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Abstract

The Disrupted-in-Schizophrenia 1 (DISC1) protein has been implicated in a range of biological 

mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is 

associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal 
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dopamine 2/3 receptors (D2/3Rs). Importantly, the DISC1 protein directly interacts and forms a 

protein complex with the dopamine D2 receptor (D2R) that inhibits agonist-induced D2R 

internalization. Moreover, animal studies have found large striatal increases in the proportion of 

D2R receptors in a high affinity state (D2
highR) in DISC1 rodent models. Here, we investigated the 

relationship between the three most common polymorphisms altering the amino-acid sequence of 

the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) 

and striatal D2/3R availability in 41 healthy human volunteers, using [11C]-(+)-PHNO positron 

emission tomography. We found no association between DISC1 polymorphisms and D2/3R 

availability in the striatum and D2R availability in the caudate and putamen. Therefore, despite a 

direct interaction between DISC1 and the D2R, none of its main functional polymorphisms impact 

striatal D2/3R binding potential, suggesting DISC1 variants act through other mechanisms.

Introduction

The Disrupted-in-Schizophrenia 1 (DISC1) gene was originally identified at the breakpoint 

of a balanced t(1;11) (q42;q14.3) translocation in a Scottish family with a high-prevalence of 

psychiatric disorder 1–3. Evidence for a link between DISC1 and mental disorders such as 

psychotic and affective disorders emerged from the follow-up of families displaying rare 

DISC1 mutations in large family-based studies and association studies 4–9. DISC1 protein 

may be a useful molecule for investigating biological mechanisms underlying mental 

disorders 10,11. Among its neuronal functions, DISC1 is a scaffold protein involved in neuro-

signaling and signal transduction, through a wide range of protein interactions 12,13.

The DISC1 protein is known to form a protein complex with the dopamine D2 receptor 

(D2R) 14. The DISC1-D2R complex, which formation is induced by D2R stimulation, is 

involved in the regulation of D2R internalization and downstream behavioural effects of D2 

signaling 14,15. It has been shown that the DISC1-D2R complex inhibits agonist-induced 

D2R internalization, whilst its disruption prevents amphetamine-induced locomotor 

hyperactivity see in an artificial DISC1 model with a point mutation in exon 2 (Disc1-L100P 

model) 14. The D2R exists in two interconverting states, a low-affinity (μM) and a high-

affinity (nM) state 16. A switch from D2 low-affinity to D2 high-affinity has been described 

in schizophrenia 17,18, with recent evidence showing a higher proportion of D2 high-affinity 

receptors (D2
highR) in the putamen of antipsychotic-naïve patients 19. Interestingly, two 

animal studies investigated the effect of DISC1 on the D2
highR using [3H]-domperidone 

binding challenged with dopamine 20,21. Both studies found large striatal D2
highR increases 

compared to wild-type controls: 113% in the Disc1 L100P model 20 and 80% in a full-length 

DISC1-overexpressing rat model 21. This increase in proportionD2
highR levels has been 

suggested as a putative mechanism for the increased locomotor sensitivity to amphetamine 

seen in the two DISC1 models, and also consistently reported in other DISC1 models 
17,20–22. However, it is noteworthy that divergent findings have been found in D2/3R 

availability and dopamine D1 and D2 receptor levels in rodent studies 22. Therefore, the 

question of whether DISC1 variants are associated with alterations in striatal D2R or D2/3R 

availability remains unanswered, and to our knowledge no study has yet investigated it in 

humans.
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This study examined whether three DISC1 single nucleotide polymorphisms (Ser704Cys 

(rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) are associated with 

altered D2R and/or D2/3R availability in humans. We focused on the Ser704Cys, Leu607Phe 

and Arg264Gln as they are the most common DISC1 polymorphisms altering the DISC1 

amino-acid sequence and therefore the DISC1 protein itself. As non-synonymous missense 

variants, the polymorphisms result in amino acids changes of respectively serine (A) to 

cysteine (T) at codon 704 in exon 11 (Minor Allele Frequency (MAF) for cysteine 

0.31-0.33), leucine (C) to phenylalanine (T) at codon 607 in exon 9 (MAF for phenylalanine 

0.12-0.14) and arginine (G) by glutamine (A) at codon 264 in exon 2 (MAF for glutamine 

0.28) 23–25. Ser704Cys, Leu607Ph and Arg264Gln have all been shown to have biological 

impacts on cellular signaling transduction pathways such as extracellular signal-regulated 

protein Kinases 1 and 2 (ERK1/2) and Wnt signaling 26,27. All three polymorphisms have 

also been associated with an increased risk for psychosis and also with the severity of 

positive psychotic symptoms in some studies 23,28–41. However it should be acknowledged 

that the involvement of the DISC1 gene in schizophrenia is debated 10,42,43 and that these 

DISC1 polymorphisms have not been linked to schizophrenia 44–46 or any other psychiatric 

disorder 47,48 in Psychiatric Genomics Consortium Genome-Wide Association Studies. We 

hypothesized that the serine (rs821616), leucine (rs6675281) and arginine (rs3738401) 

alleles would be associated with increased striatal D2R availability, in accordance with the 

alleles expressed on the DISC1 protein in the full-length human DISC1-overexpressing 

model 21. We used Positron Emission Tomography (PET) to measure D2/3R availability in 

41 healthy participants using the high-affinity D2/3R ligand [11C]-(+)-4-propyl-9-

hydroxynaphthoxazin (PHNO). The PET ligand [11C]-(+)-PHNO measures the non-

displaceable binding potentials (BPND) of D2/3R in the brain 49,50. As a full agonist, [11C]-

(+)-PHNO may preferentially bind to D2
high compared with D2

low receptors 51. Moreover, 

although the relative D2R:D3R binding fraction of [11C]-(+)-PHNO in the striatum varies 

between sub-regions, [11C]-(+)-PHNO BPND has been shown to be largely due to binding to 

D2 receptors in the caudate and putamen, allowing us to selectively quantify D2R availability 

in addition to striatum D2/3R availability 52–54. We first examined the striatum in accordance 

with the findings from the rodent studies 20,21, and then its caudate and putamen 

subdivisions 52 in order to focus on D2 rich striatal regions.

Materials and Methods

Participants

The study was approved by the institutional review board and local research ethics 

committee (15/LO/0011 and 12/LO/1955). Participants were recruited via online 

advertisement and in the newspaper. All participants gave informed written consent to take 

part in the study after its full description. The inclusion criteria for the study were 1) age 

above 18 years; 2) capacity to give written informed consent. The exclusion criteria were 1) 

any current medical conditions, or history of medical condition (past minor self-limiting 

conditions were permitted); 2) history of a psychiatric disorder as determined by the 

Structured Clinical Interview for DSM-IV Axis 1 Disorders, Clinician Version (SCID-CV) 
55; 3) history of substance abuse/dependence as determined by the Structured Clinical 

Interview for DSM-IV Axis 1 Disorders, Clinician Version (SCID-CV)55; 4) history of head 
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injury with a loss of consciousness; 5) a family history of any psychiatric disorder in first- or 

second-degree relatives; 6) contraindications to positron emission tomography (PET) 

scanning (significant prior exposure to radiation, pregnancy or breast feeding); 7) positive 

urine drug screen for cannabis as the drug has been shown to influence D2/3 availability 
56,57. All participants provided urine samples to screen for a drug use and pregnancy test in 

women prior to the scan.

Data acquisition

[11C]-PHNO PET data acquisition—PET images were acquired using a Siemens 

Biograph HiRez XVI PET scanner (Siemens Healthcare, Erlangen, Germany). A low-dose 

computed tomography scan was first administered for attenuation and model-based scatter 

correction followed by the injection of a single intravenous bolus of 0.020-0.029 

micrograms/kg [11C]-(+)-PHNO. Dynamic emission data were acquired continuously for 90 

minutes after the administration of the radiotracer. The dynamic images were then 

reconstructed using a filtered back-projection algorithm into 31 frames (8x15 seconds, 3x60 

seconds, 5x120 seconds, 15x300 seconds) with a 128 matrix, a zoom of 2.6 and a transaxial 

Gaussian filter of 5mm.

Structural MRI acquisition—The PET spatial pre-processing pipeline required a high 

resolution structural magnetic resonance imaging (MRI) scan for each subject. MR images 

were acquired on a Siemens MAGNETOM Verio 3T MRI scanner and a 32-channel phased-

array head-coil. A high-resolution T1-weighted volume was acquired for PET coregistration 

using a Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence with parameters 

from the Alzheimer’s Disease Research Network (ADNI-GO; 160 slices x240x256, 

TR=2300ms, TE=2.98ms, flip angle=9°, 1mm isotropic voxels, bandwidth=240Hz/pixel, 

parallel imaging (PI) factor=2) 58.

PET analysis

PET images were analysed using MATLAB version 2015B and an automatic analysis 

pipeline implemented in MIAKAT (MIAKAT release 4.2.6, www.miakat.org) 59. The 

ICBM152 high-resolution structural MRI template in Montréal Neurologic Institute (MNI) 

space was non-linearly warped to the high-resolution T1-weighted MRI of each participant 

using Statistical Parametric Mapping (SPM8) (Wellcome Trust Centre for Neuroimaging). 

The deformation parameters were applied to the CIC atlas which defines the anatomical 

extents of the striatum, caudate and putamen and a whole cerebellum ROI in MNI space 53. 

The application of deformation parameters brings the ROIs into the native space of each 

subject’s MRI scan. The MRI and ROIs were then downsampled to the PET resolution (2 

mm). A frame-by-frame registration process on a single frame of reference was used for 

motion correction for dynamic PET images. Individual averaged PET images were then co-

registered to their respective MRIs using rigid body co-registration.Regional time activity 

curves (TAC) were obtained by applying individual parcellations to the realigned dynamic 

images. Our outcome measure of interest was non-displaceable binding (BPND) of [11C]-

(+)-PHNO:
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BPND =
fNDBavail

KD

where Bavail is the proportion of D2/3Rs available to be bound by PHNO (i.e. the fraction of 

receptors not bound by endogenous synaptic dopamine), fND is the free fraction of PHNO in 

the brain and 1/KD the affinity of ligand for the target. BPND was obtained by kinetic 

modelling with a simplified reference tissue model 60,61, using the whole cerebellum as a 

reference region due its low content in dopaminergic neurons 62,63.

Genetic analysis

Genomic DNA was extracted from blood using standard methods 64. Genotyping of the 

rs821616 A>T, rs6675281 A>G, rs3738401 A>G polymorphisms was performed using the 

Illumina Infinium™ CoreExome-24 PsychArray version 1.1 BeadChip Kit (https://

emea.illumina.com). The genotype frequencies did not significantly deviate from Hardy–

Weinberg equilibrium for the rs821616 SNP (χ2=1.636, p=0.200), the rs3738401 SNP 

(χ2=0.573, p=0.449) and the rs6675281 SNP (χ2 =0.124, p=0.724).

Statistical analysis

Statistical Package for the Social Sciences SPSS version 24 was used for all statistical 

analysis (IBM, Armonk, N.Y.). Independent t test and Mann-Whitney test were used to 

compare age and injected dose respectively. Participants were divided into two groups for 

each polymorphism. For rs821616 (Ser704Cys), serine homozygotes (AA) were compared 

to cysteine homozygotes (TT) and heterozygotes (AT). For rs6675281 (Leu607Phe), leucine 

homozygotes (CC) were compared to phenylalanine homozygotes (TT) and heterozygotes 

(TC). For rs3738401 (Arg264Gln), arginine homozygotes (GG) were compared to glutamine 

homozygotes (AG) and heterozygotes (AA). LDlink 65 was used to map linkage 

disequilibrium for the three polymorphisms based on the 1000 genomes phase 3 (version 5) 

data 66. Planned-independent t-tests were used to test for an effect of the DISC1 

polymorphisms rs821616 (Ser704Cys) and rs3738401 (Arg264Gln) on mean D2/3R 

availability in the striatum, caudate and putamen. As age has been shown to affect [11C]-(+)-

PHNO signal 67 and subjects were not matched for age for rs6675281 (Leu607Phe), 

univariate analysis of covariance (ANCOVAs) were used for this polymorphism, with the 

rs6675281 (Leu607Phe) genotype as the independent variable, D2/3R binding potential for 

the striatum, the caudate and putamen respectively as the dependent variables, and age 

entered as covariate. Effect sizes are reported as corrected Cohen’s d and partial η2. An 

alpha threshold was set at a 0.05 (two-tailed) for significance for all statistical comparisons.

Results

Forty-two subjects underwent a [11C]-(+)-PHNO PET scan and a structural Magnetic 

Resonance Imaging scan. One subject was excluded due to positive urine drug screen result 

for cannabis. This resulted in the final inclusion of 41 subjects (16 females, mean age/year 

(SD)=25.51 (6.58)). Demographics, scans parameters and PET results are shown in Table 1, 

with the mean D2/3R binding potentials for the DISC1 Ser704Cys (rs821616), Leu607Phe 
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(rs6675281) and Arg264Gln (rs3738401) polymorphisms for the striatum caudate, and 

putamen respectively. The polymorphisms have all been reported to be in linkage 

equilibrium (χ2=0.48, p=0.493 for rs821616 and rs6675281), (χ2=0.46, p=0.496 for 

rs821616 and rs3738401) and (χ2=1.84, p=0.175 for rs6675281 and rs3738401). The T 

carriers and CC homozygotes of the rs6675281 group were not matched for age (mean age 

(SD) respectively 30.10 (10.08) and 24.03 (4.25), p=0.009). Age was therefore included as a 

covariate for this polymorphism as age has been shown to be linearly related to [11C]-(+)-

PHNO signal 67. There was no effect of rs821616 (t(39)=-0.204, p=0.839, corrected Cohen’s 

d =0.06), rs6675281 (F(1,38)=1.166, p=0.287), partial η2=0.03) or rs3738401 (t(39)=0.971, 

p=0.338, corrected Cohen’s d=0.30) genotype on D2/3R binding potential in the striatum 

(Figure 1). To avoid a masking effect by the D3R, we also examined the caudate and 

putamen sub-regions, as these regions have negligible D2R/D3R fraction 53. There was no 

effect of rs821616 (t(39)=-1.022, p=0.313, corrected Cohen’s d =0.32), rs6675281 

(F(1,38)=0.352, p=0.557, partial η2=0.01) or rs3738401 (t(39)=0.767, p=0.448, corrected 

Cohen’s d =0.24) genotypes on D2R binding potential in the caudate (Figure 2). There was 

no effect of rs821616 (t(39)=0.121, p=0.905, corrected Cohen’s d =0.04), rs6675281 

(F(1,38)=1.217, p=0.277, partial η2=0.03) and rs3738401 (t(39)=0.935, p=0.355, corrected 

Cohen’s d =0.29) genotypes on D2R binding potential in the putamen (Figure 3).

Discussion

This study examined for the first time whether the three most common missense variants of 

the DISC1 gene Ser704Cys, Leu607Phe and Arg264Gln have an effect on D2/3R availability 

in the striatum, or D2R availability in the caudate and putamen, using [11C]-(+)-PHNO PET 

in 41 healthy participants. Our results showed that none of these polymorphisms were 

associated with significant alterations of [11C]-(+)-PHNO signal in any of these regions of 

interest in humans.

Our results are not in line with the rodent studies showing 1) increased D2R availability in 

the artificial point mutation Disc1 model and DISC1-overexpressing rat model using 

[3H]domperidone binding challenged with dopamine 20,21; and 2) increased striatal D2/3R 

availability using [11C]-raclopride, increased D2R availability in the medial part of the right 

rostral striatum using [3H]-spiperone autoradiography and increased D2R levels using real-

time PCR in the hDISC1 model 68. However, our results are consistent with other rodent 

studies. For example, no significant differences in striatal D2R levels were found in the 

DISC1-overexpressing model using [3H]-raclopride autoradiography (D2/3R) 21, in the 

hDISC1 model using [3H]-spiperone autoradiography (D2R) (lateral part of the right rostral 

striatum) 68 or [11C]-raclopride autoradiography (D2/3R) 69, and in the Disc1Δ2–3 model 

using real-time polymerase chain reaction 70. The variable effects on D2 highlights that 

DISC1’s interactions with D2 are complex.

The differences observed with the rodent studies could be due to the three human variants 

having different biological effects compared to the DISC1 models in which significant 

effects on D2 levels were found. Among the DISC1 models used, only the short interfering 

RNA knockdown or knockout models (hDISC1 model) should have loss of function 

phenotypes whereas all others could have either loss of function, gain of function or 
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combined phenotypes at the same time. Notwithstanding this, as highlighted above, there is 

still inconsistency amongst the animal loss of function models (hDISC1 model). In 

summary, the DISC1 rodent models are not the same between one another, and not the same 

as the DISC1 human variants which could explain the discrepancies between the results 

observed in the literature. The point mutations associated with the variants might also not 

encompass the binding site with the D2R. Despite the description of the direct interaction 

between DISC1 and D2R 14, its biophysical characterization and the exact site(s) of the 

DISC1 protein involved remain unknown.

Limitations

This study has several limitations. First, although our sample size is relatively large for 

human PET studies (N=41), a type II error could account for the observed results, although 

our sample had more than 80% power to detect a main effect of Cohen’s d=1 with 

alpha=0.05 (two-tailed), corresponding to a percent difference between groups of 13% for 

the striatum. Nevertheless our effect size estimates indicate that, if there is an effect it is 

likely to be small (Cohen’s d values from 0.01 to 0.32), and, as such, an effect is unlikely to 

be clinically significant on its own if it is present. Increased D2R binding potential have been 

found with large effect sizes (Cohen’s d>2) in the artificial point mutation Disc1 model and 

DISC1-overexpressing rat model 20,21. However, it should be noted that human variants are 

likely to have much smaller effects. Second, while some studies report that [11C]-(+)-PHNO 

binds specifically to D2
highR as opposed to D2

lowR 51, other studies present opposing results 

(Seeman, 2012). Therefore, [11C]-(+)-PHNO PET imaging may be unable to adequately 

distinguish between high vs low variants of D2Rs, further diminishing our power to detect a 

specific effect of DISC1 polymorphisms on D2
highR. Third, the heterogeneous ancestry of 

the sample should also be acknowledged as a limitation since genetic ancestry has been 

associated with striatal dopamine D2/3R availability 71. However, the groups for each 

polymorphism were matched for the different ethnicities (p=0.586 for Ser704Cys, p=0.588 

for Leu607Phe and p=0.140 for Arg264, Table 1).

Implications

Our results did not show an effect of the Ser704Cys, Leu607Phe and Arg264Gln 

polymorphisms on availability of D2/3Rs in the striatum, or D2Rs in the caudate and 

putamen regions, with no indication of difference between groups. We therefore have not 

found evidence that the associations between these polymorphisms and psychotic and other 

mental disorders (Ser704Cys 28–36, Leu607Phe 37–40, and Arg264Gln 23,29,41) are likely 

mediated by altered striatal D2/3R availability.

However, statistical epistasis between the DISC1 polymorphisms and other genes involved 

in the D2R signaling pathway affecting D2R cannot be ruled out, as well as effects of other 

DISC1 variants on the D2R. Likewise, environmental factors such as exposure to 

psychosocial stress may also interact with the polymorphisms to affect dopamine function 

and mediate risk for schizophrenia and other mental illnesses 72. The DISC1 Ser704Cys, 

Leu607Phe and Arg264Gln polymorphisms could increase risk of psychotic and others 

disorders through effect on prefrontal or hippocampal structure and function 25, other 

neurotransmitters such as glutamate 73, or alterations in other components of the dopamine 
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system such as the dopamine receptor (DAT) 21 or presynaptic dopamine synthesis capacity 

and release. We have recently shown association between the serine allele of Ser704Cys and 

increased striatal dopamine synthesis capacity in healthy participants 74. Interestingly, recent 

studies indicate the t(1;11) translocation may increase the risk of psychosis through various 

other mechanisms, including altered DNA methylation 75, regulation of N-methyl-D-

aspartate receptors (NMDAR) motility 76 and/or 76added effects of the translocation and a 

variable subset of potential phenotypic polymorphisms 77. Future studies should aim at 

clarifying how the DISC1 protein interacts with the D2R and whether the DISC1 Ser704Cys, 

Leu607Phe and Arg264Gln polymorphisms affect D2R availability in clinical populations.

Conclusions

The three most common DISC1 polymorphisms Ser704Cys, Leu607Phe and Arg264Gln are 

not associated with significant alterations in striatal D2/3R or D2R availability in healthy 

volunteers. This indicates the mechanism mediating associations between these variants and 

psychotic disorders is unlikely to involve altered D2 availability.
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Figure 1. 
Ser704Cys, Leu607Phe and Arg264Gln and dopamine D2/3 receptor binding potentials in 

the striatum
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Figure 2. 
Ser704Cys, Leu607Phe and Arg264Gln and dopamine D2 receptor binding potentials in the 

caudate
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Figure 3. 
Ser704Cys, Leu607Phe and Arg264Gln and dopamine D2 receptor binding potentials in the 

putamen
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Table 1
Demographics and PET parameters

DISC1 Ser704Cys (rs821616) DISC1 Leu607Phe (rs6675281) DISC1 Arg264Gln (rs3738401)

Total Serine 
homozygotes 
AA carriers

Cysteine 
homozygotes 
and 
heterozygotes 
(TT or AT 
carriers)

p 
value

Leucine 
homozygotes 
(CC 
carriers)

Phenylalanine 
homozygotes 
and 
heterozygotes 
(TC or TT 
carriers)

p value Arginine 
homozygotes 
GG carriers

Glutamine 
homozygotes 
and 
heterozygotes 
(AG or AA 
carriers)

p 
value

Demographics

Males, n (%) 25 9 (36%) 16 (64%)
0.097

ii 18 (72%) 7 (28%)
0.501

ii 14 (56%) 9 (34%)
0.444

ii

Females, n 
(%)

16 10 (62.5%) 6 (37.5%) 13 (81.3%) 3 (18.7%) 7 (43.8%) 11 (56.2%)

Total n (%) 41 19 (46.3%) 22 (7 TT) 
(53.7%)

31 (75.6%) 10 (1 TT) 
(24.4%)

21 (51.2%) 20 (2 AA) 
(48.8%)

Age, mean 
(SD)

25.51 
(6.58)

25.32 (5.06) 25.7 (7.79)
0.862

i 24.03 (4.25) 30.10 (10.08)
0.009

i 25.19 (5.57) 25.85 (7.64)
0.753

i

White 
Caucasian, n 
(%)

26 11 (42.3%) 15 (57.7%)
0.586

ii 19 (73.1%) 7 (26.9%)
0.588

ii 11 (42.3%) 15 (57.7%)
0.140

ii

Black 
British, n 
(%)

12 (Black 
Africans 
n=11; 
Black 
Caribean 
n=1)

7 (58.3%) 5 (41.7%) 9 (75%) 3 (25%) 9 (75%) 3 (25%)

Mixed, n (%) 3 (East 
Asian: 
n=1; 
Mixed 
White 
Caucasian/
South 
Asian 
n=1; 
Mixed 
White 
Caucasian/
Central 
Asian 
n=1)

1 (33%) 2 (66%) 3 (100%) 0 (0%) 1 (33%) 2 (66%)

PET parameters

Radioactivity 
injected 
(MBq), 
mean (SD)

177.16 
(47.36)

176.98 
(51.31)

177.32 
(44.90) 0.983

i 179.28 
(48.02)

170.60 (47.13)
0.620

i 176.89 
(51.68)

177.44 
(43.72) 0.971

i

Mass 
Injected 
(μg), mean 
(SD)

1.57 
(0.32)

1.56 (0.31) 1.58 (0.34)
0.792

i 1.57 (0.35) 1.58 (0.23)
0.881

i 1.57 (0.33) 1.58 (0.33)
0.939

i

D2/3R BPND 
striatum, 
mean (SD)

2.05 
(0.27)

2.05 (0.31) 2.04 (0.24)
0.839

i 2.05 (0.26) 2.05 (0.32)
0.287

iii 2.01 (0.31) 2.09 (0.23) 0.338i

D2R BPND 
caudate, 
mean (SD)

1.48 
(0.30)

1.53 (0.31) 1.43 (0.29)
0.313

i 1.49 (0.29) 1.45 (0.36)
0.557

iii 1.44 (0.34) 1.52 (0.26)
0.448

i
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DISC1 Ser704Cys (rs821616) DISC1 Leu607Phe (rs6675281) DISC1 Arg264Gln (rs3738401)

Total Serine 
homozygotes 
AA carriers

Cysteine 
homozygotes 
and 
heterozygotes 
(TT or AT 
carriers)

p 
value

Leucine 
homozygotes 
(CC 
carriers)

Phenylalanine 
homozygotes 
and 
heterozygotes 
(TC or TT 
carriers)

p value Arginine 
homozygotes 
GG carriers

Glutamine 
homozygotes 
and 
heterozygotes 
(AG or AA 
carriers)

p 
value

D2R BPND 
putamen, 
mean (SD)

2.24 
(0.26)

2.23 (0.31) 2.24 (0.21)
0.905

i 2.23 (0.26) 2.24 (0.28)
0.277

iii 2.20 (0.29) 2.28 (0.23)
0.355

i

i
Independent t test

ii
Pearson Chi-Square

iii
ANCOVA

D2/3R BPND: dopamine D2/3 receptor non-displaceable binding potential

MBq: megabecquerel
SD: standard deviation
μg: microgram
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