Table 1.
Antibacterial applications of Au NCs.
| Formulations | Target pathogen | Antibacterial mechanism | References |
|---|---|---|---|
| ANTIBIOTIC-Au NCs SYSTEMS | |||
| Cefradine-labeled Au8 clusters | E. coli | Increased cefradine bioavailability | Khandelwal et al., 2015 |
| Vancomycin-loaded Pep-Au NCs | S. aureus | Increased antibacterial activity by drug encapsulation; spontaneous released vancomycin | Li et al., 2018 |
| Bacitracin templated Au NCs | S. aureus | ROS production; prolonged bacitracin release | Wang S. et al., 2019 |
| Lys-Au NCs-Amp | MRSA and its persister | Increased concentration of ampicillin at the action site; the multivalent presentation and the enhanced permeation of ampicillin via lysozyme-induced cell lysis | Kalita et al., 2018 |
| Vancomycin templated Au NCs | E. coli; S. aureus | Increased vancomycin bioavailability | Liang et al., 2018 |
| Chloramphenicol loaded Au NCs | E. coli | Prolonged drug release | Liu P. et al., 2015 |
| ANTIMICROBIAL PEPTIDE-Au NCs SYSTEMS | |||
| SFT/DT-Au NDs | Gram-negative bacteria; Gram-positive bacteria | Synergistic effect; bacterial membrane disruption | Chen W. Y. et al., 2015 |
| Cysteine-terminated antimicrobial peptide templated Au NCs | Gram-negative bacteria; Gram-positive bacteria | pH-responsive charge reversal; disruption of the bacterial membrane | Pranantyo et al., 2019 |
| Dap-Au NCs | MRSA | Synergistic effect; bacterial membrane disruption; ROS production; DNA damage | Zheng Y. et al., 2019 |
| SMALL MOLECULE-Au NCs SYSTEMS | |||
| Cys-Au NCs | E. coli | ROS production | Chang et al., 2019 |
| Au25(MHA)18 | Gram-negative bacteria; Gram-positive bacteria | Bacterial membrane disruption; ROS production; induced metabolic imbalance | Zheng K. et al., 2017 |
| thiolated Au NCs | S. aureus | ROS production; bacterial membrane disruption | Zheng et al., 2018a |
| AuDAMP | Gram-negative bacteria; Gram-positive bacteria | Bacterial membrane disruption; ROS production; DNA damage | Zheng et al., 2018c |
| Man-Au NDs | E. coli | Agglutination | Tseng et al., 2011 |
| AuMS | Gram-negative bacteria; Gram-positive bacteria | Bacterial membrane disruption; biofilm inhibition | Boda et al., 2015 |
| QA-Au NCs | MRSA | ROS production; bacterial membrane disruption; ATP metabolic disturbance | Xie et al., 2018 |
| MACROMOLECULE-Au NCs SYSTEMS | |||
| antiSAIgG-BSA- PS- Au NCs | S. aureus | Photodynamic inactivation | Khlebtsov et al., 2015 |
| lysozyme-Au NCs | A. baumannii; E. faecalis | Increased bioavailability | Chen et al., 2010 |
| DPAu/AMD | E. coli; S. aureus | Increased bioavailability; prolonged drug release | Setyawati et al., 2014 |
| dendrimer-Au NCs | Gram-negative bacteria | Retard endotoxin activity | Liao et al., 2018 |
| Au NCs-CONTAINING COMBINATION SYSTEMS | |||
| TiO2/graphene/Au NC nanocomposites | E. coli; S. aureus | Enhanced ROS production | Zhou et al., 2019 |
| Au NCs/Ho-GO nanosheets | Gram-negative bacteria; Gram-positive bacteria | Synergistic effect; bacterial membrane disruption; ROS production; induced metabolic imbalance; physical piercing | Zheng K. et al., 2019 |
| Au NCs/CS | Gram-negative bacteria; Gram-positive bacteria | Bacterial membrane disruption | Girija et al., 2019 |
| Kanamycin-loaded MSN-Au NC@Lys | E. coli | Increased bioavailability; prolonged drug release | Alsaiari et al., 2017 |
| Prot/MTU-Au NCs | E. coli; S. aureus | Synergistic effect; enhanced ROS production | Zhu et al., 2019 |