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a b s t r a c t

The problem of the asymptotic dynamics of a quarantine/isolationmodelwith time delay is
considered, subject to two incidence functions, namely standard incidence and the Holling
type II (saturated) incidence function. Rigorous qualitative analysis of the model shows
that it exhibits essentially the same (equilibrium) dynamics regardless of which of the
two incidence functions is used. In particular, for each of the two incidence functions,
the model has a globally asymptotically stable disease-free equilibrium whenever the
associated reproduction threshold quantity is less than unity. Further, it has a unique
endemic equilibrium when the threshold quantity exceeds unity. For the case with the
Holling type II incidence function, it is shown that the unique endemic equilibrium of the
model is globally asymptotically stable for a special case. The permanence of the disease is
also established for themodel with the Holling type II incidence function. Furthermore, it is
shown that adding time delay to and/or replacing the standard incidence function with the
Holling type II incidence function in the corresponding autonomous quarantine/isolation
model with standard incidence (considered in Safi and Gumel (2010) [10]) does not alter
the qualitative dynamics of the autonomous system (with respect to the elimination or
persistence of the disease). Finally, numerical simulations of the model with standard
incidence show that the disease burden decreases with increasing time delay (incubation
period). Furthermore, models with time delay seem to be more suitable for modeling the
2003 SARS outbreaks than those without time delay.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The aim of this study is to assess the roles of time delay (to model the incubation period of a disease) and the choice
of incidence function in the transmission dynamics of a communicable disease in the presence of quarantine (of exposed
individuals) and isolation (of individuals with disease symptoms). Quarantine and isolation measures have been widely
used, over the decades, to control the spread of diseases such as yellow fever, smallpox, measles, ebola, pandemic influenza,
diphtheria, plague, cholera, and, more recently, severe acute respiratory syndrome (SARS) [1–9]. To achieve the main
objective of this study, the autonomous quarantine/isolation presented in [10] will be extended to incorporate time delay
and two different incidence functions. The functional forms of the incidence functions to be considered are derived on the
basis of the framework described below.

Let S(t), I(t) and N(t) denote the number of susceptible individuals, the number of infectious individuals and the total
size of the population at time t , respectively. Further, let β(N) be the average number of contacts sufficient for transmitting
infection (effective contact rate). Then, the force of infection, given by β(N)I/N , represents the average number of contacts
that a susceptible individual makes with infectious individuals per unit time. If β(N) = βN (i.e., the contact rate depends
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on the total population, N), then the incidence function g1(I) = βI is calledmass action incidence. If β(N) = β (a constant),
then the incidence function g2(I) = βI/N is called standard incidence [11,12]. These two functions are widely used in the
modeling the transmission dynamics of the human diseases [13,14]. Another widely used incidence function is the Holling
type II incidence function, given by g3(I) =

βI
1+ωI , with ω > 0, [15–18]. The non-linear incidence function of type g3(I)was

first introduced by Capasso and Serio [15], in their study of the cholera epidemic in Bari, Italy. Themain justification for using
such a functional form of the incidence function stems from the fact that the number of effective contacts between infective
individuals and susceptible individuals may saturate at high infective levels due to crowding of infective individuals, or due
to the preventive measures taken by (and behavioral changes of) the susceptible individuals in response to the severity of
the disease [16–18].

The paper is organized as follows. Themodel with standard incidence is formulated in Section 2. The existence and global
asymptotic stability of its disease-free equilibrium (DFE), as well as the existence of its endemic equilibrium point (EEP), are
established in Section 3. The model with the Holling type II incidence function is formulated and analyzed in Section 4. The
permanence of the disease is also established for this model.

2. Model formulation: standard incidence

Themodel to be considered in this study is that for the transmission dynamics of an infectious disease, in the presence of
quarantine of exposed individuals and isolation of infected individuals with disease symptoms, and is given by the following
delayed system of integro-differential equations:

dS
dt

= Π −
βS(t)I(t)

N(t)
− µS(t),

E =

∫ t

t−τ

βS(x)I(x)e−(µ+σ)(t−x)

N(x)
dx,

dI
dt

=
e−τ(µ+σ)βS(t − τ)I(t − τ)

N(t − τ)
− (γ1 + φ + µ+ δ1)I(t),

dQ
dt

= σE(t)− (α + µ)Q (t),

dH
dt

= αQ (t)+ φI(t)− (γ2 + µ+ δ2)H(t),

dR
dt

= γ1I(t)+ γ2H(t)− µR(t),

(1)

where S, E, I,Q ,H, R denote the populations of susceptible, exposed, infectious, quarantined, hospitalized and recovered
individuals at time t , respectively.

Thus, the total human population at time t , denoted by N(t), is given by

N(t) = S(t)+ E(t)+ I(t)+ Q (t)+ H(t)+ R(t).

The initial data for the model (1) is given by

S(θ) = φ1(θ), E(θ) = φ2(θ), I(θ) = φ3(θ),

Q (θ) = φ4(θ), H(θ) = φ5(θ), R(θ) = φ6(θ), θ ∈ [−τ , 0],
(2)

where φ = [φ1, φ2, φ3, φ4, φ5, φ6] ∈ C such that φi(θ) = φi(0) ≥ 0 for (θ ∈ [−τ , 0], i = 1, 3, 4, 5, 6), φ2(θ) ≥ 0
(θ ∈ [−τ , 0]), and C denotes the Banach space C([−τ , 0],R6) of continuous functions mapping the interval [−τ , 0] into
R6, equipped with the uniform norm defined by ‖φ‖ = supθ∈[−τ ,0] |φ(θ)|. Furthermore, it is assumed that φi(0) > 0
(for i = 1, . . . , 6).

In (1), the parameter Π represents the rate of recruitment into the population, and β is the effective contact rate. The
delay parameter τ > 0 represents the associated incubation period [19] (see Table 1 for a list of some communicable diseases
and their respective incubation periods). Exposed individuals are quarantined at a rate α. Quarantined and infectious
individuals are hospitalized at the rates α and φ, respectively. The parameters γ1 and γ2 represent the recovery rates of
infectious and hospitalized individuals, respectively, while µ is the natural death rate. Finally, δ1 and δ2 are the disease-
induced death rates for infectious and hospitalized individuals, respectively. A flow diagram of the model (1) is given in
Fig. 1, and the associated variables and parameters are described and estimated in Tables 2 and 3. It should be stated that
the parameter values in Table 3 are relevant to the transmission dynamics of SARS [1,20–22].

The delayedmodel (1) is an extension of the autonomous quarantine/isolationmodel presented in [10] by incorporating a
time delay (τ > 0), but with the assumption of loss of infection-acquired immunity relaxed (i.e., that recovered individuals
do not become susceptible again) and the assumption that hospitalized individuals do not transmit infection. One of the
main aims of this study is to determine whether or not incorporating time delay (for the incubation period) alters the
qualitative dynamics of the autonomous quarantine/isolation model considered in [10]. Another major objective is to
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Fig. 1. Flow diagram of the delayed model (3).

determine whether replacing the standard incidence function in the model (1) with the Holling type II incidence function
g3(I) =

I
1+ωI


will introduce new (or different) dynamical features for the delayed model (1).

2.1. Basic properties

Using the generalized Leibnitz rule of differentiation [25], the model (1) can be rewritten as a system of delayed
differential difference equation given by

dS
dt

= Π −
βS(t)I(t)

N(t)
− µS(t),

dE
dt

=
βS(t)I(t)

N(t)
−

e−τ(µ+σ)βS(t − τ)I(t − τ)

N(t − τ)
− (σ + µ)E,

dI
dt

=
e−τ(µ+σ)βS(t − τ)I(t − τ)

N(t − τ)
− (γ1 + φ + µ+ δ1)I(t),

dQ
dt

= σE(t)− (α + µ)Q (t),

dH
dt

= αQ (t)+ φI(t)− (γ2 + µ+ δ2)H(t),

dR
dt

= γ1I(t)+ γ2H(t)− µR(t).

(3)

The basic qualitative properties of the model (3) will now be investigated.

Lemma 1. The solution (S(t), E(t), I(t),Q (t),H(t), R(t)) of the system (3), with the initial data (2), exists for all t ≥ 0 and is
unique. Furthermore, S(t) > 0, E(t) > 0, I(t) > 0,Q (t) > 0,H(t) > 0, and R(t) > 0 for all t ≥ 0.
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Table 1
Incubation period for some of communicable
diseases [14,23].

Disease Incubation period (days)

Chicken pox 14–16
Ebola 2–21
Influenza 1–3
Measles 9–12
SARS Up to 10
Smallpox 7–17

Table 2
Description of variables and parameters of the model (3).

Variable Description

S(t) Population of susceptible individuals
E(t) Population of exposed individuals
I(t) Population of infectious individuals
Q (t) Population of quarantined individuals
H(t) Population of hospitalized individuals
R(t) Population of recovered individuals

Parameter Description

Π Recruitment rate into the community
µ Natural death rate
β Effective contact rate
τ Incubation period
ω Parameter for measuring psychological or inhibitory effect
σ Quarantine rate for exposed individuals
α Hospitalization rate for quarantined individuals
φ Hospitalization rate for infectious individuals
ψ Rate of loss of infection-acquired immunity
γ1 Recovery rate for infectious individuals
γ2 Recovery rate for hospitalized individuals
δ1 Disease-induced death rate for infectious individuals
δ2 Disease-induced death rate for hospitalized individuals

Table 3
Estimated values of the parameters of the
model (3).

Parameter Value (per day) Source

Π 136 [21]
β (0, 0.5) [21]
µ 0.0000351 [21]
γ1 0.03521 [24]
γ2 0.042553 [24]
δ1 0.04227 [22]
δ2 0.027855 [24]
κ 0.156986 [20]
α 0.156986 [20]
φ 0.20619 [24]
σ 0.1 [21]
ω 0.1 Assumed

Proof. System (3) can be written as (where a dot represents differentiation with respect to t)

Ẋ = f (t, Xτ ),

where X = (S(t), E(t), I(t),Q (t),H(t), R(t)) ∈ C. Since f (t, X) is continuous and Lipschitz in X , it follows, by the Fun-
damental Theory of Functional Differential Equations [26], that the system (3) has a unique solution (S(t), E(t), I(t),Q (t),
H(t), R(t)) satisfying the initial data (2).

It is clear from the first equation of the model (3) that

dS
dt

≥ −

[
βS(t)I(t)

N(t)
+ µ

]
S(t),
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and so

S(t) ≥ S(0) exp

−

∫ t

0

[
βS(u)I(u)

N(u)
+ µ

]
du


> 0, for all t > 0.

Similarly, it follows from the third equation of the system (3) that I(t) > 0 for all t > 0. Since the second equation of (3)
is equivalent to the second equation of (1), it follows (by using the fact that S(t) > 0 and I(t) > 0 for all t > 0, together
with the fact that all the parameters of the model are positive) that

E(t) =

∫ t

t−τ

βS(x)I(x)e−(µ+σ)(t−x)

N(x)
dx > 0.

Furthermore, using the same approach as for S(t) above, it can be shown that Q (t) > 0,H(t) > 0 and R(t) > 0 for all
t > 0. �

Lemma 2. The closed set

D =


(S, E, I,Q ,H, R) ∈ R6

+
: S + E + I + Q + H + R ≤

Π

µ


is positively invariant.

Proof. Adding all the equations of the model (3) gives

dN
dt

= Π − µN − (δ1I + δ2H). (4)

Since dN/dt ≤ Π − µN , it follows that dN/dt ≤ 0 if N ≥ Π/µ. Thus,

N(t) ≤ N(0)e−µt
+
Π

µ


1 − e−µt .

In particular, N(t) ≤ Π/µ if N(0) ≤ Π/µ. Hence, the region D is positively invariant. Further, if N(0) > Π/µ, then either
the solution enters D in finite time, or N(t) approaches Π/µ asymptotically. Hence, the region D attracts all solutions
in R6

+
. �

3. Global stability of the DFE

The DFE of the system (3), obtained by setting the derivatives in the model (3) to zero, is given by

E0 =


Π

µ
, 0, 0, 0, 0, 0


. (5)

The global asymptotic stability property of E0 will be explored using the methodology given in [25,27]. It is convenient to
define

RS
0(τ ) = RS

0 =
βe−τ(µ+σ)

γ1 + φ + µ+ δ1
.

The quantityRS
0 is known as the basic reproduction number of the delayedmodel (3). It measures the average number of new

infections generated by a single infectious individual in a completely susceptible population. It is worth noting that RS
0(τ )

is a decreasing function of τ (and RS
0(0) > RS

0(τ ) for all τ > 0).

Theorem 1. The DFE of the model (3), given by (5), is GAS in D whenever RS
0 < 1.

Proof. Let RS
0 < 1. Furthermore, let (S(t), E(t), I(t),Q (t),H(t), R(t)) be any positive solution of the system (3) with the

initial data (2). The third equation of the system (3) can be rewritten as

I(t) =

∫ t

−∞

βe−τ(σ+µ)S(x − τ)I(x − τ)

N(x − τ)
e−(γ1+φ+µ+δ1)(t−x)dx,

≤

∫ t

−∞

βe−τ(σ+µ)I(x − τ)e−(γ1+φ+µ+δ1)(t−x)dx, since S(t) ≤ N(t) in D. (6)

It follows, by using the substitution s = t − x in (6), that

I(t) ≤

∫
∞

0
βe−τ(σ+µ)I(t − s − τ)e−(γ1+φ+µ+δ1)(s)ds. (7)
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Taking the lim sup of both sides of (7), and noting that lim sup

f ≤


lim sup f [25], gives

lim sup
t→∞

I(t) ≤

∫
∞

0
βe−τ(σ+µ)e−(γ1+φ+µ+δ1)(s)ds lim sup

t→∞

I(t),

=
βe−τ(µ+σ)

γ1 + φ + µ+ δ1
lim sup
t→∞

I(t) = RS
0 lim sup

t→∞

I(t). (8)

Since RS
0 < 1, it follows that lim supt→∞ I(t) < lim supt→∞ I(t). This is a contradiction, unless lim supt→∞ I(t) = 0. Thus,

for any ϵ > 0 sufficiently small, there exists a T > 0 such that if t > T , then I(t) < ϵ.
Using S(t)/N(t) ≤ 1 and I(t) < ϵ, for t > T , in the second equation of (3) gives

Ė ≤ βϵ − (σ + µ)E.

Furthermore, by the comparison theorem [28],

lim sup
t→+∞

E(t) ≤
βϵ

σ + µ
.

Since ϵ is arbitrary, it follows (by setting ϵ → 0) that

lim sup
t→+∞

E(t) = 0.

Hence, for ϵ1 > 0 small, there exists a T1 > T such that if t > T1, then E(t) < ϵ1. Using E(t) < ϵ1, for t > T1, in the fourth
equation of (3) gives

Q̇ ≤ ϵ1σ − (α + µ)Q ,

and so

lim sup
t→+∞

Q (t) ≤
ϵ1σ

α + µ
.

Hence,

lim sup
t→+∞

Q (t) = 0.

In a similar way, it can be shown that

lim sup
t→+∞

H(t) = 0 and lim sup
t→+∞

R(t) = 0.

Finally, it follows from the first equation of (3), for t > T , that

Ṡ ≥ Π − βϵ − µS,

and so

lim inf
t→+∞

S(t) ≥
Π − βϵ

µ
. (9)

Hence, by letting ϵ → 0 in (9),

lim inf
t→+∞

S(t) ≥
Π

µ
.

Additionally, since lim supt→+∞ S(t) ≤
Π

µ
, it follows that

lim
t→+∞

S(t) =
Π

µ
.

Thus,

lim
t→+∞

(S(t), E(t), I(t),Q (t),H(t), R(t)) =


Π

µ
, 0, 0, 0, 0, 0


= E0. �

This result (Theorem 1) is consistent with that given for the non-delayed quarantine/isolation model in [10] (for the case
where recovered individuals do not lose their infection-acquired immunity and hospitalized individuals do not transmit
infection for the DFE of the model considered in [10]). That is, this result shows that adding time delay to the non-delayed
(autonomous) quarantine/isolationmodel in [10] does not alter the global asymptomatic stability property of the DFE (E0) of
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Fig. 2. Simulations of the delayed model (3), showing the total number of infected individuals as a function of time. Parameter values used are as given in
Table 3, with τ = 20 and β = 0.15 (so RS

0 = 0.7150 < 1 and τ > τ Sc = 16.6470).

the corresponding non-delayedmodel given in [10]. The epidemiological implication of Theorem 1 is that the combined use
of quarantine and isolation can lead to disease elimination from the community if the two interventions can bring (and keep)
the threshold quantity, RS

0, to a value less than unity (i.e., for the delayed model (3), the condition RS
0 < 1 is necessary and

sufficient for disease elimination).
By solving for the delay parameter (τ ) from the equation RS

0 = 1 (and noting Theorem 1), the following result can be
obtained.

Lemma 3. The DFE of the model (3), given by (5), is GAS in D whenever

τ > ln


β

µ+ φ + γ1 + δ1


1

σ+µ


= τ Sc .

In other words, Lemma 3 shows that the disease will be eliminated from the community if and only if τ > τ Sc . Furthermore,
it follows from Lemma 3 that the longer infected individuals remain in the exposed class (E), the higher the likelihood of
disease elimination from the community. Fig. 2 depicts the numerical results obtained by simulating the model (3) using
the parameter values in Table 3, and various initial conditions, for the case when τ > τ Sc (R

S
0 < 1). It is evident from this

figure that all solutions converged to the DFE, E0 (in line with Theorem 1 and Lemma 3).

3.1. The existence of an EEP

In this section, the possible existence and stability of endemic (positive) equilibria of the model (3) will be explored.
Let E S

1 = (S∗∗, E∗∗, I∗∗,Q ∗∗,H∗∗, R∗∗) represent any arbitrary endemic equilibrium point of the model (3), so N∗∗
=

S∗∗
+ E∗∗

+ I∗∗
+ Q ∗∗

+ H∗∗
+ R∗∗. Solving the equations of the model (3) at the steady state gives

S∗∗
=

Π

λ∗∗ + µ
, E∗∗

=
λ∗∗S∗∗(1 − e−τ(σ+µ))

σ + µ
, I∗∗

=
e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ+ δ1
,

Q ∗∗
=

σE∗∗

α + µ
, H∗∗

=
αQ ∗∗

+ φI∗∗

γ2 + µ+ δ2
, R∗∗

=
γ1I∗∗

+ γ2H∗∗

µ
,

(10)

where

λ∗∗
=
βI∗∗

N∗∗
. (11)

For computational convenience, the expressions in (10) are rewritten in terms of λ∗∗S∗∗ as below:

E∗∗
=
λ∗∗S∗∗(1 − e−τ(σ+µ))

σ + µ
, I∗∗

=
e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ+ δ1
,

Q ∗∗
= P1λ∗∗S∗∗, H∗∗

= P2λ∗∗S∗∗, R∗∗
= P3λ∗∗S∗∗,

(12)
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Fig. 3. Simulations of the delayed model (3), showing the total number of infected individuals as a function of time. Parameter values used are as given in
Table 3, with τ = 18 and β = 0.1 (so RS

0 = 1.0298 > 1 and τ < τ Sc = 20.9263).

where

P1 =
σ(1 − e−τ(σ+µ))

(σ + µ)(α + µ)
, P2 =

αP1
γ2 + µ+ δ2

+
φe−τ(σ+µ)

(γ2 + µ+ δ2)(γ1 + φ + µ+ δ1)
,

P3 =
γ1e−τ(σ+µ)

µ(γ1 + φ + µ+ δ1)
+
γ2P2
µ
.

Substituting the expressions in (12) into (11) gives

λ∗∗S∗∗
+
λ∗∗S∗∗(1 − e−τ(σ+µ))λ∗∗

σ + µ
+
λ∗∗e−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ+ δ1

+ λ∗∗P1λ∗∗S∗∗
+ λ∗∗P2λ∗∗S∗∗

+ λ∗∗P3λ∗∗S∗∗
=
βe−τ(σ+µ)λ∗∗S∗∗

γ1 + φ + µ+ δ1
. (13)

Dividing each term in (13) by λ∗∗S∗∗ (and noting that, at the endemic steady state, λ∗∗S∗∗
≠ 0) gives

1 + P4λ∗∗
=

βe−τ(σ+µ)

γ1 + φ + µ+ δ1
= RS

0. (14)

Since

P4 =
1 − e−τ(σ+µ)

σ + µ
+

e−τ(σ+µ)

γ1 + φ + µ+ δ1
+ P1 + P2 + P3 ≥ 0,

it follows from (14) that

λ∗∗
=

RS
0 − 1
P4

> 0, whenever RS
0 > 1. (15)

The components of the endemic equilibrium, E S
1 , can then be obtained by substituting the unique value of λ∗∗, given in (15),

into the expressions in (10). Thus, the following result is established.

Lemma 4. The model (3) has a unique endemic (positive) equilibrium, given by E S
1 , whenever RS

0 > 1.

Although not proven here, numerical simulations of the model (3) suggest that the EEP (E S
1 ) of the model (3) is asymp-

totically stable for RS
0 > 1 (Fig. 3). It should be mentioned, however, that the solutions depicted in Fig. 3 did not converge

to zero, as they appear to (see Fig. 4 for a blow up of the tail end of Fig. 3). In other words, Figs. 3 and 4 show convergence
of the solutions to the unique EEP, E S

1 , of the model (3) for the case RS
0 > 1. The following conjecture is suggested:

Conjecture 1. The unique EEP, E S
1 , of the model (3) is LAS whenever RS

0 > 1.
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Fig. 4. Blow up of the tail end of Fig. 3.

In summary, the model (3) has a globally asymptotic stable disease-free equilibrium whenever RS
0 < 1, and it has a

unique endemic equilibrium whenever RS
0 > 1. These results are consistent with those reported for the corresponding

autonomous (non-delayed) quarantine/isolation model in [10]. In other words, adding time delay to the non-delayed
quarantine/isolation model in [10] does not alter its qualitative (equilibrium) dynamics. The next task is to determine
whether or not the dynamics of the non-delayed quarantine/isolation model in [10] is affected by the combined use of time
delay and the substitution of the standard incidence function with the Holling type II incidence function. This is considered
below.

4. The model with Holling type II incidence

In this section, the delayedmodel (3) will be analyzed subject to the use of the Holling type II incidence function, given by
g3(I) =

I
1+ωI (with ω > 0), in place of the standard incidence function. The delayed model (3), with the standard incidence

function replaced by g3(I), is given by

dS
dt

= Π −
βS(t)I(t)
1 + ωI(t)

− µS(t),

dE
dt

=
βS(t)I(t)
1 + ωI(t)

−
e−τ(µ+σ)βS(t − τ)I(t − τ)

1 + ωI(t − τ)
− (σ + µ)E,

dI
dt

=
βe−τ(µ+σ)S(t − τ)I(t − τ)

1 + ωI(t − τ)
− (γ1 + φ + µ+ δ1)I(t),

dQ
dt

= σE(t)− (α + µ)Q (t),

dH
dt

= αQ (t)+ φI(t)− (γ2 + µ+ δ2)H(t),

dR
dt

= γ1I(t)+ γ2H(t)− µR.

(16)

4.1. Global stability of the DFE

The delayed system (16) has the same DFE, E0, as the system (3). Further, the invariant region, D , holds for system (16)
as well. The GAS property of the DFE of the system (16) will be explored using the methodology given in [29]. Define

RH
0 =

βΠe−τ(µ+σ)

µ(γ1 + φ + µ+ δ1)
.

The proof is based on using the following result.
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Lemma 5 ([29]). Consider the following delay differential equation:

u̇ =
au(t − τ)

1 + ωu(t − τ)
− bu(t), u(θ) = φ(θ) ≥ 0, θ ∈ [−τ , 0), φ(0) > 0 (17)

where a, b and ω are positive constants, τ ≥ 0; then:

(i) Eq. (17) has a trivial equilibrium u = 0 and it is globally asymptotically stable if a < b.
(ii) If a > b, Eq. (17) has a unique positive equilibrium u∗

=
a−b
ωb which is globally asymptotically stable.

Theorem 2. The DFE of the model (16), given by (5), is GAS in D whenever RH
0 < 1.

Proof. Let RH
0 < 1. Furthermore, let (S(t), E(t), I(t),Q (t),H(t), R(t)) be any positive solution of the system (16) with the

initial data (2). Since RH
0 < 1, it is clear that

βe−τ(µ+σ)Π/µ < γ1 + φ + µ+ δ1. (18)

Since S(t) ≤ Π/µ in D for all t > 0, it follows from the second equation of (16) that

İ ≤
βΠe−τ(µ+σ)I(t − τ)

µ[1 + ωI(t − τ)]
− (γ1 + φ + µ+ δ1)I(t). (19)

Consider, next, the auxiliary (with equality) equation associated with the inequality (19) (where u is a dummy variable)

u̇ =
βΠe−τ(µ+σ)u(t − τ)

µ[1 + ωu(t − τ)]
− (γ1 + φ + µ+ δ1)u(t). (20)

Using Item (i) of Lemma 5, together with Eq. (18), in (20) gives

lim
t→+∞

u(t) = 0.

Thus, it follows from (19), using the comparison theorem [28], that

lim sup
t→+∞

I(t) = 0.

Thus, for any ϵ > 0 sufficiently small, there exists a T > 0 such that if t > T , then I(t) < ϵ. Using S ≤ Π/µ in D and I < ϵ,
for t > T , in the second equation of (16) (note that g(I) is monotone increasing) gives

Ė ≤
βΠϵ

µ(1 + ωϵ)
− (σ + µ)E.

Furthermore, by the comparison theorem,

lim sup
t→+∞

E(t) ≤
βΠϵ

µ(σ + µ)(1 + ωϵ)
.

Since ϵ is arbitrary, it follows (by setting ϵ → 0) that

lim sup
t→+∞

E(t) = 0.

Hence, for ϵ1 > 0 small, there exists a T1 > T such that if t > T1, then E(t) < ϵ1. Using E(t) < ϵ1, for t > T1, in the fourth
equation of (16) gives

Q̇ ≤ ϵ1σ − (α + µ)Q ,

and so

lim sup
t→+∞

Q (t) ≤
ϵ1σ

α + µ
.

Hence,

lim sup
t→+∞

Q (t) = 0.

In a similar way, it can be shown that

lim sup
t→+∞

H(t) = 0 and lim sup
t→+∞

R(t) = 0.
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Fig. 5. Simulations of the delayed model (16), showing the total number of infected individuals as a function of time. Parameter values used are as given
in Table 3, with τ = 20 and β = 0.0025809 (so RH

0 = 0.1599 < 1 and τ > τHc = 16.3340).

Finally, it follows from the first equation of (16), for t > T , that

Ṡ ≥ Π −
βSϵ

1 + ωϵ
− µS,

so, using the comparison theorem,

lim inf
t→+∞

S(t) ≥
Π(1 + ωϵ)

µ+ ϵ(β + ωµ)
.

Hence (by letting ϵ → 0)

lim inf
t→+∞

S(t) ≥
Π

µ
.

Additionally, since lim supt→+∞ S(t) ≤
Π

µ
in D it follows that

lim
t→+∞

S(t) =
Π

µ
.

Thus,

lim
t→+∞

(S(t), E(t), I(t),Q (t),H(t), R(t)) =


Π

µ
, 0, 0, 0, 0, 0


= E0. �

The epidemiological implication of the above result (Theorem 2) is that the combined use of quarantine and isolation can
lead to disease elimination if the two interventions can bring (and keep) the threshold quantity, RH

0 , to a value less than
unity (i.e., the condition RH

0 < 1 is necessary and sufficient for disease elimination).
By solving for τ from the equation RH

0 = 1 (and noting Theorem 2), the following result can be obtained.

Lemma 6. The DFE of the model (16), given by (5), is GAS in D whenever τ > ln


βΠ

µ(µ+φ+γ1+δ1)


1

σ+µ


= τHc .

In other words, like in the case of system (3), the disease will be eliminated from the community if and only if τ > τHc .
Fig. 5 depicts the numerical results obtained by simulating themodel (16) using the parameter values in Table 3 and various
initial conditions for the case τ > τHc (R

H
0 < 1). It is evident from this figure that all solutions converged to the DFE, E0

(in line with Theorem 2 and Lemma 6).

4.2. The existence of an EEP and disease permanence

In this section, the possible existence of endemic (positive) equilibria of the model (16), and the permanence of the
disease, will be explored.
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4.2.1. The existence of an EEP
Let EH

1 = (S∗∗
; E∗∗

; I∗∗
;Q ∗∗

;H∗∗
; R∗∗) represent any arbitrary endemic equilibrium of the model (16). Solving the equa-

tions of the model (16) at the steady state gives

S∗∗
=

Π(1 + ωI∗∗)

µ(1 + ωI∗∗)+ βI∗∗
, E∗∗

=
β(1 − e−(σ+µ)τ )S∗∗I∗∗

σ + µ
,

S∗∗
=
(1 + ωI∗∗)(γ1 + φ + µ+ δ1)

βe−(σ+µ)τ
, Q ∗∗

=
σE∗∗

α + µ
,

H∗∗
=
φI∗∗

+ αQ ∗∗

γ2 + µ+ δ2
, R∗∗

=
γ1I∗∗

+ γ ∗∗H∗∗

µ
.

(21)

Equating the first and third equations of (21), and solving for I∗∗ in terms RH
0 , gives

I∗∗
=

RH
0 − 1

µ(β + ωµ)(γ1 + φ + µ+ δ1)2
> 0, whenever RH

0 > 1. (22)

Substituting for I∗∗ from (22) into the first equation of (21) gives

S∗∗
=
ωΠe−(σ+µ)τ

+ (γ1 + φ + µ+ δ1)

e−(σ+µ)τ (β + ωµ)
. (23)

It follows from (21) (noting from (22) and (23) that both I∗∗ and S∗∗ are positive ifRH
0 > 1) that EH

1 ∈ R6
+
wheneverRH

0 > 1.
Thus, the following result is established.

Lemma 7. The model (16) has a unique endemic (positive) equilibrium, given by EH
1 , whenever RH

0 > 1.

4.2.2. Permanence of the disease
The permanence of the diseasewill nowbe explored in the context of themodel (16). That is, the objective is to determine

whether or not the number of infectious cases in the population will persist above a certain positive number for a long time
period (for the case when RH

0 > 1).

Theorem 3. If RH
0 > 1, then for any solution of (16) with the initial data (2), there exists a positive number ν =

e−τ(γ1+φ+µ+δ1)I∗∗, such that lim inft→∞ I(t) ≥ ν .

Proof. The proof of Theorem3 is based on using the approach given in [30–33]. It should be noted, first of all, that the second
equation of (16) can be rewritten as

İ =
βe−τ(σ+µ)S(t)I(t)

1 + ωI(t)
− (γ1 + φ + µ+ δ1)I(t)−

d
dt

∫ t

t−τ

βe−τ(σ+µ)S(x)I(x)
1 + ωI(x)

dx. (24)

Consider the following function:

V (t) = I(t)+

∫ t

t−τ

βe−τ(σ+µ)S(x)I(x)
1 + ωI(x)

dx.

Clearly, V (t) is bounded (since the variables I(t) and S(t) are bounded). Furthermore, it follows, using (24), that

V̇ =
βe−τ(σ+µ)S(t)I(t)

1 + ωI(t)
− (γ1 + φ + µ+ δ1)I(t). (25)

Since, at the endemic steady state, S(t) is given by S∗∗
=

Π

µ+
βI∗∗

1+ωI∗∗

> 0wheneverRH
0 > 1, it is clear that for any 0 < q < 1,

S∗∗ < K , where K =
Π

µ+
βqI∗∗

1+ωqI∗∗

. Hence, there exists a numberm ≥ 1 such that S∗∗ < K(1 − e−mΠτ/K ).

The next task is to show that I(t) ≥ qI∗∗ for all t ≥ (m + 1)τ . Suppose, by contradiction, that I(t) < qI∗∗ for all
t ≥ (m + 1)τ . It then follows, from the first equation of (16), for t ≥ (m + 1)τ , that

Ṡ(t) > Π −


µ+

βqI∗∗

1 + ωqI∗∗


S(t) = Π −

Π

K
S(t).

Hence,

S(t) > K − e−Π/K [t−(m+1)τ ]
{K − S[(m + 1)τ ]} ,

> K

1 − e−Π/K [t−(m+1)τ ] ,



M.A. Safi, A.B. Gumel / Nonlinear Analysis: Real World Applications 12 (2011) 215–235 227

I(t )
I=I^

t = t*
Time (t)

t = (2m+1)τ

Fig. 6. Plot I(t) for t ≥ (2m + 1)τ .

and so, for t ≥ (2m + 1)τ ,

S(t) > K(1 − e−mΠτ/K ) = Ŝ > S∗∗. (26)

Since I(t) < qI∗∗ < I∗∗, it follows from (25), for t ≥ (2m + 1)τ , that

V̇ >
βe−τ(µ+σ)S(t)I(t)

1 + ωI∗∗
− (γ1 + φ + µ+ δ1)I(t),

>
βe−τ(µ+σ)ŜI(t)

1 + ωI∗∗
− (γ1 + φ + µ+ δ1)I(t),

=


βe−τ(µ+σ)Ŝ
1 + ωI∗∗

− (γ1 + φ + µ+ δ1)


I(t). (27)

Let Î = minθ∈[−τ ,0] I(θ + 2τ(m+ 1)). It can be claimed that I(t) ≥ Î for all t ≥ (2m+ 1)τ . Suppose the claim does not hold.
Then there exists a constant d1 > 0 such that I(t) ≥ Î for t ∈ ([2m + 1]τ , 2[m + 1]τ + d1 = t∗), I(t) < Î for t > t∗ with
I(t∗) = Î and İ(t∗) ≤ 0 (see Fig. 6). However, it follows from the third equation of (16), when t = t∗, that

İ(t∗) =
e−τ(σ+µ)βS(t∗ − τ)I(t∗ − τ)

1 + ωI(t∗ − τ)
− (φ + γ1 + µ+ δ1)I(t∗),

=
e−τ(σ+µ)βS(t∗ − τ)I(t∗ − τ)

1 + ωI(t∗ − τ)
− (φ + γ1 + µ+ δ1)Î, since I(t∗) = Î,

≥
e−τ(σ+µ)βS(t∗ − τ)Î

1 + ωI(t∗ − τ)
− (φ + γ1 + µ+ δ1)Î, since I(t) ≥ Î for t ∈ ([2m + 1]τ , t∗),

>

[
e−τ(σ+µ)βS(t∗ − τ)

1 + ωI∗∗
− (φ + γ1 + µ+ δ1)

]
Î, since I(t) < I∗∗ for t ≥ (2m + 1)τ ,

>

[
e−τ(σ+µ)βS∗∗

1 + ωI∗∗
− (φ + γ1 + µ+ δ1)

]
Î = 0.

This contradicts the fact that İ(t∗) ≤ 0. Hence, I(t) ≥ Î for t ≥ (2m + 1)τ . Thus, it follows from (27) that

V̇ >


βe−τ(µ+σ)Ŝ
1 + ωI∗∗

− (γ1 + φ + µ+ δ1)


Î for all t ≥ 2(m + 1)τ .

Hence, limt→∞ V (t) = ∞, which contradicts the fact that V (t) is bounded. Finally, to complete the proof, we need to show
that I(t) ≥ ν for sufficiently large t .

Let t1 be sufficiently large and I(t1) = qI∗∗. Consider the following interval, [t1, t2]. It follows, from the second equation
of (16), that

İ ≥ −(φ + γ1 + µ+ δ1)I.

Hence,

I(t) > I(t1)e−(φ+γ1+µ+δ1)(t−t1) = qI∗∗e−(φ+γ1+µ+δ1)(t−t1), for t ∈ [t1, t2]. (28)



228 M.A. Safi, A.B. Gumel / Nonlinear Analysis: Real World Applications 12 (2011) 215–235

It is clear from (28) that if t2 − t1 ≤ τ , then I(t) ≥ qI∗∗e−τ(φ+γ1+µ+δ1) = qν. For the other case (where t2 − t1 > τ ), it is
easy to see that the inequity I(t) ≥ qI∗∗e−τ(φ+γ1+µ+δ1) = qν also holds for t ∈ [t1, t1 + τ ]. We claim that (28) also holds
for t ∈ (t1 + τ , t2]. If not, then there exists a constant d > 0 such that I(t) ≥ qν for t ∈ (t1 + τ , t1 + τ + d = t0), with
I(t0) = qν, I(t) < qν for t ∈ (t0, t2) and İ(t0) ≤ 0. Here, too, it follows from the third equation of (16), when t = t0, that

İ(t0) =
e−τ(σ+µ)βS(t0 − τ)I(t0 − τ)

1 + ωI(t0 − τ)
− (φ + γ1 + µ+ δ1)I(t0),

=
e−τ(σ+µ)βS(t0 − τ)I(t0 − τ)

1 + ωI(t0 − τ)
− (φ + γ1 + µ+ δ1)qν, since I(t0) = qν,

≥
e−τ(σ+µ)βS(t0 − τ)qν

1 + ωqν
− (φ + γ1 + µ+ δ1)qν, since I(t) ≥ qν,

≥

[
e−τ(σ+µ)βS(t0 − τ)

1 + ωI∗∗
− (φ + γ1 + µ+ δ1)

]
qν, since qν ≤ I∗∗,

>

[
e−τ(σ+µ)βS∗∗

1 + ωI∗∗
− (φ + γ1 + µ+ δ1)

]
qν = 0.

This contradicts the fact that İ(t0) ≤ 0. Hence, I(t) ≥ qν for t ∈ [t1, t1]. Since this interval and the parameter q ∈ (0, 1) are
chosen arbitrarily, it is concluded that I(t) ≥ ν. Thus, lim inft→∞ I(t) ≥ ν. �

The epidemiological implication of Theorem 3 is that the number of infectious cases will persist in the population
(as t → ∞) above a certain positive number (ν) whenever RH

0 > 1.

4.3. Global stability of the EEP

Here, the global stability of the EEP, EH
1 , of the model (16) will be explored. It is convenient to define

D0 = {(S, E, I,Q ,H, R) ∈ D : E = I = Q = H = R = 0} .

Theorem 4. The unique endemic equilibrium of the model (16), given by (21), is GAS in D \ D0 if RH
0 > 1 and ωΠe−τ(σ+µ) >

φ + γ1 + µ+ δ1.

Proof. The proof of Theorem 4 is based on using a comparison argument and an iteration technique, as given in [29,34].
Let (S(t), E(t), I(t),Q (t),H(t), R(t)) be any solution of (16) with initial conditions given by (2). Further, let

S∞ = lim inf
t→∞

S(t), S∞
= lim sup

t→∞

S(t), E∞ = lim inf
t→∞

E(t), E∞
= lim sup

t→∞

E(t)

I∞ = lim inf
t→∞

I(t), I∞ = lim sup
t→∞

I(t), Q∞ = lim inf
t→∞

Q (t), Q∞
= lim sup

t→∞

Q (t)

H∞ = lim inf
t→∞

H(t), H∞
= lim sup

t→∞

H(t), R∞ = lim inf
t→∞

R(t), R∞
= lim sup

t→∞

R(t).

The goal is to show that

S∞ = S∞
= S∗∗, E∞ = E∞

= E∗∗, I∞ = I∞ = I∗∗, Q∞ = Q∞
= Q ∗∗,

H∞ = H∞
= H∗∗, and R∞ = R∞

= R∗∗.

It follows from the first equation of (16) that

Ṡ(t) ≤ Π − µS,

and so, by the comparison theorem,

lim sup
t→∞

S(t) ≤ Π/µ.

Let US
1 = Π/µ. Thus, for sufficiently small ϵ > 0, there exists a T1 > 0 such that S(t) ≤ US

1 + ϵ for t > T1. It follows
from the third equation of (16) that, for t > T1 + τ ,

İ(t) ≤
βe−τ(σ+µ)(US

1 + ϵ)I(t − τ)

1 + ωI(t − τ)
− (φ + γ1 + µ+ δ1)I(t). (29)

Consider the auxiliary equation of (29):

u̇(t) =
βe−τ(σ+µ)(US

1 + ϵ)u(t − τ)

1 + ωu(t − τ)
− (φ + γ1 + µ+ δ1)u(t). (30)
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Since RH
0 > 1, it follows that, for sufficiently small ϵ > 0, βe−τ(σ+µ)(US

1 + ϵ) > (φ + γ1 + µ+ δ1). Hence, by Item (ii) of
Lemma 5 and (30),

lim
t→∞

u(t) =
βe−τ(σ+µ)(US

1 + ϵ)− (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
.

Thus, by the comparison theorem,

I∞ = lim sup
t→∞

I(t) ≤
βe−τ(σ+µ)(US

1 + ϵ)− (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
,

and so

I∞ ≤
βe−τ(σ+µ)US

1 − (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
.

Similarly, let

U I
1 =

βe−τ(σ+µ)US
1 − (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
.

Then, for sufficiently small ϵ > 0, there exists a T2 > T1 + τ such that I(t) ≤ U I
1 + ϵ for t > T2. It follows from the first

equation of (16), for t > T2, that

Ṡ(t) ≥ Π − µS −
β(U I

1 + ϵ)

1 + ω(U I
1 + ϵ)

,

and so, by the comparison theorem,

S∞ = lim inf
t→∞

S(t) ≥
Π[1 + ω(U I

1 + ϵ)]

µ+ (β + µω)(U I
1 + ϵ)

.

Hence, S∞ ≥ LS1, where LS1 =
Π[1+ωU I

1]

µ+(β+µω)U I
1
. In other words, for sufficiently small ϵ > 0, there exists a T3 > T2 + τ such that

S(t) ≥ LS1 − ϵ for t > T3. It follows from the third equation of (16), for t > T3 + τ , that

İ(t) ≥
βe−τ(σ+µ)(LS1 − ϵ)I(t − τ)

1 + ωI(t − τ)
− (φ + γ1 + µ+ δ1)I(t),

and so (by considering the auxiliary equation)

u̇(t) =
βe−τ(σ+µ)(LS1 − ϵ)u(t − τ)

1 + ωu(t − τ)
− (φ + γ1 + µ+ δ1)u(t).

Hence, it follows from Item (ii) of Lemma 5 (since RH
0 > 1) that

lim
t→∞

u(t) =
βe−τ(σ+µ)(LS1 − ϵ)− (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
,

and the comparison theorem gives

I∞ = lim inf
t→∞

I(t) ≥
βe−τ(σ+µ)(LS1 − ϵ)− (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
.

Hence, for sufficiently small ϵ > 0, there exists a T4 > T3 + τ such that I(t) ≥ LI1 − ϵ for t > T4, where

LI1 =
βe−τ(σ+µ)LS1 − (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
.

Using S(t) ≤ US
1 + ϵ, I(t) ≤ U I

1 + ϵ, S(t) ≥ LS1 − ϵ and I(t) ≥ LI1 − ϵ in the second equation of (16), for t > T4 + τ , gives

Ė ≤
β(US

1 + ϵ)(U I
1 + ϵ)

1 + ω(U I
1 + ϵ)

−
βe−τ(σ+µ)(LS1 − ϵ)(LI1 − ϵ)

1 + ω(LI1 − ϵ)
− (σ + µ)E.

Hence, by the comparison theorem,

E∞
= lim sup

t→∞

E(t) ≤
β(US

1 + ϵ)(U I
1 + ϵ)

[1 + ω(U I
1 + ϵ)](σ + µ)

−
βe−τ(σ+µ)(LS1 − ϵ)(LI1 − ϵ)

[1 + ω(LI1 − ϵ)](σ + µ)
.
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Therefore, for sufficiently small ϵ > 0, there exists a T5 > T4 + τ such that E(t) ≤ UE
1 + ϵ for t > T5, where

UE
1 =

βUS
1U

I
1

(1 + ωU I
1)(σ + µ)

−
βe−τ(σ+µ)LS1L

I
1

(1 + ωLI1)(σ + µ)
.

Similarly, by using S(t) ≤ US
1 + ϵ, I(t) ≤ U I

1 + ϵ, S(t) ≥ LS1 − ϵ and I(t) ≥ LI1 − ϵ in the second equation of (16), for
t > T4 + τ , we have

Ė ≤
β(LS1 − ϵ)(LI1 − ϵ)

1 + ω(LI1 − ϵ)
−
βe−τ(σ+µ)(US

1 + ϵ)(U I
1 + ϵ)

1 + ω(U I
1 + ϵ)

− (σ + µ)E,

and so

E∞ = lim inf
t→∞

E(t) ≥
β(LS1 − ϵ)(LI1 − ϵ)

[1 + ω(LI1 − ϵ)](σ + µ)
−
βe−τ(σ+µ)(US

1 + ϵ)(U I
1 + ϵ)

[1 + ω(U I
1 + ϵ)](σ + µ)

.

Hence, for sufficiently small ϵ > 0, there exists a T6 > T5 + τ such that E(t) ≥ LE1 − ϵ for t > T6, where

LE1 =
βLS1L

I
1

(1 + ωLI1)(σ + µ)
−

βe−τ(σ+µ)US
1U

I
1

(1 + ωU I
1)(σ + µ)

.

Using E(t) ≤ UE
1 + ϵ in the fourth equation of (16), for t > T5, gives

Q̇ (t) ≤ σ(UE
1 + ϵ)− (α + µ)Q ,

and so

Q∞
= lim sup

t→∞

Q (t) ≤
σ(UE

1 + ϵ)

α + µ
.

Thus, for sufficiently small ϵ > 0, there exists a T7 > T6 + τ such that Q (t) ≤ UQ
1 + ϵ for t > T7, where UQ

1 =
σUE

1
α+µ

.
Similarly, by using E(t) ≥ LE1 − ϵ in the fourth equation of (16), for t > T6, we have

Q̇ (t) ≥ σ(LE1 − ϵ)− (α + µ)Q ,

and

Q∞ = lim inf
t→∞

Q (t) ≥
σ(LE1 − ϵ)

α + µ
.

Thus, for sufficiently small ϵ > 0, there exists a T8 > T7 + τ such that Q (t) ≥ LQ1 − ϵ for t > T8, where LQ1 =
σ LE1
α+µ

. Using

I(t) ≤ U I
1 + ϵ and Q (t) ≤ UQ

1 + ϵ in the fifth equation of (16), for t > T7, gives

Ḣ(t) ≤ α(UQ
1 + ϵ)+ φ(U I

1 + ϵ)− (γ2 + µ+ δ2)H,

and

H∞
= lim sup

t→∞

H ≤
α(UQ

1 + ϵ)+ φ(U I
1 + ϵ)

γ2 + µ+ δ2
.

Thus, for sufficiently small ϵ > 0, there exists a T9 > T8 + τ such that H(t) ≤ UH
1 + ϵ, for t > T9, where UH

1 =
αUQ

1 +φU I
1

(γ2+µ+δ2)
.

Similarly, it follows by using I(t) ≥ LI1 − ϵ and Q (t) ≥ LQ1 − ϵ in the fifth equation of (16), for t > T8, that

Ḣ(t) ≥ α(LQ1 − ϵ)+ φ(LI1 − ϵ)− (γ2 + µ+ δ2)H,

and so

H∞ = lim inf
t→∞

H ≤
α(LQ1 − ϵ)+ φ(LI1 − ϵ)

γ2 + µ+ δ2
.

Hence, for sufficiently small ϵ > 0, there exists a T10 > T9 + τ such that H(t) ≥ LH1 − ϵ for t > T10, where LH1 =
αLQ1 +φLI1
γ2+µ+δ2

.
Using I(t) ≤ U I

1 + ϵ and H(t) ≤ UH
1 + ϵ in the last equation of (16), for t > T9, gives

Ṙ ≤ γ1(U I
1 + ϵ)+ γ2(UH

1 + ϵ)− µR.
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Hence,

R∞
= lim sup

t→∞

R(t) ≤
γ1(U I

1 + ϵ)+ γ2(UH
1 + ϵ)

µ
.

Thus, R∞
≤ UR

1 , where UR
1 =

γ1U I
1+γ2U

H
1

µ
. Using I(t) ≥ LI1 − ϵ and H(t) ≥ LH1 − ϵ in the last equation of (16), for t > T10, gives

Ṙ ≥ γ1(LI1 − ϵ)+ γ2(LH1 − ϵ)− µR,

and so (by the comparison theorem)

R∞ = lim inf
t→∞

R(t) ≥
γ1(LI1 − ϵ)+ γ2(LH1 − ϵ)

µ
.

Hence, R∞ ≥ LR1, where LR1 =
γ1LI1+γ2L

H
1

µ
.

Continuing in this manner leads to the following sequences:

US
n =

Π[1 + ωLIn−1]

µ+ (β + µω)LIn−1
, LSn =

Π[1 + ωU I
n]

µ+ (β + µω)U I
n
,

U I
n =

βe−τ(σ+µ)US
n − (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
, LIn =

βe−τ(σ+µ)LSn − (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
,

UE
n =

βU I
nU

S
n

(1 + ωU I
n)(σ + µ)

−
βe−τ(σ+µ)LInL

S
n

(1 + ωLIn)(σ + µ)
,

LEn =
βLInL

S
n

(1 + ωLIn)(σ + µ)
−

βe−τ(σ+µ)U I
nU

S
n

(1 + ωU I
n)(σ + µ)

,

UQ
n =

σUE
n

(α + µ)
, LQn =

σ LEn
(α + µ)

,

UH
n =

αUQ
n + φU I

n

(γ2 + µ+ δ2)
, LHn =

αLQn + φLIn
(γ2 + µ+ δ2)

,

UR
n =

γ1U I
n + γ2UH

n

µ
, LRn =

γ1LIn + γ2LHn
µ

.

(31)

Finally, since LSn ≤ S∞ ≤ S∞
≤ US

n , L
E
n ≤ E∞ ≤ E∞

≤ UE
n , L

I
n ≤ I∞ ≤ I∞ ≤ U I

n, L
Q
n ≤ Q∞ ≤ Q∞

≤ UQ
n ,

LHn ≤ H∞ ≤ H∞
≤ UH

n and LRn ≤ R∞ ≤ R∞
≤ UR

n , the proof is concluded by showing that

lim
n→∞

US
n = S∗∗

= lim
n→∞

LSn, lim
n→∞

U I
n = I∗∗

= lim
n→∞

LIn,

lim
n→∞

UE
n = E∗∗

= lim
n→∞

LEn, lim
n→∞

UQ
n = Q ∗∗

= lim
n→∞

LQn ,

lim
n→∞

UH
n = H∗∗

= lim
n→∞

LHn , lim
n→∞

UR
n = R∗∗

= lim
n→∞

LRn.

Using the first four sequences of (31), it is easy to see that the sequence US
n+1 can be written in terms of US

n as

US
n+1 =

ω2Π2e−2τ(σ+µ)US
n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n
, (32)

where k = φ + γ1 + µ+ δ1. Furthermore, it can be shown that whenever ωΠe−τ(σ+µ) > k, the sequence US
n is monotone

as follows:

US
n+1 − US

n =
[ωΠe−τ(σ+µ)

− k][ωΠe−τ(σ+µ)
+ k − (β + ωµ)e−τ(σ+µ)US

n ]U
S
n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n

.

Since S∗∗
≤ US

n , it follows that

US
n+1 − US

n ≤
[ωΠe−τ(σ+µ)

− k][ωΠe−τ(σ+µ)
+ k − (β + ωµ)e−τ(σ+µ)S∗∗

]US
n

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]US
n

,

= 0

since S∗∗

=
ωΠe−τ(σ+µ)

+ k
e−τ(σ+µ)(β + ωµ)


.

Thus, limn→∞ US
n exists.
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Fig. 7. Simulations of the delayed model (16), showing the total number of infected individuals as a function of time. Parameter values used are as given
in Table 3, with τ = 10 and β = 0.0025809 (so RH

0 = 2.3741 > 1 and τ < τHc = 16.3340).

LetM = limn→∞ US
n . Then, it follows from (32) that

M =
ω2Π2e−2τ(σ+µ)M

k2 + e−τ(σ+µ)(β + ωµ)[ωΠe−τ(σ+µ) − k]M
,

and so

M = lim
t→∞

US
n =

ωΠe−τ(σ+µ)
+ k

e−τ(σ+µ)(β + ωµ)
= S∗∗.

Taking the limit as n → ∞ of both sides of the third sequence of (31) gives

lim
n→∞

U I
n =

βe−τ(σ+µ)S∗∗
− (φ + γ1 + µ+ δ1)

ω(φ + γ1 + µ+ δ1)
= I∗∗.

Similarly, taking the limits of both sides of the remaining sequences in (31), and using the previous results, gives

lim
n→∞

LSn = S∗∗, lim
n→∞

LIn = I∗∗, lim
n→∞

UE
n = lim

n→∞
LEn = E∗∗

lim
n→∞

UQ
n = lim

n→∞
LQn = Q ∗∗, lim

n→∞
UH
n = lim

n→∞
LHn = H∗∗,

lim
n→∞

UR
n = lim

n→∞
LRn = R∗∗.

Hence, limt→∞(S(t), E(t), I(t),Q (t),H(t), R(t)) = EH
1 . �

Theorem 4 shows that the disease will persist in the population whenever RH
0 > 1. Here, too, by solving for τ from

RH
0 > 1, the following result can be shown.

Lemma 8. The unique endemic equilibrium of the model (16), given by (21), is GAS inD \D0 if τ < ln


βΠ

µ(µ+φ+γ1+δ1)


1

σ+µ


=

τc and ωΠe−τ(σ+µ) > φ + γ1 + µ+ δ1.

Theorem 4 shows that the disease will persist in the population provided that RH
0 > 1 (τ < τc) and ωΠe−τ(σ+µ) >

φ+γ1 +µ+δ1. Thus, Lemmas 6 and 8 suggest that τ = τc is a sharp epidemiological threshold that governs the persistence
(τ < τc) and elimination (τ > τc) of the disease in the population. Fig. 7 shows a time series plot of the total number of
infected individuals for various initial conditions. This figure clearly shows convergence of the solutions to the EEP for the
case τ < τc (R

H
0 > 1) (in line with Theorem 4 and Lemma 8). Fig. 8 depicts of the total number of cases as a function of

time for various values of τ . This figure shows a decreasing number of cases with increasing values of delay parameter τ .
That is, the longer individuals stay in the exposed class, the lower the disease burden.

To assess the impact of using time delay tomodel the incubation period on the suitability of themodel (3) for realistically
capturing the observed SARS data (cumulative probable cases) for the Greater Toronto Area (GTA) of Canada, the model (3)
is simulated in the presence and absence of time delay. It should be stated that the GTA recorded about 250 probable cases of
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Fig. 8. Simulations of the delayed model (16), showing the total number of infected individuals for various values of τ . Parameter values used are as given
in Table 3, with β = 0.15.

Fig. 9. Numerical simulations of the standard incidence delayed model (3), showing the cumulative number of probable SARS cases for the GTA, in the
presence and absence of time delay.

SARS during the 2003 outbreaks [21]. The simulation results obtained, depicted in Fig. 9, show that while themodel without
time delay (considered in [10]) underestimated the observed cumulative number of probable cases (about 170 cases), the
model with time delay (i.e., model (3)) gave a good estimate of the observed data (about 220 cases). Thus, this study suggests
that themodel (3), with time delay, is more appropriate for modeling the SARS outbreaks in the GTA than the corresponding
model without time delay (given in [10]). Similar simulation results were obtained for the case of the model with Holling
type II function (16) (see Fig. 10).

5. Conclusions

A deterministic quarantine/isolation model with time delay is considered, subject to two incidence functions, namely
standard incidence and the Holling type II incidence function. The main findings of this study are summarized below:

(i) The model with standard incidence function, given by (3), has a globally asymptotically stable disease-free solution
whenever a certain epidemiological threshold quantity (RS

0) is less than unity (Theorem 1). Furthermore, this model
has a unique positive endemic equilibrium whenever the threshold quantity (RS

0) exceeds unity (Lemma 4).
(ii) The model with Holling type II incidence function, given by (16), has a globally asymptotically stable disease-free

solutionwhenever its associated epidemiological threshold quantity (RH
0 ) is less than unity (Theorem 2). Thismodel has
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Fig. 10. Numerical simulations of the Holling type II delayed model (16), showing the cumulative number of probable SARS cases for the GTA, in the
presence and absence of time delay.

a unique positive endemic equilibrium whenever the threshold quantity (RH
0 ) exceeds unity (Lemma 7). Furthermore,

the model system is permanent whenever RH
0 > 1 (Theorem 3). The unique endemic equilibrium of the model (16) is

globally asymptotically stable under certain conditions (Theorem 4).

In summary, the theoretical analyses in this study show that adding time delay to and/or replacing the standard incidence
function by aHolling type II incidence function in the autonomous (non-delayed) quarantine/isolationmodel in [10] does not
alter the qualitative dynamics (as regards the elimination or persistence of the disease) of the non-delayedmodel considered
in [10]. In otherwords, the theoretical results in this study show that the quarantine/isolationmodelwith time delay (τ > 0)
and standard or non-linear incidence function of Holling type II has essentially the same qualitative (equilibrium) dynamics
as the corresponding autonomous quarantine/isolation model (τ = 0) with the standard incidence function considered
in [10].

Numerical simulations of the delayed model with the standard incidence function show that the associated disease
burden decreases with increasing time delay (τ ). Furthermore, models with time delay seem to be more appropriate for
modeling the SARS epidemic than those without time delay (regardless of which of the incidence functions is used).

Acknowledgements

ABG acknowledges, with thanks, the partial support of the Natural Science and Engineering Research Council (NSERC)
and Mathematics of Information Technology and Complex Systems (MITACS) of Canada. MAS gratefully acknowledges the
support of the University of Manitoba Graduate Fellowship. The authors are grateful to the anonymous reviewers for their
constructive comments.

References

[1] G. Chowell, N.W. Hengartner, C. Castillo-Chavez, P.W. Fenimore, J.M. Hyman, The basic reproductive number of ebola and the effects of public health
measures: the cases of Congo and Uganda, Journal of Theoretical Biology 1 (2004) 119–126.

[2] H.W. Hethcote, Zhien Ma, Shengbing Liao, Effects of quarantine in six endemic models for infectious diseases, Mathematical Biosciences 180 (2002)
141–160.

[3] M. Lipsitch, et al., Transmission dynamics and control of severe acute respiratory syndrome, Science 300 (2003) 1966–1970.
[4] J.O. Lloyd-Smith, A.P. Galvani, W.M. Getz, Curtailing transmission of severe acute respiratory syndrome within a community and its hospital,

Proceedings of the Royal Society of London, Series B 170 (2003) 1979–1989.
[5] R.G. McLeod, J.F. Brewster, A.B. Gumel, D.A. Slonowsky, Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs,

Mathematical Biosciences and Engineering 3 (2006) 527–544.
[6] S. Riley, et al., Transmission dynamics of etiological agent of SARS in Hong Kong: the impact of public health interventions, Science 300 (2003)

1961–1966.
[7] W. Wang, S. Ruan, Simulating the SARS outbreak in Beijing with limited data, Journal of Theoretical Biology 227 (2004) 369–379.
[8] G.F. Webb, M.J. Blaser, H. Zhu, S. Ardal, J. Wu, Critical role of nosocomial transmission in the Toronto SARS outbreak, Mathematical Biosciences and

Engineering 1 (2004) 1–13.
[9] X. Yan, Y. Zou, Optimal and sub-optimal quarantine and isolation control in SARS epidemics, Mathematical and Computer Modelling 47 (2008)

235–245.
[10] M.A. Safi, A.B. Gumel, Global asymptotic dynamics of a model for quarantine and isolation, Discrete and Continuous Dynamical Systems. Series B 14

(2010) 209–231.
[11] H.W. Hethcote, The mathematics of infectious diseases, SIAM Review 42 (2000) 599–653.



M.A. Safi, A.B. Gumel / Nonlinear Analysis: Real World Applications 12 (2011) 215–235 235

[12] O. Sharomi, et al., Role of incidence function in vaccine-induced backward bifurcation in some HIV models, Mathematical Biosciences 210 (2007)
436–463.

[13] R.M. Anderson, R.M. May, Population Biology of Infectious Diseases, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
[14] R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University, London, New York, 1991.
[15] V. Capasso, G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model, Mathematical Biosciences 42 (1978) 43–61.
[16] J. Hou, Z. Teng, Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates, Mathematics and Computers in

Simulation 79 (2009) 3038–3054.
[17] W. Liu, S. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, Journal of Mathematical Biology

23 (1986) 187–204.
[18] S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, Journal of Differential Equations 188 (2003) 135–163.
[19] K.L. Cooke, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, Journal of Mathematical Biology 35 (1996) 240–260.
[20] C. Donnelly, et al., Epidemiological determinants of spread of a causal agent of severe acute respiratory syndrome in Hong Kong, Lancet 361 (2003)

1761–1766.
[21] A.B. Gumel, et al., Modelling strategies for controlling SARS outbreaks, Proceedings of the Royal Society of London, Series B 271 (2004) 2223–2232.
[22] G. Leung, et al., The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: an analysis of all 1755 patients, Annals of

Internal Medicine 9 (2004) 662–673.
[23] Wikipedia, Incubation Period. www.en.wikipedia.org (accessed May 2010).
[24] G. Chowell, C. Castillo-Chavez, P.W. Fenimore, C.M. Kribs-Zaleta, L. Arriola, J.M. Hyman, Model parameters and outbreak control for SARS, EID 10

(2004) 1258–1263.
[25] C. Kribs-Zaleta, J. Velasco-Hernandez, A simple vaccination model with multiple endemic states, Mathematical Biosciences 164 (2000) 183–201.
[26] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, Heidelberg, 1977.
[27] Z. Mukandavire, C. Chiyaka, W. Garira, G. Musuka, Mathematical analysis of a sex-structured HIV/AIDS model with a discrete time delay, Nonlinear

Analysis 71 (2009) 1082–1093.
[28] H.L. Smith, P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
[29] R. Xu, Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Analysis: Real World Applications 10

(2009) 3175–3189.
[30] Shujing Gao, Lansun Chenc, Zhidong Teng, Pulse vaccination of an SEIR epidemic model with time delay, Nonlinear Analysis: Real World Applications

9 (2008) 599–607.
[31] W. Ma, M. Song, Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Applied Mathematics Letters 17 (2004) 1141–1145.
[32] W. Wang, Global behavior of an SEIRS epidemic model with time delays, Applied Mathematics Letters 15 (2002) 423–428.
[33] T. Zhang, Z. Teng, Extinction and permanence for a pulse vaccination delayed SEIRS epidemicmodel, Chaos, Solitons and Fractals 39 (2009) 2411–2425.
[34] R. Xu, Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos, Solitons and Fractals 41 (2009) 2319–2325.

http://www.en.wikipedia.org

	The effect of incidence functions on the dynamics of a quarantine/isolation model with time delay
	Introduction
	Model formulation: standard incidence
	Basic properties

	Global stability of the DFE
	The existence of an EEP

	The model with Holling type II incidence
	Global stability of the DFE
	The existence of an EEP and disease permanence
	The existence of an EEP
	Permanence of the disease

	Global stability of the EEP

	Conclusions
	Acknowledgements
	References


