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Abstract
More than eighty percent of pancreatic cancer involves ductal adenocarcinoma with an abundant desmoplastic extracellular 
matrix surrounding the solid tumor entity. This aberrant tumor microenvironment facilitates a strong resistance of pancreatic 
cancer to medication. Although various therapeutic strategies have been reported to be effective in mice with pancreatic 
cancer, they still need to be tested quantitatively in wider animal-based experiments before being applied as therapies. To 
aid the design of experiments, we develop a cell-based mathematical model to describe cancer progression under therapy 
with a specific application to pancreatic cancer. The displacement of cells is simulated by solving a large system of stochastic 
differential equations with the Euler–Maruyama method. We consider treatment with the PEGylated drug PEGPH20 that 
breaks down hyaluronan in desmoplastic stroma followed by administration of the chemotherapy drug gemcitabine to inhibit 
the proliferation of cancer cells. Modeling the effects of PEGPH20 + gemcitabine concentrations is based on Green’s fun-
damental solutions of the reaction–diffusion equation. Moreover, Monte Carlo simulations are performed to quantitatively 
investigate uncertainties in the input parameters as well as predictions for the likelihood of success of cancer therapy. Our 
simplified model is able to simulate cancer progression and evaluate treatments to inhibit the progression of cancer.

Keywords  Mathematical modeling · Pancreatic cancer · Cancer therapy · Cell migration · Monte Carlo simulations

1  Introduction

Cancer involves abnormal cellular proliferation, and the dis-
ease has the potential to spread to other parts of the body. 
There are over two hundred different types of cancers includ-
ing lung cancer, breast cancer, brain cancer, pancreatic can-
cer, etc. Most cancers have the same progression pattern 

in the sense that they initiate from a series of gene muta-
tions resulting in uncontrolled proliferation, angiogenesis 
and metastasis. However, differences exist between cancer 
types and individuals which necessitate that the treatment be 
patient-specific, which normally is a combination of surgical 
resection, radiation therapy and systemic therapy.

The main treatment for pancreatic cancer is surgical 
resection, yet there is only a small resection rate of 15–20%. 
In addition, the cumulative 5-year survival rate after the first 
detection is around 20% (Li et al. 2004) and the median sur-
vival is under 6 months. That is because pancreatic cancer 
is typically diagnosed late, and because of insensitivity to 
chemotherapy drugs, immune escape and other characteris-
tics. Salmon and Donnadieu (2012) observed that the solid 
tumors look like islets (T-islets) surrounded by anisotropic 
desmoplastic extracellular matrix (ECM) that can form a 
physical barrier to the antitumor immune system response. 
At the early stage, mutated cancer cells in T-islets trigger 
massive desmoplasia including a variety of cells and a dense 
ECM as a natural defense that leads to vascular dysfunc-
tion and hence radiotherapy and systemic therapy are sig-
nificantly hindered. The desmoplasia causes high interstitial 
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fluid pressures that prevent drug diffusion. The high ECM 
density in pancreatic desmoplasia has been correlated to 
high concentrations of megadalton glycosaminoglycan hya-
luronan (HA) (Provenzano et al. 2012). In pancreatic ductal 
adenocarcinoma, the HA accumulates in the ECM with a 
frequency as high as 87% (Shepard 2015). Since the HA can 
be depleted by the enzyme PEGPH20, a possible therapy 
could be based on the administering of PEGPH20 with a 
gemcitabine drug for pancreatic cancer therapy. Jacobetz 
et al. (2012) showed that combined therapy of PEGPH20 
and gemcitabine inhibits tumor growth and improves sur-
vival of mice. Moreover, Provenzano et al. (2012) experi-
mentally demonstrated that PEGPH20 + gemcitabine alters 
tumor biology and increases immune response as well as 
overall survival in mice. Nevertheless, extended testing is 
necessary before the combined therapy can be used or even 
tested in clinical practice.

Systemic toxicity, as a side effect of drug therapy, influ-
ences organs and normal tissues. Gemcitabine is used as the 
frontline drug for the treatment of non-small cell lung cancer 
and pancreatic cancer; however, gemcitabine is toxic and 
known to sometimes induce myelosuppression, liver dys-
function, nephrotoxicity, etc. Moreover, cancer recurrence 
and drug resistance of cancer cells have bottlenecked recur-
rent or long-term chemotherapy. Therefore, usage of drugs 
has to be researched and tested massively on animals and 
even patients. While animal-based experiments have ben-
efited drug development, there are many ethical concerns 
and preclinical drug restrictions when carrying out these 
experiments. Mathematical modeling combined with well-
designed experiments provides an avenue for cancer therapy 
research that will allow reduction in the number of animal 
experiments.

Mathematical modeling enables us to reshape our view 
of cancer from different perspectives. The process of estab-
lishing a mathematical model briefly includes the following 
steps: choice of a real problem, simplification of a biological 
phenomenon, establishment of mathematical quantification 
and performance of numerical simulations. Compared with 
animal-based experiments, a prominent advantage of math-
ematical modeling offers an ethical, fast and cost-effective 
way to test various drug combination strategies, as well as 
various assumptions and predictions for cancer therapy.

Computational modeling has been developed for a broad 
spectrum of scales ranging from a few atoms to tissue level 
with applications to various stages of cancer progression. 
As early as 1981, Moolgavkar and Knudson (1981) devel-
oped a model for carcinogenesis at a cellular level. Similarly, 
Beerenwinkel et al. (2007) developed a model to explore 
cancer initiation, in particular the genetic progression 
with an application to colorectal cancer was considered. 
Regarding the larger scales, the possibilities to simulate the 
effects of radiotherapy and chemotherapy for brain tumors 

by using mathematical modeling were studied by Powathil 
et al. (2007). Other mathematical models on cancer therapy 
can be found in Couzin-Frankel (2013) and Namazi et al. 
(2015). In terms of mathematical modeling related to pan-
creatic cancer therapy, resources like Louzoun et al. (2014) 
and Haeno et al. (2012) are rare, and therefore, we develop 
a computational model to investigate therapeutic combina-
tional possibilities using a Bayesian parameter sensitivity 
analysis (Campillo-Funollet et al. 2019).

This paper describes a mathematical model that is a 
continuation of Chen et al. (2018b). The innovations with 
respect to the aforementioned work are the following: (1) the 
model has been extended to the simulation of administering 
drugs that inhibit the proliferation of cancer cells and decay 
the densely packed, circumferentially oriented ECM around 
the cancer region; (2) an uncertainty quantification has been 
carried on the basis of the model parameters to predict the 
likelihood for successful therapy or further development of 
cancer. We expect that these principles can be transferred to 
cancers of different nature. We first consider the injection 
of enzyme PEGPH20 to degrade HA in the desmoplastic 
ECM such that the T-lymphocyte infiltration is increased. 
We then study the effects of subsequent gemcitabine injec-
tion to inhibit the proliferation and growth of cancer cells. 
Injections of both enzyme and drug are modeled by using 
Green’s functions as solutions of reaction–diffusion equa-
tions. Furthermore, the sensitivity of the model with respect 
to various input parameters is investigated using Monte 
Carlo simulations.

2 � Methods

In this paper, we develop the mathematical formalism that is 
used in the current study. We present the way that the vari-
ous cell types are modeled, in terms of migration, cell death, 
proliferation and mutation. Next to the various cell types, we 
explain how the treatments are incorporated in the model.

2.1 � Motivation from experimental observations

Cell culture Regarding Fig. 1a, b, we have used two com-
mercially available human, pancreatic cell lines (ATCC, 
Manassas, VA): BxPC-3 (collected from primary site with 
no evidence for metastasis) and AsPc1 (from metastatic 
site, ascites). Cells were cultured in their appropriate media 
as recommended by manufacturer. RPMI-1640 Medium 
(Biological Industries, Kibbutz Beit Haemek, Israel) sup-
plemented with 10 vol% FBS (ThermoFisher Scientific, 
Waltham, MA), 1 vol% of penicillin-streptomycin (Bio-
logical Industries, Kibbutz Beit Haemek, Israel), 0.46 vol% 
D-Glucose solution, 1 vol% HEPES solution and 0.66 vol% 
sodium bicarbonate solution (all from Sigma, St Louis, MO). 
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Cells were maintained in a sterile incubator at 37 ◦C , 5% 
CO2 and high humidity. Cells were frozen at low passages 
from ATCC stock (i.e., 3–5), and for experiments cells were 
thawed and used in passages 7–30 from the ATCC stock.

Microscopy and imaging Cells seeded on 10-cm tissue 
culture plastic plates were imaged using an inverted, epif-
luorescence Olympus IX81 microscope, with a 20x/0.5NA 
differential interference contrast (DIC, Nomarski optics) air-
immersion, objective lens. Cells at random locations were 
imaged while being maintained in 37 ◦C , 5% CO2, and high 
humidity (90%), in an on-stage and an on-microscope incu-
bator (Life Imaging Services, Switzerland), to sustain their 
viability for prolonged periods of time.

Assumptions Many of the fundamental biological 
assumptions in the current model are taken from Chen et al. 
(2018b), since the current paper is an extension of Chen 
et al. (2018b) where therapy is taken into account. We sum-
marize the biological assumptions, which are needed to have 
a tractable model.

1.	 We only consider three phenotypes: epithelial cells, can-
cer cells and T-lymphocytes;

2.	 Each cell can be in the following two states: dead or 
viable;

3.	 Currently, we consider a two-dimensional domain of 
computation to avoid very large computation times. 
Further, cell deformation is not taken into account for 
reasons of computational efficiency, and therefore, all 
cells are assumed to be circular;

4.	 Because of the lack of information regarding the compo-
sition of the desmoplastic stroma, we assume its density 
to be uniform. We do take into account the variability of 
the orientation of the desmoplastic stroma by using the 
orientation tensor;

5.	 According to the experimental studies by Reinhart-
King et al. (2008), cells are able to communicate by 
mechanical forces exerted on the surrounding substrate. 

This mode of long-distance communication has been 
incorporated in the current paper on the basis of the 
strain energy density. In the modeling, the strain energy 
density impacts the direction of migration of the cells;

6.	 Intercellular contact is simulated by modeling the cells 
as elastic, soft circles in the 2D framework. Here, Hertz 
contact mechanics has been used, which was also pro-
posed in the mouse experimental paper by Gefen (2010), 
which treats the invagination of viruses into cells;

7.	 Cells are subject to various modes of migration. In 
this paper, we assume that chemotaxis of T-lympho-
cytes migration results from the secretion of a generic 
chemokine that is secreted by the cancer cells. Fur-
thermore, since the extracellular matrix always con-
tains inhomogeneities, of which the exact locations are 
unknown, we incorporate a random component to the 
migrational vectors of the cells. This randomness is 
modeled by a random walk, which is a very common 
approach in the literature (Stokes and Lauffenburger 
1991).

8.	 Cumming et al. (2009) modeled orientation effects of 
extracellular matrix in the context of wound healing in 
the skin. Since Salmon and Donnadieu (2012) observed 
T-lymphocytes peripheral migration around T-islets in 
cancer, where the cells only exhibit very little movement 
in the direction perpendicular to the periphery, we fol-
low the approach of Cumming et al. (2009) to incorpo-
rate orientational variations in the desmoplastic stroma.

9.	 According to the experimental studies by Kar et al. 
(2009), homogeneous cultures of cell exhibit the same 
cell cycle if it comes to division and death. However, 
the rates on which the cell cycles proceed differ from 
cell to cell. Kar et al. (2009) observed a random pattern 
which they catch in statistical distributions. Therefore, 
we incorporate cell division, mutation and death as ran-
dom processes.

Fig. 1   Pancreatic cancer cells 
on plastic tissue culture dishes. 
a High metastatic potential cell 
line (AsPC-1). b Low metastatic 
potential or locally invasive cell 
line (BxPC-3). The periphery of 
the cluster is structured differ-
ently than its interior. Scale bar 
is 100mm
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Next, we incorporate the assumptions behind the therapy, 
which is based on the administering of the cocktail of 
PEGPH20 and gemcitabine. This therapy has been tested 
on mice, which results in an improvement in survival of 
mice subject to pancreatic cancer. We model the impact of 
therapy by the use of the following assumptions:

1.	 We consider a circular domain of computation, which 
is in line with the pancreatic experimental observations 
(Olive et al. 2009; Öhlund et al. 2017). Our Fig. 1b also 
demonstrates this circular domain, where an early cir-
cular cluster of densely packed cancer cells is observed 
with edge cells exhibiting a unique morphology. This 
is also found in the studies by Salmon and Donnadieu 
(2012). Therefore, a circular cancer domain with a cir-
cumferentially ring-shaped desmoplastic stroma is mod-
eled and depicted in Fig. 2b.

2.	 Jacobetz et al. (2012) indicated that PEGPH20 can pos-
sibly be used to degrade the desmoplastic stroma. There-
fore, we assume that PEGPH20 makes the orientation of 
the desmoplastic stroma more isotropic, and hence, the 
T-lymphocytes migration into the T-islets is enhanced;

3.	 Gemcitabine is a very general drug for chemotherapy 
against pancreatic cancer. This chemical is known to 
inhibit the DNA synthesis, and hence, cell proliferation 
is frustrated (Plunkett et al. 1995). Therefore, we assume 
that gemcitabine suppresses the proliferation of cancer 
cells;

4.	 Since it is hard to obtain constitutive relations for the 
diffusivities of the various chemicals (drugs and cancer 
cell-secreted chemokine), we assume that diffusion of 
all chemicals is based on Fick’s law for linear diffusion. 

Furthermore, we are only interested in the qualitative 
behaviors of diffusion, and therefore, we use Green’s 
functions to describe the concentration fields. A further 
motivation for this approach is that the Green’s functions 
easily provide explicit relations for concentrations and 
their gradients, which are needed for modeling chemo-
taxis, without the need of mapping from finite element 
meshes (which possibly results into a loss of accuracy).

2.2 � Migration of epithelial and cancer cells

Cancer initiates from genetic mutations, and therefore, we con-
sider the normal epithelial cells, which can mutate to cancer 
cells, and cancerous cells in a bounded computational domain 
Ω ⊂ ℝ

2 . The set of epithelial and cancerous cells at time t is 
denoted by �(t) . Cells migrate in the domain Ω and interact 
with each other as well as with its microenvironment, e.g., 
substrate in 2D or ECM in 3D. Generally, cell migration is 
classified into amoeboid or mesenchymal movement. Cancer 
cells have the ability to change state between these two migra-
tional modes in order to adapt to environmental changes. In 
the current work, we assume that cells migrate according to 
mechanical signals as a result of substrate deformation caused 
by neighbor cells’ adhesion and traction (Massalha and Weihs 
2017). For completeness, we present some of the equations 
from Vermolen and Gefen (2012). Slight deformation of sub-
strate gives a strain energy U as

where V and E denote the deformation volume and Young’s 
modulus. Note that � defines strain of the substrate given 

(1)U =
1

2
VE�2,

Fig. 2   Schematic figures. a The 
timeline of T-islets model in 
domain Ω . b A circular desmo-
plastic ECM, which is divided 
into ten subdomains (indexed 
from 1 to 10) for computation
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by � =
d

L
 with d in deformed vertical displacement and L in 

thickness of the substrate. Then, the strain energy density 
(total energy per unit of volume) M0

i
 is calculated by

Here, Es(�i) denotes the Young’s modulus of substrate at the 
center of cell i and �i = (xi, yi) is its corresponding position. 
If Eq. (2) is combined with Hooke’s Law � =

1

Es(�i)

Fi

�R2
 , then 

we get

For cell i with radius R, Fi represents the exerted force on the 
substrate. The total strain energy density that a cell detects 
originates from itself as well as from the other neighboring 
cells. Cells are able to detect signals from other cells if a 
certain threshold is exceeded for the strain energy density 
(Chen et al. 2018b; Reinhart-King et al. 2008). Since the 
mechanical signal decays with the distance, we compute the 
attenuation of the signal from another cell j by

The attenuation factor �i can be approximated by �i =
Es(�i)

Ec

 
(Merkel et al. 2007), where Ec is the Young’s modulus of the 
cell. Since the strain energy density is a scalar, the total 
value of one cell at position �i can be obtained by summing, 
that is

Based on the work by Vermolen and Gefen (2012), the dis-
placement direction of a cell is determined by the unit vector 
between itself and other cells, for example, �ij =

�i−�j

∥�i−�j∥
 for 

cell i and cell j. At time t, the final displacement direction �i 
of cell i can be obtained by the following linear combination 
of unit vectors obtained through the interconnection vectors 
between the cells,

Under the mechanical stimulus, the total displacement of a 
cell per time step dt is given by

(2)M0
i
=

1

2
Es(�i)�

2, for i ∈ �(t).

(3)M0
i
=

1

2�2

F2
i

Es(�i)R
4
, for i ∈ �(t).

(4)Mi(�j) = M0
i
exp

{

−�i

∥ � i − �j ∥

R

}

, for i, j ∈ �(t).

(5)

M(�i) =
∑

j∈�(t)

Mj(�i)

= M0
i
+

∑

i,j∈�(t)j≠i
M0

j
exp

{

−�j

∥ � i − �j ∥

R

}

.

(6)�i =

n
∑

j=1j≠i
Mj(�i(t))�ij, for i ∈ �(t).

In Eq. (7), �̂i is a unit vector ( ̂�i =
�i

∥�i∥
 ) and the velocity 

parameter �i follows from Gefen (2010) and is given by

where � is the cell-substrate friction coefficient and �i rep-
resents the mobility coefficient of the area of one cell that is 
in contact with the substrate.

Cell contact inhibition is a biological mechanism to 
inhibit cell proliferation and to decrease mobility. As a 
result, the migration speed can be dampened if two cells 
collide. Therefore, we incorporate a repulsive invagination 
force Mij between cell i and cell j as introduced in Gefen 
(2010), which increases with the impinging distance. The 
equation reads as

The variable h is the distance of impingement given by 
h = max(2R− ∥ �ij ∥, 0) , where �ij defines the distance 
between cell i and cell j. Note that this equation guarantees 
that any number of cells will not overlap too much during 
collision.

Taking the unpredictability of cell migration into account, 
we extend the model with a temporal stochastic process in 
the form of a Wiener process ( W ∼ N(0, dt) ). In summary, 
the displacement of epithelial and cancer cells is determined 
by the strain energy density, total repulsive force Mmc(�i) and 
random walk, and thereby, the revised equation is written as

where M̂i(�) is the total mechanical signal, which is given by 
M̂i(�) = M(�i) −Mmc(�i) and � represents a constant in this 
random walk. Further, d�(t) represents a vector with inde-
pendent samples from N(0, dt) . In ℝ2 and ℝ3 , the number of 
components of d�(t) is two and three, respectively. To solve 
the problem, we use the Euler–Maruyama method (Kloeden 
and Platen 2013), which boils down to the ordinary forward 
Euler method combined with the Wiener Process:

Here, Δ�(t) represents a vector with independent samples 
from N(0,Δt) . The above equation contains a time integra-
tion in which a part is random from the Wiener process. 
Using a higher-order method makes the numerical error 
smaller than the actual uncertainty. Therefore, we decided 
to use the ordinary Euler–Maruyama method in which the 
deterministic part is treated by a first-order forward Euler 
method. However, to ensure the numerical stability, the time 

(7)d�i(t) = 𝛼iM(�i(t))�̂idt, for i ∈ �(t).

(8)�i =
�iR

3

�Fi

, for i ∈ �(t),

(9)Mij =
4

15
√

2

Ec

�

�

h

R

�

5

2

, for i, j ∈ �(t).

(10)d�i(t) = 𝛼iM̂i(�)�̂idt + 𝜂d�(t), for i ∈ �(t),

(11)�
n
i
= �

n−1
i

+ Δt𝛼iM̂i(�
n) + 𝜂Δ�(t), for i ∈ �(t).
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step cannot be chosen arbitrarily large. If we restrict the 
displacement of a cell step to one-fourth of the cell diameter, 
then the time step is bounded by Δt ≤ R

2max∥�i∥
 with �i denot-

ing an equilibrium velocity of cell i.

2.3 � Migration of T‑lymphocytes

Migration of cells can be driven by several cues. Such cues 
can be chemicals, electricity, mechanical properties (such as 
stress or elasticity) and light. For the locomotion of T-lympho-
cytes, we take chemotaxis and small range impingement into 
account. According to Van Damme et al. (1992) and Kershaw 
et al. (2002), immune cells like cytotoxic T-lymphocytes move 
toward the gradient of chemokines secreted by cancerous cells. 
We use �(t) and � (t) to represent the set of cancer cells and 
the T-lymphocytes at time t, respectively. Each cancer cell 
is modeled as a point source, and therefore, we consider the 
Dirac delta distribution �(�) to model the chemokine secreted 
by each cancer cell. Then, the concentration of the chemokine 
change is described as

In Eq. (12), c, Dc and �j(t) denote chemokine concentration, 
diffusivity and secretion rate by cancer cells at time t. For the 
sake of simplicity and applicability of the Green’s functions 
and in order to avoid the enlargement of the parameter space 
in the model, we take all diffusion coefficients constant over 
the various subdomains in all the simulations. Regarding 
the time-dependent scheme, it takes computational time and 
memory to store all the positions of cancer cells at all times. 
Therefore, we solve the steady-state part of Eq. (12), which 
results into

Analogously, any two T-lymphocytes are not allowed to 
overlap too much, and thus, the contact inhibition is con-
sidered by using mechanical repulsion Mmc in Eq. (9). Fur-
thermore, the random walk is incorporated as well to mimic 
the unpredictable migratory behaviors of T-lymphocytes. 
However, the remote mechanical cues are disregarded for 
the migration of T-lymphocytes. Then, the displacement of 
T-lymphocytes is written as

(12)
�c

�t
− DcΔc =

∑

j∈�(t)

�j(t)�(� − �j(t)), for j ∈ �(t).

(13)

�c

�x
(x, y) = −

∑

j∈�(t)

�j(t)

2�Dc

x − xj(t)

∥ � − �j(t) ∥
2
,

�c

�y
(x, y) = −

∑

j∈�(t)

�j(t)

2�Dc

y − yj(t)

∥ � − �j(t) ∥
2
.

(14)
d�j(t) = �∇c(t, �j(t))dt + �d�(t) −Mmc(�j)�jdt,

for j ∈ � (t),

where � defines the chemotactic constant. Similarly, d�(t) 
is a vector Wiener process. The displacement of T-lym-
phocytes is dealt with by using the same Euler–Maruyama 
method expressed by

For an overview of cross talk between cells and microen-
vironment, the reader is referred to Fig. 1 in Chen et al. 
(2018b).

2.4 � Stochastic processes: cell division, mutation 
and death

Cell proliferation, mutation and death are some of the fun-
damental processes of cells regulated by genes, intracel-
lular interaction and microenvironment. To simplify the 
model, stochastic processes are considered to simulate the 
probability of cell division, mutation and death (Vermolen 
2015). We hypothesize that the probability of cell division, 
mutation and death is only influenced by the total strain 
energy density one cell endures. Then, the probability den-
sity for t > tn is given by

where 𝜆 > 0 is the probability rate of cell division, mutation 
or death per hour. This probability density is common in 
modeling waiting times of discrete phenomena, see Grim-
mett and Stirzaker (2001, p. 95). Hence, the probability is 
achieved by time integration

Note that the incidence of cell division, mutation or death 
is determined by � as

where � ∼ u[0, 1] is generated from an uniform distribution. 
Since most chemotherapy drugs target on DNA generation 
and thereby inhibit cell division, the probability rate � of 
cancer cell division and mutation reads as

where �0 denotes the initial probability rate and �(c(t)) repre-
sents the probability rate for cancer cell proliferation under 
the influence of drug therapy.

(15)
�
n
j
= �

n−1
j

+ ∇c(t, �n−1
j

)Δt + �Δ�

−Mmc(�n−1
j

)�n−1
j

Δt, for j ∈ � (t).

(16)ftn (𝜆, t) = 𝜆exp(−𝜆(t − tn)), for t > tn,

(17)
P(t ∈ (tn, tn + Δt)) = ∫

tn+Δt

tn

ftn (�, t)dt

≃ 1 − exp(−�Δt).

(18)0 ≤ � ≤ 1 − exp(−�Δt),

(19)� =

{

�0
�(c(t)) = �0exp(−Acdrug)

,
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2.5 � Desmoplastic ECM

Despite the enormous number of cellular studies, the interac-
tion between cancer cells and the microenvironment is still 
poorly understood. In pancreatic cancer, the components of 
the desmoplastic ECM around T-islets are likely dynamic, and 
thus, its function is controversial. Some studies (Salmon and 
Donnadieu 2012; Hanahan and Weinberg 2011) suggest that 
the desmoplastic ECM supports cancer progression, whereas 
some studies hint to the contrary (Rhim et al. 2014). However, 
there is a consensus that cancer cells in the pancreas are able 
to reshape the normal ECM to adapt to their survival needs. 
Some of the properties of the desmoplastic ECM can be gen-
eralized as, (1) profuse fibers that are arranged in parallel to 
the circumference of the T-islets that leads to an anisotropic 
environment; (2) abundant regeneration of HA results in local, 
stiff tissue; and (3) the stiff desmoplastic ECM acts as a solid 
defense that hinders the entry of many agents, e.g., immune 
cells, blood vessel generation, drugs, etc.

Due to chemotaxis, T-lymphocytes tend to move toward the 
gradient of the concentration of chemokines secreted by cancer 
cells (Salmon and Donnadieu 2012). However, their migration 
is guided by the desmoplastic ECM orientation once T-lym-
phocytes enter the anisotropic desmoplastic ECM (Bougherara 
et al. 2015). As a result, T-lymphocytes preferably migrate in 
the tangential direction and slow down in the radial direction, 
which results in the behavior that cells are migrating around 
the tumor, and hence, the cells do not penetrate the tumor. To 
model the orientation in the two-dimensional framework, we 
introduce an orientation tensor � (t, �) (Cumming et al. 2009)

The tensor is symmetric according to the tangential and 
radial directions. Thereby, the orientation tensor is calcu-
lated by

where �
�
 and �

�
 are orthogonal eigenvectors denoting the 

radial and tangential components (Cumming et al. 2009). 
The eigenvalues �1 and �2 are the corresponding weights. 
Furthermore, there is an attenuation in radial speed with 
rate constant k reading as �v

�s
= −kv . Here, s represents the 

penetration depth and finally v is given by v = v0e−ks with 
an initial velocity v0 on the ECM external boundary, see Eq. 
(21). Finally, the displacement of T-lymphocytes under the 
influence of collagen orientation is adjusted to

where �j denotes the chemotactic mobility rate.

(20)� (t, �) =

(

�xx �xy

�xy �yy

)

.

(21)� = v0e−ks�1��
�

�

T + v0�2��
�

�

T ,

(22)
�
n
j
= �

n−1
j

+ �j� (∇c(t, �n−1
j

)Δt + �Δ�)

−Mmc(�n−1
j

)�n−1
j

Δt, for j ∈ � (t),

At present, we have the relevant experimental results 
shown in Fig. 1 to support our simplified model. As above 
mentioned, pancreatic cancer is typically diagnosed at late 
stages with a high metastasis risk. Highly metastatic pan-
creatic cancer cells, already in their invasive state, are more 
likely to remain as individuals, especially during invasion, 
see Fig. 1a. In contrast, noninvasive cancer cells accumulate 
into dense clusters on plates, likely emulating rapid prolif-
eration in the early stages of tumor growth (see Fig. 1b). 
We consider the structure of the cluster of cancer cells, with 
its highly dense cells, as already similar to a circular islet, 
which is surrounded by tangentially oriented desmoplastic 
ECM.

2.6 � Enzyme and drug injection

Pancreatic cancer frustrates the human immune system and 
builds a physiological barrier to protect itself (Feig et al. 
2012; Provenzano et al. 2012). These two properties render 
chemotherapy pointless, since most chemotherapy drugs are 
given by intravenous injection and subsequently arrive at the 
tumor via the blood stream (Neesse et al. 2011). Compared 
with other types of cancers, the regeneration of new blood 
vessels does not take place in the anisotropic ECM in pan-
creatic cancer, whereas cancer cells are capable of surviving 
under conditions with few nutrients due to insufficient blood 
supply (Awale et al. 2006). Therefore, in our simulations, we 
initially mimic a treatment that in the first step aims at the 
degradation of the ECM that will then allow drug delivery 
to the cancer cells.

Jacobetz et al. (2012) showed that abundant HA impairs 
vascular function and hinders drug delivery, and hence, deg-
radation of HA combined with chemotherapy drugs could 
be an option for treatment. The enzyme PEGPH20 is con-
sidered here to degrade HA rapidly and efficiently and is 
administered by injections. The injection can be regarded 
as a source point when using the Dirac delta distribution � 
and the corresponding concentration cen diffuses based on

where Den and ℙ(t) denote the enzyme diffusivity and the 
set of multiple injections. The injection rate �en(t) of each 
injection site is defined as

which means that PEGPH20 is injected at time t0 until time 
t1 and no more enzyme is given afterward. A schematic time-
line of T-islet model in the domain � with important marks 
is shown in Fig. 2a, where the time of drug administration 

(23)
�cen

�t
− DenΔcen =

∑

p∈ℙ(t)

�en(t)�(� − �p(t)),

(24)𝛾en(t) =

{

𝛾0, if t0 < t ≤ t1
0, else

,
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is referred to Jacobetz et al. (2012). When the percentage of 
cancer cells amount in total cells amount exceeds 35%, the 
PEGPH20 starts to be injected and time is marked as t0 . To 
simplify the description of the process, we assume that the 
enzyme is injected once at position �p nearby T-islets, and 
thence, the concentration of enzyme with respect of time t 
at location � is

The second equality sign results after applying Eq. (24). 
Once the drug has been injected, it diffuses to its surround-
ings according to

where Ddrug and �(t) denote the drug diffusivity and the set 
of multiple injections. Subsequently, the injection rate �drug 
of chemotherapy drug gemcitabine during time interval 
(t2, t3) as well as afterward is given by

and using Eq. (27) its diffused concentration cdrug at position 
� with injected position �d in desmoplastic ECM is expressed 
as,

In pancreatic cancer, gemcitabine targets on inhibiting the 
proliferation of cancer cells. Moreover, this model can be 
extended to immunotherapy in the form of an injection of 
antibodies to boost the immune system or by the use of 
immune checkpoint inhibitors, etc. Cancer cells enable the 
immune checkpoint protein (like CTLA-4, PD-1, PD-L1, 
etc.) of T-lymphocytes to be over-expressed which is not 
conducive to the activation of T-lymphocytes.

To consider the variation in concentration of enzyme or 
drug, the circular desmoplastic ECM (see Fig. 1b) is divided 
into subdomains as shown in Fig. 2b. In each subdomain, the 
middle point is used to sense the enzyme/ drug concentra-
tion given by

(25)
cen(�) = ∫

t

0

�en(t)

4�Den(t − s)
e

∥�−�p∥
2

4Den(t−s) ds

= ∫
t1

t0

�0

4�Den(t − s)
e

∥�−�p∥
2

4Den(t−s) ds.

(26)
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�t
− DdrugΔcdrug =

∑

q∈�(t)

�drug(t)�(� − �q(t)),

(27)𝛾drug(t) =

{

𝛾0, if t2 < t ≤ t3
0, else

,

(28)

cdrug(�) = ∫
t

0

�drug(t)

4�Ddrug(t − s)
e

∥�−�d∥
2

4Ddrug (t−s) ds

= ∫
t3

t2

�0

4�Ddrug(t − s)
e

∥�−�d∥
2

4Ddrug(t−s) ds.

Here, R1 and R2 are the radii of the inner and outer bounda-
ries, respectively, which are divided by N = 10 points. We 
only use the subdomains during the treatments since the 
enzyme and drug concentrations exhibit variations over the 
periphery of the ECM around the tumor.

In experiments (Jacobetz et al. 2012), PEGPH20 treatment 
leads to a significant increase in fenestrae, interendothelial 
gaps and macromolecular permeability. Moreover, Shepard 
(2015) demonstrated that PEGPH20 treatment stimulates 
immune NK cells and trastuzumab penetration. Thereby, the 
antitumor response is boosted. The penetration of immune 
cells and macromolecular structure benefit from less HA in 
ECM, which additionally weakens the impact of desmoplas-
tic ECM orientation on cell migration. In our previous study 
(Chen et al. 2018b), we used constants for eigenvalues �1 and 
�2 in Eq. (21) to calculate the desmoplastic ECM orientation. 
In the current work, �2(t, �) , denoting the tangential orienta-
tion component at position r in ECM, is adjusted over time by

where L is a rate constant. Let n be the time index, then 
subsequently �n+1

2
(�) can be approximated from the previ-

ous time step by

Furthermore, the attenuation factor e−ks of radial velocity 
in Eq. (21) becomes time dependent as well, where k(t, �) 
is changed to

Analogously, the kn+1(�) is updated by

To locate each T-lymphocyte and to determine where they 
are at time t if they are in the desmoplastic ECM region, we 
compute the angle of the line segment between cell position 
and the center (0, 0) and the horizontal axis by

(29)
�i =

(

R1 + R2

2
cos(2�

(i − 1)

N
),

R1 + R2

2
sin (2�

(i − 1)

N
)

)

, for i ∈ {1,… , N}.
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= −Lk(t, �)cen(t, �).
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(�)Δt.
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{

atan(
yj

xj
), if yj ≥ 0
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), if yj < 0

for j ∈ � (t), if R1 <∥ �j ∥< R2.
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For each subdomain, the angle is 2�
N

 and the j-th subdomain 
has a range of angles given by

2.7 � Monte Carlo simulations

One of the advantages in our model is the efficiency in com-
putational time, and therefore, we carry out Monte Carlo 
simulations to quantitatively investigate the propagation 
of uncertainties in the parameters. Parameters are sampled 
from a normal distribution N(�, �2) , where � and � denote 
the mean value and the standard deviation. The investigated 
variable X ∈ {F,D, �, k} is given by

Each simulation is terminated at 80 h or 150 h, and then, we 
investigate the final fraction of cancer cells fc as an evalua-
tion criteria for cancer development. Afterward, the sample 
correlation coefficient � between variables and the final frac-
tion of cancer cells fc reads as

In Eq. (37), X̄ and f̄c represent the average values. Note that 
the linear sample correlation coefficient ranges in [−1, 1].

(35)�j ∈

[

(j − 1) ⋅
2�

N
, j ⋅

2�

N

]

, for j ∈ {1, ..., N}.

(36)X ∼ � + �N(0, 1).

(37)𝜌 =

∑

j=1

Ns(Xj − X̄)(f
j
c − f̄c)

[
Ns
∑

j=1

(Xj − X̄)2
Ns
∑

j=1

(f
j
c − f̄c)

2]
1

2

.

3 � Numerical results

Since we have not yet access to clinical data, we estimate 
the input parameters based on the range of data provided 
in the references, which are listed in Table 1. Furthermore, 
we use mathematical intuition to approximate some of the 
parameters not available in the literature, e.g., diffusivity 
of enzyme PEGPH20, which is a kind of protein and its 
value refers to a study with a range of diffusion coefficients 
of proteins (Young et al. 1980). Moreover, the elasticity of 
T-lymphocytes is much bigger than the elasticity of epithe-
lial cells, which results in a larger repulsive force if T-lym-
phocytes mechanically collide with other cells. Since varia-
tions in some parameters may have significant impact on the 
numerical results, Monte Carlo simulations are carried out 
to evaluate the uncertainties and correlations among vari-
ables, as well as the likelihood that the cancer develops up 
to a predescribed extent. For a couple of parameters, we use 
sampling from a normal distribution, see Table 2 for details.

3.1 � T‑islets with anisotropic desmoplastic ECM 
and Monte Carlo simulations

Pancreatic ductal adenocarcinoma is notorious for the exten-
sive and stiff desmoplasia surrounding the tumor, which is 

Table 1   Input values Parameters Notation Value and units Source

Radius of cells R 8 μm De Paiva et al. (2006)
Radius of T-lymphocytes R

t
5 μm Estimated

Cell contraction force F 30 kg μm/h2 Estimated
Substrate elasticity E

s
5 kg/μm h2 Estimated

Cell elasticity E
c

0.5 kg/μm h2 Estimated
Elasticity of T-lymphocytes E

t
250 kg/μm h2 Estimated

Cell mobility coefficient � 60 h-1 Estimated
Friction coefficient μ 0.2 Vermolen and Gefen (2012)
Cytokine diffusivity Dc 5E3 μm2/h Bookholt et al. (2016)
PEGPH20 diffusivity Den 1E1 μm2/h Young et al. (1980)
Drug diffusivity Ddrug 1E4 μm2/h Jeon et al. (2002)
Secretion rate � 5E6 mol/h μm3 Savinell et al. (1989)
Injection rate �0 5E6 mol/h μm3 Estimated
Time step dt 0.01 h Estimated
Inner radius of T-islet R1 120 μm Estimated
Outer radius of t-islet R2 200 μm Estimated

Table 2   Mean and standard deviation in the Monte Carlo simulation 
sampling

Parameter F D � Inhibitor k

Value (30, 32) (5000, (500)2) (60, 62) (0.3, 0.12)
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thought to be rare in other types of cancers. Most studies 
have shown that this abnormal desmoplasia facilitates cancer 
initiation, survival and further metastasis (Salmon and Don-
nadieu 2012; Lachowski et al. 2017).

In our previous study (Chen et al. 2018b), we developed 
a cell-based model to describe the influence of anisotropic 
desmoplasia on the locomotion of T-lymphocytes. Due 
to the stiffness and anisotropy of the desmoplastic ECM, 
T-lymphocytes likely become trapped in the desmoplasia 
area and then preferably move in the direction of the fiber 
arrangement. Bougherara et al. (2015) demonstrated that 
the distribution and migration of T-lymphocytes rely on 
the density and orientation of collagen fibers.

Since a chemotherapeutic drug administration cycle is 
typically one week, we restrict each simulation to 150 h. 
To make the problem tractable, we assume that the density 
of the collagen is uniform everywhere and that initially 
its arrangement is parallel to the T-islets circumference. 
Several consecutive snapshots of the numerical simulation 
are shown in Fig. 3, where epithelial cells, cancer cells, 
T-lymphocytes and anisotropic collagen are visualized 
by blue, red, black and gray colors, respectively. Due to 
the guide of the anisotropic orientation �  , T-lymphocytes 
tend to accumulate in a certain area where the cancer 
cells secrete chemokine is maximal in the stromal layer. 
The tangential oriented ECM makes the T-lymphocytes 

unable to reach the cancer cells. As a result, the propor-
tion of cancer cells of the total cells increases significantly 
within the T-islets. Our result is consistent with experi-
mental observations in a study by Bougherara et al. (2015) 
on non-small cell lung cancer and ovarian cancer, where 
T-lymphocytes preferentially accumulate in the stroma 
rather than infiltrating into the cancer nest.

To investigate the influence of input parameters on the 
simulated results, Monte Carlo simulations are carried out, 
where input variables are sampled from statistical distribu-
tions, e.g., normal, uniform, Pareto, lognormal, exponen-
tial, etc (Mooney 1997). For an application of Monte Carlo 
simulations and error analysis, we refer to our cell deforma-
tion model (Chen et al. 2018a). To guarantee an acceptably 
small error, 5000 samples are used for the cell contraction 
force F, cytokine diffusivity Dc , cell mobility coefficient � 
and desmoplastic ECM inhibitor k. For the sake of saving 
computational time while ensuring that the results are not 
affected, we consider 80 h.

In Fig. 4, we plot a histogram of 5000 samples for the 
fraction of cancer cells at the final time of the simulation 
fc and a cumulative distribution function (CDF) of the esti-
mated probability that fc is lower than a certain number on 
the horizontal axis. As an example, the proportion of the 
cases where fc is no more than 50% is approximately 51%. 
The probability rate of cell division, mutation and death 

Fig. 3   Snapshots of T-islets with desmoplastic ECM orientation. The epithelial cells, cancer cells, T-lymphocytes and anisotropic collagen are 
visualized by blue, red, black and gray colors, respectively
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in Eq. (17) is 100/h such that mutation happens during the 
interval of a time step in each simulation with a probabil-
ity 0.63. For smaller probability rates for the mutation, we 
observed several cases in which no mutation, that is, no can-
cer, occurred. Moreover, this figure shows that most cases 
end with a large number of cancer cells as a result of inef-
fective T-lymphocytes infiltration.

Subsequently, several scatter plots are listed in Fig. 5 
showing the sample correlations between each input 
parameter with the estimated fraction of cancer cells fc . In 
comparison, significant impacts of the desmoplastic ECM 
inhibition k (in particular for small values) and cell con-
traction force F on fc cannot be excluded, where other two 
variables, i.e., cytokine diffusivity Dc and cell mobility � , 
have no obvious correlations with fc . As expected, cancer 
cells grow and divide within the T-islets protected by the 
anisotropic desmoplastic ECM with influence from input 
parameters. The radical inhibition of the desmoplastic ECM 
becomes stronger as the desmoplastic ECM inhibition factor 
k increases and thereby the fraction fc becomes relatively 
large. Note that there is a dramatic increase between 0 and 
0.15, which means that the migration of T-lymphocytes is 
highly sensitive to the accumulation of HA, collagen, fibro-
blast, etc., in the early stages.

3.2 � PEGPH20 injection

Accumulated HA functions as a core polymer of the cancer-
associated ECM to provide a hydrated viscoelastic gel-like 
matrix in collagenous fibers and forms the main barrier to 
chemotherapy delivery and vasculature (Thompson et al. 
2010; Gore and Korc 2014). PEGPH20 is a type of enzyme 

aiming at depleting abundant HA in the anisotropic desmo-
plastic ECM to improve vascular perfusion and to increase 
effectiveness of anticancer therapeutics. Thompson et al. 
(2010) described their experiments, showing that PEGPH20 
has an ability to remove the accumulated HA as well as to 
remodel the tumor microenvironment. Thence, we propose a 
simplified enzymatic depletion model of tumor stroma with 
PEGPH20 intervention to predict the interaction of cancer 
cells and its microenvironment.

To evaluate the variations in ECM orientation in different 
areas in Fig. 1b, the modeled anisotropic stroma is divided 
into ten subdomains in Fig. 2b. Each center of subdomains 
acts as a point to monitor the concentration of PEGPH20 
that results in ten different concentration signals. Typically, 
PEGPH20 is given by intravenous injection in clinical tri-
als while experimentally cell lines in vitro are fed with 
PEGPH20 in culture cell media. To develop a simplified 
model, we suppose that the injection site is just outside the 
T-islets near the subdomain 5. Normally, when patients 
have any symptoms, the pancreatic cancer is already in an 
advanced or late stages, which poses a challenge for the 
improvement in the prognosis. Since the model is developed 
for the early stage, we suppose that a high concentration of 
PEGPH20 is given when the number of cancer cells accounts 
for 35% of the total number marked as time t0 . The injection 
lasts 1 h to time t1 , and an attenuation of ECM orientation on 
T-lymphocytes migration within ten subdomains is shown 
in Fig. 6. The orientation degree �2 of subdomains is set to 
ten initially and subsequently decays during the time interval 
(t0, t1) , respectively, where the area near the injection site 
decays faster. Thereby, the T-lymphocytes in the PEGPH20-
treated subdomains move faster in the radial direction at the 
beginning compared with in the rest subdomains. Note that 

Fig. 4   Histogram and CDF plot of outcomes at time of Monte Carlo 
simulations with 5000 samples. a There is no drug intervention. The 
x-axis shows the final fraction of cancer cells in total cells fc and 

the y-axis is its corresponding frequency of occurrence. b Cumula-
tive probability f < fc based on the histogram in (a), where f is the 
dynamic fraction of cancer cells at time
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eventually the orientation of the ECM has no significant 
influence on T-lymphocytes migration.

Some consecutive snapshots are shown in Fig. 7 in which 
pancreatic cancer starts with epithelial cell mutation and 
triggers an immune response afterward. With ECM orienta-
tion, T-lymphocytes are trapped in peripheral ECM. After 
PEGPH20 is injected, T-lymphocytes are no longer hin-
dered by the anisotropic desmoplastic ECM orientation in 
the solid stromal region and finally invade into the interior 
of the T-islets. However, the fraction of cancer cells remains 
stable in Fig. 7 when t = 150 h despite that the immune 
responses are boosted, since the cancer cells keep dividing 
without drug intervention. Therefore, drugs or antibodies are 
crucially important to fight uncontrolled cell division or to 
enhance the efficiency of the immune responses.

3.3 � PEGPH20 + gemcitabine injection

The aberrant desmoplasia is a result of activated pancreatic 
stellate cells which lead to production of collagen, laminin 
and fibronectin (Apte et al. 2013). As a consequence, can-
cer stroma exhibits abundant HA, increased stiffness and 
elevated hydrostatic pressure which collaborate to suppress 
the intratumoral drug delivery (Provenzano et al. 2012). 
With the enzymatic depletion of HA in the stromal region, 
the interstitial fluid pressure, which restores the vessel 
appearance and drug delivery into the carcinoma, decreases. 
Provenzano et al. (2012) experimentally studied the com-
binations of enzyme PEGPH20 and drug gemcitabine for 
the treatment of pancreatic cancer in the mice. To provide 
more predictions and possibilities, we develop a PEGPH20 
+ gemcitabine model for the treatment of pancreatic cancer.

Gemcitabine is the first-line drug for pancreatic cancer, 
which inhibits processes required for DNA synthesis and 
causes cell death (Plunkett et al. 1995). In our earlier study 

Fig. 5   Scatter plots of the final fraction of cancer cells fc at time = 80 
h versus parameters F, Dc , � and k, respectively. The � in each subfig-
ure corresponds to its correlation coefficient. In comparison, d exhib-

its a significant correlation between fc and the desmoplastic ECM 
inhibition faction k from 0 to 0.15
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(Chen et al. 2018b), the probabilistic division of cancer 
cells can happen under the following conditions: (1) suffi-
cient time interval for growth and (2) suitable strain energy 
density. We assume that the probability rate during a time 
interval remains unchanged for cell mutation, division and 
death. Since the drug impedes cancer cell proliferation, we 
hypothesize that the probability rate � of cell mutation and 
cancer division depends on the concentration of gemcitabine 
� = �(c(t)) . In the simulations, drug injection (indicated by 
a red-filled square) lasts 1 h such that the concentration of 
gemcitabine increases during an hour and subsequently goes 
down. Consequently, the probability of mutation and divi-
sion of cancer decreases, and then, the T-lymphocytes are 
more likely to eliminate cancer cells. The resulting behaviors 
are shown by some snapshots in Fig. 8, where PEGPH20 
is injected around t = 45 h. Due to the stochastic nature of 
the model, each simulation varies from others, and thereby, 
the injection time changes with t = 49 h in Fig. 7 and t = 45 
h in Fig. 8. Therefore, we vary the fraction of cancer cells 
when injecting PEGPH20/ PEGPH20 + gemcitabine. The 
injection point is visualized as a black asterisk, and 10 h 
later (Jacobetz et al. 2012), gemcitabine is administered. 
Compared to Fig. 7, the final fraction of cancer cells fc is 

Fig. 6   Variation of �2 , which is the tangential component of desmo-
plastic ECM orientation, in ten subdomains (see Fig. 2b) during time 
interval (t0, t1) . Since the injection site of PEGPH20 is chosen at the 
middle of subdomain 5 and 6, but outside of the desmoplastic ECM, 
the orientation �2 of subdomain 5 and 6 decreases faster as a result of 
sensing a higher PEGPH20 concentration

Fig. 7   Snapshots of T-islets with PEGPH20 intervention. The epi-
thelial cells, cancer cells, T-lymphocytes and anisotropic ECM are 
visualized by blue, red, black and gray colors, respectively. Moreover, 
the black asterisk is visualized as an injection site. Before PEGPH20 

intervention, T-lymphocytes are trapped in peripheral ECM and accu-
mulate in a certain area as a result of cancer-mediated chemotaxis and 
ECM orientation
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much smaller in Fig. 8 at t = 150 h, which means that the 
combination of PEGPH20 + gemcitabine is more effective 
than the use of PEGPH20 only in order to facilitate concur-
rent immune response and chemotherapy.

In animal-based experiments, the size of a solid pancre-
atic tumor has been compared before and after the combined 
treatment, respectively (Provenzano et al. 2012). We alter-
natively compare the fraction of cancer cells fc in T-islets 
before and after treatment, for simplicity of calculation. 

Fig. 8   Snapshots of T-islets with intervention of PEGPH20 + gem-
citabine. The epithelial cells, cancer cells, T-lymphocytes and ani-
sotropic collagen are visualized by blue, red, black and gray colors, 
respectively. Moreover, the black asterisk is visualized as PEGPH20 

injection site and the red-filled square denotes gemcitabine injection 
site. Before PEGPH20 intervention, T-lymphocytes are trapped in 
peripheral ECM and accumulate in a certain area as a result of can-
cer-mediated chemotaxis and ECM orientation
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Fig. 9   Comparisons of the final fraction of cancer cells fc during 
150 h evolution in T-islets for three cases. Three cases are: without 
treatment, with PEGPH20 alone and with PEGPH20 + gemcitabine, 

respectively. a Treatment starts as soon as the fraction of cancer cells 
is 35%. b Treatment starts as soon as the fraction of cancer cells is 
50%
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Figure  9 shows the comparison of fc in T-islets with 
PEGPH20 intervention only and with combined PEGPH20 
+ gemcitabine, respectively. Each simulation is restricted to 
150 h, where PEGPH20 is given once; the initial cancer cell 
proportion is 35% and gemcitabine is injected 10 h later in 
the combined treatment referring to Jacobetz et al. (2012). 
In Fig. 9a, the number of cancer cells increases to the maxi-
mum capacity of the modeled T-islets (approximately 250 
in the current simulation domain) because T-lymphocytes 
are trapped in the desmoplastic ECM area. With an early 
PEGPH20 intervention, T-lymphocytes are capable of pen-
etrating the enzyme-depleted ECM to engulf cancer cells, 
and thereby, the fraction of cancer cells slightly drops firstly 
and then gradually rebounds into a growing trend toward 
roughly 42% in the end. Next, the combined PEGPH20 + 
gemcitabine is considered, as we expected, only a few cancer 
cells are finally left with a fraction of 11% after 150 h.

Aside from physical barriers, the influence of the injec-
tion time of PEGPH20/PEGPH20 + gemcitabine on the 
progression of cancer is crucially important. If the injection 
time is delayed until the cancer cells have accounted for 
50% of the total cells, the corresponding result is shown in 
Fig. 9b. In terms of the final proportion of cancer cells fc , 
the PEGPH20 alone could restrict the fraction of cancer cells 
with a dynamic equilibrium for a short period. Furthermore, 
the follow-up progression of cancer depends on the patient’s 
own immune response, whereas PEGPH20 + gemcitabine 
could control the fraction of cancer cells to some extent due 
to functions of the drug. The model predicts roughly a frac-
tion of 31% when t = 150 h, see Fig. 9b, where probably 
more PEGPH20 + gemcitabine is needed for the further 
treatment. During the cancer progression and therapy, the 
likelihood of cancer metastasis increases over time, and 
thereby, personalized therapeutic strategies are necessary, 
which can benefit from computational modeling.

To investigate the fraction of cancer cells on which the 
combined treatment starts and the dose of the drug on the 
final fraction of cancer cells, Monte Carlo simulations are 
incorporated with 5000 samples. Note that a dose of the drug 
is calculated by �drug × � , where �drug is a constant injection 
rate and � is a time interval. Therefore, the initial fraction of 
cancer cells when starting treatment as well as the time inter-
val � is sampled from a normal distribution with (0.5, 0.12) 
and (2, 12) h, respectively. The result in Fig. 10 shows a 
three-dimensional scatter plot of the initial fraction of cancer 
cells when starting treatment, injection time interval and the 
final fraction of cancer cells fc , where a horizontal color bar 
specifies the final fraction of cancer cells. If we aim that fc 
does not exceed 20% in the pancreatic T-islets, the fraction 
of cancer cells at which the treatment is started when injec-
tion PEGPH20 + gemcitabine should never be larger than 
40%. Hence, if this fraction exceeds 40%, then fc will never 
be lower than 20% after 150 h. By applying Eq. (37), the 

sample correlation coefficient of fraction at which the treat-
ment is started and fc equals � = 0.8785 . This result gives 
the prediction about the likelihood of a cure for specific 
patients after combining these two drugs. Probably, other 
therapies should be incorporated in if a patient is diagnosed 
at very late stages, or treatments should last longer.

Subsequently, Fig. 11 shows correlations between the 
injection time interval and the final fraction of cancer cells 
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fc under various treatment times. It hints that within our 
chosen range there is an obvious influence with a correlation 
coefficient � = − 0.2753 of doses of the drug on the final 
results. In other words, big doses of drugs are necessary if 
the treatment starts when the fraction of cancer cells exceeds 
40%. Furthermore, the potential consequences are divided 
into two parts by a dashed line, where the likelihood of cure 
in the left side is higher, whereas the right side means a high 
risk of malignant cancer and probably metastasis. Taking 
the toxicity of the drug into consideration, large drug doses 
could be problematic for other parts of the body, and we 
think that this model is good for making choices of drug 
dosage.

4 � Conclusions and discussion

Pancreatic cancer is a lethal disease mainly due to late diag-
nosis, low resection rate, high recurrence, metastasis and 
chemotherapy resistance. Unfortunately, there is currently 
no standard programme for screening patients who have a 
high risk (Kamisawa et al. 2016). Combined with surgical 
resection, cytotoxic therapy plays an essential role in the 
standard treatment and in the prolongation of survival of 
pancreatic cancer. The frontline therapies normally involve 
the administering of gemcitabine combined with other 
drugs like cisplatin, epirubicin, 5-FU, etc. For a review of 
therapeutic strategies, we refer to Chiaravalli et al. (2017). 
However, the increased toxicity and various ethical concerns 
hinder the investigation and clinical administering of single 
and combined drugs. Mathematical modeling can shed light 
on the quantitative effects of drug combinations as well as 
provide reliable predictions.

We have developed a model for drug-oriented therapy of 
pancreatic cancer based on the simplification of the phenom-
enon and assumptions mentioned in Sect. 2. On the cellular 
level, our model is able to show the initial cancer progres-
sion and its interactions with the microenvironment. The 
normal epithelial cells are able to mutate into cancer cells 
under certain circumstances, which subsequently remodels 
the peripheral ECM and triggers T-lymphocytes-mediated 
immune response by secreting cytokines. In normal situa-
tions, the migration of the T-lymphocytes is guided by the 
desmoplastic ECM such that cancer cells in the T-islets can 
proliferate out of control because of lacking T-lymphocytes 
infiltration. After a PEGPH20 intervention, the enzyme-
mediated degradation of ECM enhances T-lymphocytes 
penetration, and thereby, the cancer cells that are exposed 
to be T-lymphocytes are eliminated; however, this enzyme-
mediated therapy is suitable for patients with an early diag-
nosis without immunodeficiency. For patients with advanced 
diagnosis, it is necessary to combine PEGPH20 with the 
drug gemcitabine, which is much more efficient for clearing 

the cancer cells. Additionally, this cell-based model could be 
upscaled to a large cell colony or even an organ scale, while 
the time at which the treatment starts, as well as the length 
of the time period of administration of different therapies 
can be personalized.

Furthermore, Monte Carlo simulations facilitate our 
model to investigate the uncertainties of input parameters 
and to predict the likelihood of a cure with various diag-
nosis stages. As a conclusion, the initial fraction of cancer 
cells when injecting the PEGPH20 has a significant sam-
ple correlation coefficient as high as 0.8785 with the final 
fraction of cancer cells. In contrast, the sufficient doses of 
drugs could reduce the final fraction of cancer cells in the 
current model with sample correlation coefficient − 0.2753. 
In summary, this therapy model is able to aid design the 
drug administering in the experiments. Further, the model 
can be extended to other therapy strategies like PEGPH20 
+ antibodies, PEGPH20 + cancer-targeted virus, PEGPH20 
+ cancer-targeted drugs, etc.

Albeit the computational models have their drawbacks 
like being too simplified, the mathematical modeling can 
be very helpful for the sake of prediction. For instance, 
Enderling et al. (2007) and Enderling et al. (2006) developed 
models of breast cancer that are beneficial for radiotherapy. 
Moreover, Tanaka et al. (2010) proposed a mathematical 
model which is helpful to prostate cancer therapy. On the 
other hand, animal-based experiments have moral concerns 
and systemic drugs normally have toxicity and strict restric-
tions regarding administering. Therefore, mathematical 
models can be used to optimize the drug therapies and fur-
ther perform pre-validation studies before testing in animals 
or humans.
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