cα-based coarse-grained modeling 
proved to be accurate in describing the mechanical proper-
ties of large biological assemblies [24, 35, 36, 39, 51]. This 
allowed us to obtain, for the first time, detailed microscopic 
information about the dynamics of local stresses at the 
amino-acid-residue level. We observed formation of ‘hot 
spots’, i.e. locations in the virus particle structure with the 
maximum stress, which result in the long run in cracks and 
defects (figures 2 and S1, movies S1). Although the structural 
model (Cα-based coarse-grained SOP model) and Langevin 
dynamics we have utilized and the stress characteristics 
(stress invariants, principal stresses, von Mises and Tresca 
stresses) we have analyzed in this work are different from the 
bead-per-capsomer model and Monte-Carlo moves used by 
Zandi and Reguera [50], the results of their study and our own 
work show very good qualitative agreement. For example, we 
also observe inhomogeneous stress distribution in the shell 
structure.

In our previous studies of the nanomechanics of biological 
particles [18, 24, 36], we showed that the entropy changes 
due to structure remodeling and shape change are signifi-
cant. Hence, it should be expected that thermal effects play 
an important role in the capsid’s evolution, and in defining the 
dynamics and setting the energy scale for global transitions in 
a virus capsid, such as buckling and structural collapse. We 
analyzed the effect of thermal fluctuations on the stress evo-
lution in the CCMV capsid structure by carrying out nanoin-
dentation measurements at zero temperature (T  =  0 K) and 
finite temperature (T  =  300 K). Quite surprisingly, we found 
that the mechanical response (as reflected by the FX-curves), 
the stress magnitude and the pattern of stress propagation and 
distribution in the virus capsid, all change with temperature 
(see figure 3). The area under the FX-curve recorded at a very 
slow force-loading rate is the reversible work wrev, which is 
equal to the equilibrium Gibbs free energy change for the col-
lapse transition ∆Geq, i.e. wrev = ∆Geq = ∆H − T∆S, where 
∆H and ∆S are the enthalpy change and the entropy change, 
respectively. Hence, the entropic contribution T∆S to the free 
energy change ∆G can be estimated by subtracting the work 
done on the capsid by the indenter at finite temperature from 
the work performed at zero temperature. For the native state as 
the initial state (snapshot 1 in figure 3) and the collapsed state 
as the final state (snapshot 3 in figure 3), we obtain from the 
FX-curves in figure 3 that for the CCMV structural collapse 
T∆S ≈ 920 kcal mol−1. This is almost three-fold larger than 
the the enthalpy change ∆H ≈ 370 kcal mol−1.

The large entropic contributions to the free energy of 
mechanical deformation of biological particles raise ques-
tions about some of the theoretical methods used to model the 
dynamics of deformation of biological particles. For example, 
the finite elements analysis [20] and variances of elastic net-
work modeling [25] analyze the potential energy changes, 
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while the entropy changes are ignored. In a sense, this is similar 
to setting T  =  0 K in our nanoindentation experiments in silico. 
However, our results clearly demonstrate large differences in 
the FX-spectra collected at zero and finite temperature, as well 
as in the amplitude and pattern of stress evolution in the CCMV 
shell. For example, at T  =  0 K the mechanical stress in the top 
and side portions of the CCMV structure both increase, whereas 
at T  =  300 K the stress in the top decreases and the stress in the 
sides increases (figure 3). Hence, thermal fluctuations modu-
late the mechanical and materials properties of virus capsids, 
and the entropic effects are significant and not to be ignored. 
The importance of the entropic effects, clearly expressed in the 
quite different stress distributions presented for the T  =  0 K and 
T  =  300 K (see figure 3), suggest that investigators should be 
cautious in their application of continuum mechanics models, 
such as finite element analysis and elastic network modeling, to 
structural models of biological particles.

In materials science, a yield strength describes the critical 
stress at which the material response to an external mechan-
ical loading changes from elastic to plastic. The meaning of 
the term ‘plastic’ is that above a critical value of stress (or 
deformation), the deformed material will never return to its 
original shape and will not fully restore its initial structure 
when the applied stress is quenched. We tested if stress meas-
ures can be used to predict the onset of plasticity in viral 
shells. Using TensorCalculator, we computed the first 
principle stress components for the top and side portions of the 

CCMV structure σ(1)
t  and σ(1)

s  and profiled them as functions 
of deformation time (figure 4). Our results indicate that for a 

small (forward) deformation the curves of σ(1)
t  and σ(1)

s  do not 
cross, and when the compressive force is gradually quenched 
to zero during the backward tip retraction, the CCMV capsid 
fully restores back its initial state (both structure and shape). 
However, when the deformation is large so that the curves of 

σ
(1)
t  and σ(1)

s  cross, the capsid does not return back to its initial 
state. Hence, the relationship between the first principal stress 
components for the top and side portions of the viral capsid 
structure, i.e.

σ
(1)
t � σ(1)

s (17)

sets the limit of elastic deformation in soft viral capsids.
We also computed the von Mises stresses and Tresca 

stresses for the top portion, σvM
t  and σTr

t , and for the side 
portions of the CCMV structure, σvM

s  and σTr
s , and we pro-

filed these quantities as functions of deformation. The results 
obtained show that the moment when the curves of σvM

t  and 
σvM

s  cross corresponds to the critical deformation X  =  X* and 
critical force F  =  F* (see force maxima in figure 5) at which 
the collapse transition occurs. Analysis of the results of Tresca 
tensor calculations gave similar results (figure S3). Hence, the 
relationship between von Mises stresses for the top and side 
portions, i.e.

σvM
s � σvM

t (18)

marks the onset of the viral capsid’s structural failure.

Taken together, the results we have obtained in this study 
for the first principle stress components and for von Mises 
stress and Tresca stress components agree very well with our 
previous findings regarding mechanical excitation of various 
capsid’s degrees of freedom upon deformation [18]. Indeed, 
the stress in the top portion of the CCMV shell corresponds to 
the non-linear Hertzian deformation, whereas the stress in the 
side portion results in bending of beams [18].

To conclude, we have developed and tested a new com-
putational methodology for accurate numerical calculation of 
the local stress measures and its derivative quantities using 
the output from the MD simulations of compressive force-
induced nanoindentation of biological particles. This method-
ology employs the atomic tensor approach to computing the 
stress measures traditionally used in continuum mechanics for 
the discrete atomic or coarse-grained structures of large-size 
biological assemblies. We successfully applied this method-
ology to explore the evolution of mechanical stress in a spe-
cific example of viral capsids—the CCMV shell. Numerical 
subroutines have been organized into a lab-written software 
package called TensorCalculator, which can now be 
used to study the stress evolution and dynamics of defects 
in viral capsids and other protein assemblies tested mechani-
cally. The TensorCalculator code is open source code 
and it is fully available for downloading at https://github.com/
BarsegovGroup/TensorCalculator.git.
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