
Computational insights into the binding of IN17 inhibitors to 
MELK

Matthew Harger1, Ju-Hyeon Lee2, Brandon Walker1, Juliana M. Taliaferro2, Ramakrishna 
Edupuganti2, Kevin N. Dalby2, Pengyu Ren1

1Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, 
USA

2Division of Chemical Biology and Medicinal Chemistry, University of Texas at Austin, Austin, TX 
78712, USA

Abstract

The protein kinase MELK is an important kinase in cell signaling and has shown to be a promising 

anti-cancer target. Recent work has resulted in a novel small molecule scaffold targeting MELK, 

IN17. However, there has been little structural information or physical understanding of MELK-

IN17 interactions. Using Tinker-OpenMM on GPUs, we have performed free energy simulations 

on MELK binding with IN17 and 11 derivatives. This series of studies provides structural insights 

into how substitution on IN17 leads to differences in complex structure and binding 

thermodynamics. In addition, this study serves as an assessment of the current capabilities of the 

AMOEBA forcefield, accelerated by GPU computing, to serve as a molecular dynamics-based free 

energy simulation platform for lead optimization.
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Introduction

The protein kinase maternal embryonic leucine zipper kinase (MELK) has received interest 

as a potential therapeutic target for cancer. MELK is reported to directly activate the cancer-

promoting transcription factors FOXM1 [1] and c-JUN [2], and to upregulate the expression 

of the anti-apoptotic protein MCl1 through eIF4B signaling pathway [3]. MELK expression 

has been found to be upregulated in many types of cancer cell cultures and tumor samples 

[4–6]. Overexpression of MELK is a correlate of poor prognosis in many cancer types, 

including triple negative breast cancer [7, 8], prostate cancer [9], lung adenocarcinoma [5], 

and acute myeloid leukemia [10].

Pengyu Ren, pren@mail.utexas.edu. 

This paper belongs to Topical Collection Festschrift in Honor of Nohad Gresh

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00894-019-4036-1) contains 
supplementary material, which is available to authorized users.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

HHS Public Access
Author manuscript
J Mol Model. Author manuscript; available in PMC 2020 May 08.

Published in final edited form as:
J Mol Model. ; 25(6): 151. doi:10.1007/s00894-019-4036-1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1007/s00894-019-4036-1


Given its potential as a therapeutic target, several inhibitors of MELK have been developed, 

most prominently OTSSP167 [11–13]. However, OTSSP167 exhibits significant off-target 

binding, and has been found to inhibit the mitotic kinases BUB1 and Haspin, as well as 

Aurora B kinase [14]. Given the importance of these kinases in initiating mitosis [15–17], it 

is likely that at least some of the therapeutic effects of OTSSP167 is not a result of MELK 

inhibition. This has made probing the actual role of MELK in cancer progression difficult.

In an attempt to create a more specific chemical inhibitor of MELK, the IN17 scaffold was 

developed [18]. This scaffold is present in the approved drug nintedanib [19], and was 

slightly modified by moving the carboxy methyl ester from C29 to C28 to form IN17 (Fig. 

1). IN17 has been shown to bind MELK with a sub-nanomolar KI, as well as to suppress 

cellular proliferation in cultured Triple Negative Breast Cancer cell lines [18]. However, 

little structural information is known about this compound and its derivatives, limiting the 

potential development of further improved compounds. In this paper, we use molecular 

dynamics (MD) and free energy methods to analyze the binding mechanism of IN17, and 

related derivatives, to MELK.

There has been a recent revival of interest in the toolkit of protein-ligand binding free energy 

calculations [20]. The long simulation runs necessary to calculate binding free energy have 

long been possible in fixed point charge based forcefields such as AMBER [21–24] and 

CHARMM [25–28]. However, these forcefields often fail at reliably modeling highly 

charged compounds (like IN17), and transferable binding free energy prediction is a goal 

that has yet to be reached [29]. This suggests that much work on improvements to forcefield 

and sampling schemes is needed for physics-based simulation to reach its full potential.

One approach to improve upon the accuracy of fixed charge models is to utilize polarizable 

force fields such as AMOEBA [30–32]. The AMOEBA forcefield is characterized by the 

inclusion of electrostatic polarization via induced dipoles, as well as the addition of atomic 

dipole, and quadrupole electrostatic terms. Previous studies have utilized the AMOEBA 

forcefield to calculate the hydration free energy of small molecules [33–35] and metal ions 

[36–38], in addition to ligand binding free energy to synthetic hosts [39] and proteins [32, 

40–44]. However, until recently, the computational speed of AMOEBA has been a limiting 

factor for ligand throughput and sampling. The recently developed Tinker-OpenMM 

platform enables a 30-fold enhancement over what is possible in a single CPU process 

through the use of GPU computation [45]. In this study, we utilized the Tinker-OpenMM 

platform to perform protein–ligand binding studies at a scale that was infeasible using 

previous CPU approaches. Given the large size and highly charged nature of the IN17 

ligands, we expect the polarization, dipoles and quadrupoles present in AMOEBA are 

necessary for accurate modeling.

Methods

Parameterization

Initial parameters for IN17 and nintedinib were generated as previously described using 

POLTYPE [31]. Torsion parameters for all rotatable bonds were derived manually by fitting 

to Gaussian 09 [46] QM energy at MP2/6–31G* in gas phase. These rotatable bonds were 
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entered into the valence.py file provided in POLTYPE, enabling the parameterization of 

IN17 derivatives without recalculating these torsional parameters. The IN17 derivatives were 

then parameterized using POLTYPE with this new torsional dictionary. In order to speed up 

the structural optimization of IN17 and derivatives, POLTYPE was modified to run initial 

structural optimization at wB97XD/6–31G*.

Simulation parameters

Unless otherwise noted, all simulations were run using a 3.0 fs time step with the heavy-

hydrogen option in order to increase stability at this longer time step. This keyword moves 

some of the mass from the heavy atom to the hydrogen [47]. MD Frames written out every 2 

ps at a temperature of 298 K. All simulations used the r-RESPA integrator and the BUSSI 

thermostat. All constant pressure simulations were conducted using the Monte Carlo 

barostat. All binding simulations utilize a harmonic restraint between the G2 moiety to the 

centroid of a group consisting of I16 and Y87, which is turned on gradually as the 

interactions between ligand and surrounding is decoupled (more details in Binding free 

energy simulations). The restraint uses a reference distance of 4.7 Å and maximal restrain 

constant of 15 kcal mol−1 Å−1 (see SI).

Complex structure generation

The initial guess for the MELK structure with bound nintedanib was generated using 4BXY, 

docking nintedanib into the binding pocket using GOLD [48] at default settings. The 

resulting complex was minimized to 10.0 kcal mol−1 Å−1 with polarization off to resolve 

clashes, and again at1.0 kcal mol−1 Å−1 with polarization on. We then ran simulations for 

0.3 ns at each temperature from 25 to 298 K at 1 Atm pressure, with temperature increasing 

at 25 K intervals, followed by 10 ns at 298 K with constant box size to equilibrate the 

system. After release of the PDBID 5MAF crystal structure, we prepared this structure for 

simulation in a similar manner. 5MAF has a gap in crystal density between residues 146 and 

177. Therefore, the crystal structure PDBID 4IXP [49] was used to help resolve this 

extended loop gap between residues 156 and 171 of 5MAF using MODDELER as described 

previously [50]. This MELK-IN17 complex system was solvated in an 84.8 Å × 65.2 Å × 

65.2 Å box of water using the Tinker “xyzedit” command. Two Mg+ ions, 41 Cl− ions, and 

22 K+ ions were added manually to the water box at random locations to match experimental 

conditions. This loop was then heated as described above, with all atoms frozen except the 

modelled loop. This structure was then heated again as above without these added restraints 

to produce an equilibrated structure. The solvent phase was generated by soaking the ligand 

in a 59.8 Å × 46.6 Å × 46.6 Å equilibrated box of water using xyzedit, adding 1 Mg+ ion, 10 

K+ ions, and 17 Cl ions to this box.

Binding free energy simulations

To generate initial structures of MELK-IN17 derivatives, the structure of IN17-MELK 

generated above was manually derivatized using Avogadro [51] by editing the IN17 ligand. 

Avogadro maintains rotational and translational frames, enabling the superposition of the 

generated derivatives onto apo-MELK. The structure of derivatives were put back into both 

the protein–solvent system with the water box generated above to produce initial structures 

of the complex and solvation systems for all the derivatives. The simulation systems were 
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minimized to 10.0 kcal mol−1 Å−1 with polarization off to resolve steric clashes, and again at 

1.0 kcal mol−1 Å−1 with polarization on. These complexes were then simulated for 3 ns at a 

constant volume and temperature at 298 K in a series of simulations with electrostatic 

lambda, which scales the electrostatic parameters of the ligand, gradually decreasing 

from1.0 to 0.0, followed by a series of simulations with vdWlambda, which scales the vdW 

interactions between ligand and surrounding using a softcore approach, decreasing from1.0 

to 0.0. The exact lambda values for binding phase simulations, and for solvation phase 

simulations are available in Supplementary Table 1. The change in free energy, entropy and 

enthalpy for neighboring steps was calculated using Tinker “bar” program, using frames 150 

to 1500. The correction due to the distance restraint and standard concentration was 

calculated using Tinker “freefix” program, which equals1.38 kcal mol−1. The binding free 

energy was then calculated as ΔG of complexation −ΔG of solvation + the correction 

described above.

IN17 solvent phase crystal structure

MELK-In-17 was dissolved in 5% methanol in dichloromethane in a vial. The vial was 

wrapped with aluminum foil; small holes were made to the foil. The solution was allowed to 

sit for 3 days to give crystals suitable for X-ray crystallography. Crystals grew as long, 

colorless needles by slow evaporation of methanol in dichloromethane. The data crystal was 

cut from a larger crystal and had approximate dimensions; 0.27 × 0.05 × 0.05 mm. The data 

were collected on an Agilent Technologies SuperNova Dual Source diffractometer using a μ-

focus Cu Kα radiation source (λ = 1.5418 Å) with collimating mirror monochromators. A 

total of 583 frames of data were collected using ω-scans with a scan range of 1° and a 

counting time of 23 s per frame with a detector offset of ±42.4°, and 70 s per frame with a 

detector offset of ± 110.4°. The data were collected at 100 K using an Oxford 700 

Cryostream low temperature device.

Results and discussion

Aryl-carbonyl isomerism

During initial structural studies of IN17, we realized the possibility that the C28–C30 bond 

(Fig. 1) of nintedanib (as well as IN17) has partial double bond character. Thus, there is a 

possibility of two distinct conformational isomers (cis vs trans) due to the rotation around 

this bound, likely leading to different binding energies. Indeed, simulations predict an 

approximately 1 kcal mol−1 difference in binding free energy between the two carboxyl 

isomers. In order to determine if these two isomers can readily interconvert, we calculated 

the quantum mechanical (QM) rotation barrier of the C28–C30 bond of IN17. QM 

calculations predict a 8 kcal barrier of rotation in solvent (using polarizable continuum 

method (PCM) [52]), and a 14 kcal in gas phase (Fig. 2). This barrier would be largely 

inaccessible at room temperatures, indicating that, once synthesized, this group is unlikely to 

swap between the two carboxyl isomers. In order to determine the most likely isomeric state 

of the carboxyl tail, a solvent phase crystal structure of IN17 was determined 

(Supplementary Fig. S1). This crystal structure displays a well resolved carboxyl tail, 

indicative of only one isomer being formed in solution. Similar isomerism may exist in other 
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drug compounds, limiting potency. Further research is required in order to test this 

hypothesis.

MELK-nintedanib complex structural prediction

To date, no crystal structure of the MELK-IN17 complex exists. On the other hand, 

nintedanib is a well-studied MELK inhibitor [19, 53] that differs from IN17 only in the 

location of the carboxyl tail on the indole ring (in nintedanib, the carboxyl tail is attached to 

C29 in Fig. 1). We first modeled the MELK-nintedanib complex structures by using virtual 

docking and Tinker-OpenMM MD simulations. Using GOLD, nintedanib was docked into 

the only ligand-bound crystal structure of MELK available at the time (PDB ID 4BKY [54]), 

which was then used as a starting point for 10 ns of MD simulations, as described in the 

Methods section. A MELK-nintedanib structure (PDB ID 5MAF [55]) was released after our 

initial simulations. In this crystal structure, the nintedanib carboxyl ester exists in a 

configurational state consistent with one of the isomers discussed above. The structure of 

MELK in 5MAF is in good agreement with the end state from Tinker-OpenMM simulation, 

with a Cα RMSD of 1.5 Å (Fig. 3a). Overall, the ligand and binding site residues from 

simulations adopted poses similar to those in 5MAF (Fig. 3b). This is an indication that the 

AMOEBA forcefield can capture realistic protein-ligand complex structures for this class of 

compounds. However, one major discrepancy was observed between the modeled 

nintedanib-MELK complex and the newly released crystal structure 5MAF. N1 of the 

piperazine moiety of nintedanib, rather than being free in solution as predicted by docking 

and MD simulations based on 4BKY, was bound to residue Glu14 in the 5MAF. This 

interaction was missed in the initial modeling, as this N-terminal region was not resolved in 

the 4BKY crystal structure. While 5MAF shows that the piperazine of nintedanib is 

interacting with Glu14 residue in the crystal, the relevance of this interaction in solution, 

where the buffer and solvent conditions are different, has not been established. Further 

discussion of this interaction is presented below.

Absolute binding free energy of MELK with IN17

Predicting the absolute binding free energy computationally is more challenging than 

predicting the relative affinities, where error cancellation often occurs. First, we wanted to 

determine this pipeline’s capabilities in predicting the absolute binding affinity of IN17. 

Initially, before the publication of the crystal structure of the MELK–nintedanib complex, 

we utilized a MELK-IN17 complex structure, predicted using docking to MELK as a 

starting point for MD and free energy simulation. Simulations based on PDB 4BKY lacked 

the first 20 residues, including Glu14. This series of simulations resulted in a binding free 

energy of −12.4 ± 0.1 kcal mol−1, in reasonable agreement with experiment (−13.3 kcal mol
−1).

When a crystal structure of the MELK-nintedanib complex (PDB ID 5MAF) was released, 

this structure was used to generate a MELK-IN17 complex by removing the carboxyl tail 

and manually adding the carboxyl methyl ester to the C28 position. The predicted MELK-

IN17 complex was then used as a starting point for free energy simulation. The main 

difference is an additional interaction between the positively charged piperazine group of the 

ligand and the negatively charged Glu14, observed in the crystal structure. One uncertainty 
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is the protonation state of the piperazine moiety. The nitrogen near the terminal of the ligand 

(N1 in Fig. 1) is more likely to be protonated due to the inductive effects of the carbonyl 

group (C7 = O1). Simulations of the MELK-IN17 complex in this charge state results in a 

strong Glu14-IN17 interaction and a binding free energy of −18.3 ±0.2 kcal mol−1, i.e., 5 

kcal mol−1 more negative than the experimental result of −13.3 ± 0.1 kcal mol−1 On the 

other hand, if the piperazine is deprotonated at the N2 position, this interaction between 

piperazine and Glu14 essentially disappears, giving a binding free energy of −13.7 ± 0.2 

kcal mol−1, in good agreement with experiment (−13.3 ± 0.1 kcal mol−1).There is possibility 

that the Glu14-piperazine salt-bridge interaction may not be important or present in solution, 

as opposed to in the crystal lattice.

In addition, the experimental measurement was performed at very high buffer concentration 

(50 mM vs 10 nM for protein), which can affect interaction of this pair due to the buffer 

agent (HEPES) being able to bind in the protein pocket [56, 57]. Note that the HEPES or 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, also contains the same piperazine 

moiety. It is therefore expected to compete with the piperazine group in IN17 when binding 

to Glu14, especially given the buffer agent concentration is several orders of magnitudes 

higher than that of ligand. We computed the binding free energy of HEPES to Glu14 to be 

−8.4 ± 0.2 kcal mol−1. The calculated absolute binding free would be in agreement with 

experimental measurement if we take into account the protonation state and/or buffer 

competition. Nonetheless, for the relative affinities among IN17 and its derivatives, the 

contribution of this piperazine group cancels and becomes irrelevant. In addition, this 

overprediction of affinity could be due to modeling too much average charge on the 

piperazine nitrogen, or due to misprediction of the protonation state of the piperazine group.

IN17 binding mode

Most of the close interactions present in the IN17 binding mode (≤0.3 nm in Fig. 7) are also 

observed across all derivatives in our simulations. The protein–ligand contacts are largely 

between hydrophobic groups, with the relative positioning of Ile16, Gly17, Ala37, and 

Leu138 serving to provide a tight groove for IN17 binding (Fig. 4). Other than the Glu14 

interaction described above as a potential point of electrostatic contact, few strong 

electrostatic contacts are present. Cys88 forms hydrogen bonds with the ligand atoms O2 

and N4, constraining the relative orientation of the G2 and G3 of the ligand. HN5 of the 

indole group in IN17 forms a hydrogen bond with the backbone carbonyl of Asp86, but this 

interaction is unlikely to add specificity. The ester carbonyl tail (COOC) interacts mainly 

with Lys39, with some hydrophobic interaction with Val24.

Relative binding free energy of IN17 derivatives

After gaining an understanding of the binding mode of IN17, we wanted to determine the 

effects of compound derivitization on ligand binding. In order to attempt to add electrostatic 

contacts and potentially improve affinity and selectivity, electronegative groups were added 

to the central polar benzene moiety (R1 and R2 in Table 1). Since the meta and para 

positions of the central benzene ring (G2 in Fig. 1) are pointed towards the protein and did 

not appear to have severe steric constraints, the meta and para positions on this ring were 

chosen for derivitization. In addition, the importance of the carboxyl tail in IN17 (R3 in 
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Table 1) was not well understood, so we performed studies where the carboxyl tail was 

removed or lengthened. Since it was uncertain if the piperazine ring was binding E14, the 

arbitrary decision to proceed with calculations as if this interaction was occurring was made. 

Since all substitutions were at positions of IN17 far away from the piperazine group, binding 

energy relative to IN17 should be unaffected by this decision.

Overall, experimental affinity relative to IN17 was predicted with an optimal RMSD of 0.8 

kcal mol−1, a raw RMSD of1.1 kcal mol−1 (Table 2), and an R2 value of 0.75 (Fig. 5). The 

Kendall’s tau (a measure of relative rank order of compounds) was 0.50. This level of 

accuracy is sufficient to determine which compounds are unlikely to bind effectively to a 

target protein, such as in compounds 22 and 23. This ability to predict non-binding 

compounds would potentially allow for prediction of compound selectivity across a range of 

related proteins.

N-terminal loop structure is altered by substitution on the benzene (G2) offshoot

Substitution at the central benzene ring (G2 in Fig. 1) can result in alterations in neighboring 

beta-sheet structure near the binding pocket (Fig. 6). In IN17 simulations, this beta sheet is 

shortened by a bulge that results in hydrophobic packing against the exposed edge of the G2 

benzene ring. Interestingly, in the nintedanib structure (PDB ID 5MAF), this loop bulging is 

not observed, suggesting that the crystal structure of nintedanib provides an inaccurate 

representation of certain aspects of loop dynamics. Another explanation is that the lack of 

loop bulging in 5MAF could be a result of cross crystal contacts (this loop is surface 

exposed). When electronegative groups are added directly to atom C21, as in derivatives 

18a, 18e, 18 g, 18i and 18p, this region forms a beta sheet, with interactions occurring 

between the electronegative atom and HN of Thr18 (Fig. 6). When a carboxyl ester is added 

to the C21 position (as in ligand 18d), the beta sheet structure distorts into a loop to form 

interactions with the carbonyl oxygen of the carboxyl methyl ester substitution group. The 

observation that a beta sheet is not formed in the 18d complex is likely due to rigid structural 

requirements for formation of this beta sheet–ligand interaction. The protein beta sheet 

structure is rigidly defined, as is the relative positioning of C21 and the neighboring indole 

group. This rigidity results in not enough backbone or ligand flexibility to form this 

backbone-ligand interaction unless the para carbon (C21) is directly connected to an 

electronegative atom. This rigid structural element combined with the knowledge of this 

alternative beta sheet form should result in improved ability to predict the structural effects 

of substitution on this ring.

Effects of substitution on binding mode

Compared to IN17, the substitution process largely resulted in only minor changes in contact 

distance, with most interactions being maintained across all derivatives (Fig. 7). The 

exceptions to this are mostly residues Gly17 and Gly91, both of which maintain close 

contacts in IN17, but not in many of the tested derivatives. Interestingly, the neighboring 

Ile16 is a strictly maintained interaction, indicating that the alteration of the structure of the 

loop containing Gly17 are minor, and that interactions between the ligand and Ile16 are 

likely essential for IN17 and derivative binding. Gly91 is proximal to the derivatized C28, so 

alterations in structure in this region are expected. This is consistent with substitutions at this 
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group leading to alterations to the first shell of contacts around this ring, but only minor 

alterations occurring at other interaction sites. Any induced fit effects are likely to occur at 

timescales longer than effectively simulated using the AMOEBA forcefield.

Use of restrained equilibration to improve prediction

Compound 18 g represents a case were Tinker-OpenMM poorly predicted the binding free 

energy, with a relative prediction of 2.1 ± 0.2 kcal mol−1, significantly weaker than the 

experimental −0.5 ± 0.1 kcal mol−1 We hypothesized that this error was because the 

equilibration procedure was unable to capture the induced-fit effects involved in the fitting a 

methyl ether at the meta position, and thus resulted in an unstable pose. If this is the case, 

further restraining the ligand within the protein pocket and then running a longer 

equilibration simulation may result in a more stable starting configuration for free energy 

calculation.

In order to test the hypothesis, the 18 g starting point was equilibrated for 4 ns with a 3.0 

kcal mol−1 Å−1 restraint between the terminal methyl carbon of Ala37 and O2 of 18 g, as 

well as between the nearest terminal methyl carbon of Val24 and C15. Both of the restraint 

distances were set to 3.5 Å. Since the indole moiety of this ligand is tightly bound, and both 

of these ligand atoms are nearby the R1 substitution point, this region of the ligand is closest 

to the system instability that resulted from R1 substitution. This end-state was then used as a 

starting point for free energy simulation, with a gradual reduction of these restraints in the 

first six simulation steps, as well as a two-step reduction of restraints at full interaction 

strength (ele and vdw-lambda = 1). Thus, the overall simulation end-states are identical to 

before, while the intermediate states now utilize additional contact restraints. This series of 

simulations resulted in a reduction of error in the relative binding free energy from 2.6 kcal 

mol−1 to 1.6 kcal mol−1, suggesting that additional equilibration with contact restraints can 

improve prediction for derivatives with strong perturbations. Further research is necessary 

on the general applications of contact restrain in free energy perturbation.

Entropy–enthalpy compensation

Post processing analysis of the free energy calculations enable an estimation of the enthalpic 

and entropic components of binding and solvation energies. Both binding and solvation 

entropies and enthalpies displayed a wide range of absolute values across the derivative 

series (supplementary Table S2), indicating that even these small changes to ligand structure 

can result in massive changes to both entropy and enthalpy, even if the final binding free 

energy has limited changes. This entropy–enthalpy compensation analysis also provides 

insight into why compounds with extended carboxy tails like compound 22 display 

relatively weak binding. The electronegative tail results in strong enthalpic interactions with 

MELK, indeed, the −150.8 ± 43.6 kcal mol−1 binding enthalpy is 56 kcal mol−1 more 

negative than IN17 and shows unfavorable enthalpic interactions with water (only −34.8 ± 

31.3 kcal mol−1. However, the entropy losses associated with binding are significantly more 

negative than that of IN17, resulting in a ΔG that is less favorable than that of IN17.

In addition, the relative entropy-enthalpy differences between IN17 (with the carboxyl tail) 

and compound 16 (without the tail) reveals important thermodynamics contributions of this 
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carboxyl tail to binding. Unexpectedly, the loss of entropy of binding is much greater for 

compound 16 (−76.4 kcal mol−1 vs. −23.0 kcal mol−1 for IN17). This cannot be easily 

explained by ligand entropy alone; one would expect constraining a large group would result 

in a greater entropy decrease. The most reasonable explanation for this is that compound 

binding excludes water from this pocket, resulting in these water molecules not experiencing 

the constrained protein environment. As expected, the presence of a carboxyl-ester tail in 

IN17 results in a large change in solvation entropy relative to compound 16 (−115.1 kcal vs 

−77.4 kcal TΔS), due to the presence of hydrophobic groups. Comparing IN17 to ligand 16, 

the 40 kcal mol−1 increase in TΔS almost exactly cancels the 37 kcal mol−1 increase in 

solvation enthalpy, and thus the overall binding free energy remains similar. The importance 

of interfacial waters is emphasized in the apo-MELK crystal structure(5TWU), which 

contains many structural waters in this pocket, indicating that this pocket is solvent exposed. 

Another interesting question is why IN17 displays a much lesser binding enthalpy than 

compound 16 (−94.87 ± 32.9 kcal mol−1vs −149.8 ± 32.8 kcal mol−1). IN17 likely disturbs 

the apo residue contact network, resulting in a loss of protein–protein contacts that is greater 

than the gain in protein–ligand contacts. For example, as explained above, the N-terminal 

beta-sheet is disrupted, causing a loss of protein hydrogen bonds without regaining strong 

electrostatic interactions. Thus, due to the entropic effects of binding and solvation, as well 

as disruption of the native protein contact network, the carboxyl group of IN17 causes little 

improvement in binding affinity vs. compound 16.

This series of simulations provides insight into the importance of entropy–enthalpy 

compensation. An increase in binding enthalpy is often, although not always, countered by a 

corresponding decrease in binding entropy. These simulation results illustrate that the exact 

magnitude of this change is incredibly challenging to predict based on structure alone. While 

one can estimate potential enthalpic interactions, without dynamics information, predicting 

important entropic effects is difficult, as are the effects of ligand binding on protein 

interaction networks. Computational predictions such as those performed in this study allow 

for an analysis of these effects in a way that cannot be easily assessed by experiment.

Conclusions

The state of computational free energy prediction technologies has reached a point where it 

can serve as a valuable addition to commonly used experimental and crystallographic 

approaches for the study of ligand binding structure and thermos-dynamics. To crystalize the 

number of derivatives utilized in this study would be highly costly and time prohibitive. 

However, molecular modeling techniques provide the ability to understand the structural 

effects of ligand derivatization of the ligand–protein complex in a matter of several days. 

Even in cases where the crystal structure is present, these structures ignore the dynamics of 

the system, which is easily captured by MD. This study has revealed multiple valuable 

insights into the binding mode of IN17 to MELK, including the importance of carboxyl tail 

isomerism, and the N-terminal loop/beta sheet interconversion. The application of free 

energy simulation technologies should enable more effective and efficient lead optimization, 

an application that is difficult and time-consuming using medicinal chemistry techniques.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Structure of IN17. Atomic labels and ring group numbers are referred to throughout the 

paper
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Fig. 2. 
Rotational barrier for the O3–C30–C28–C29 torsion of IN17. The polarizable continuum 

method (PCM [52]) was used to capture the solvent effect. All quantum mechanical (QM) 

energies were calculated using MP2/6–311 + G**, with rotations at every 30 degrees
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Fig. 3. 
a Superposition of crystal structure 5MAF (cyan) and simulation endstate of a maternal 

embryonic leucine zipper kinase (MELK) nintedanib simulation of 10 ns (green). For clarity, 

the nintedanib ligand from the simulation is omitted. b Comparison of the binding site 

structure of the simulation of nintedanib-MELK (cyan) and the 5MAF crystal structure 

(purple)
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Fig. 4. 
Interaction map of IN17 MELK binding. The positions of substitution groups R1, R2, and 

R3 are labeled. Image generated using Ligplot+ [56]

Harger et al. Page 16

J Mol Model. Author manuscript; available in PMC 2020 May 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Correlation between experimental binding affinity and computational prediction. All values 

in kcal mol−1
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Fig. 6. 
Comparison of IN17 simulation structure (green) and 18a simulation structure (cyan). Only 

the first 50 residues are shown for clarity. The loop structure discussed in main text is 

enclosed in the red circle
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Fig. 7. 
Heatmap of ligand–protein interactions across all studied ligands. Color corresponds to 

average contact distance (nm) across all 3 ns of molecular dynamics (MD) simulation. The 

heatmap is ordered by most conserved interactions across all derivatives
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Table 2

Computational predictions and experimental binding energies (in kcal mol−1)

Relative prediction
a

Relative experimental
a

18a 2.2 0.6

18b 1.3 −0.6

18d 1.5 0.7

18e −0.3 −0.1

18g 1.1 −0.5

18i 1.0 −0.1

18p 1.0 1.6

16 0.9 0.4

22 4.9 4.4

23 3.7 >4.7

25 2.6 2.2

a
All relative values use the IN17 value as 0 kcal mol−1. As explained in the main text, additional restrained simulation was used to obtain binding 

free energy for compound 18 g. To within one decimal place, uncertainty for each of the relative predictions is 0.2 kcal mol−1, and uncertainty in 

the experimental values is 0.1 kcal mol−1. Optimal RMSD is0.8 kcal mol−1, and raw RMSD is 1.1 kcal mol−1
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