Reustle et al. Genome Medicine (2020) 12:32

https://doi.org/10.1186/513073-020-00731-8 Ge nome M ed |C| ne

?.)

Check for
updates

Integrative -omics and HLA-ligandomics
analysis to identify novel drug targets for
ccRCC immunotherapy

Anna Reustle'?", Moreno Di Marco®", Carolin Meyerhoff'?, Annika Nelde***, Juliane S. Walz*>®, Stefan Winter'”,

Siahei Kandabarau'?, Florian Biittner'?, Mathias Haag', Linus Backert®, Daniel J. Kowalewski®, Steffen Rausch’,

Jérg Hennenlotter’, Viktoria Sttihler’, Marcus Scharpf®, Falko Fend®, Arulf Stenzl”, Hans-Georg Rammensee®>®,

Jens Bedke’, Stefan Stevanovi¢>>®, Matthias Schwab'?>®?" and Elke Schaeffeler'?°""

Abstract

Background: Clear cell renal cell carcinoma (ccRCQ) is the dominant subtype of renal cancer. With currently
available therapies, cure of advanced and metastatic ccRCC is achieved only in rare cases. Here, we developed a
workflow integrating different -omics technologies to identify ccRCC-specific HLA-presented peptides as potential
drug targets for ccRCC immunotherapy.

Methods: We analyzed HLA-presented peptides by MS-based ligandomics of 55 ccRCC tumors (cohort 1), paired
non-tumor renal tissues, and 158 benign tissues from other organs. Pathways enriched in ccRCC compared to its
cell type of origin were identified by transcriptome and gene set enrichment analyses in 51 tumor tissues of the
same cohort. To retrieve a list of candidate targets with involvement in ccRCC pathogenesis, ccRCC-specific
pathway genes were intersected with the source genes of tumor-exclusive peptides. The candidates were validated
in an independent cohort from The Cancer Genome Atlas (TCGA KIRC, n=452). DNA methylation (TCGA KIRC, n =
273), somatic mutations (TCGA KIRC, n=392), and gene ontology (GO) and correlations with tumor metabolites
(cohort 1, n=30) and immune-oncological markers (cohort 1, n=37) were analyzed to characterize regulatory and
functional involvements. CD8™ T cell priming assays were used to identify immunogenic peptides. The candidate
gene EGLN3 was functionally investigated in cell culture.

Results: A total of 34,226 HLA class |- and 19,325 class ll-presented peptides were identified in ccRCC tissue, of
which 443 class | and 203 class Il peptides were ccRCC-specific and presented in 2 3 tumors. One hundred eighty-
five of the 499 corresponding source genes were involved in pathways activated by ccRCC tumors. After validation
in the independent cohort from TCGA, 113 final candidate genes remained. Candidates were involved in
extracellular matrix organization, hypoxic signaling, immune processes, and others. Nine of the 12 peptides assessed
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by immunogenicity analysis were able to activate naive CD8" T cells, including peptides derived from EFGLNS3.
Functional analysis of EGLN3 revealed possible tumor-promoting functions.

Conclusions: Integration of HLA ligandomics, transcriptomics, genetic, and epigenetic data leads to the
identification of novel functionally relevant therapeutic targets for ccRCC immunotherapy. Validation of the
identified targets is recommended to expand the treatment landscape of ccRCC.

Keywords: ccRCC, Renal cell carcinoma, Ligandomics, HLA peptidome, Immunotherapy, Peptide vaccine, Cancer

vaccine, Kidney cancer

Background

Clear cell renal cell carcinoma (ccRCC) is the most
prevalent subtype of kidney cancer, which affects over
400,000 individuals worldwide and causes around 175,
000 deaths per year [1]. Especially for patients with ad-
vanced and metastatic disease, the prognosis is poor,
with only 12% alive 5 years after diagnosis [2]. The rea-
sons for the poor prognosis are the high intrinsic resist-
ance of ccRCC tumors to conventional chemo- and
radiotherapies, and the rapid development of resistance
during currently applied targeted therapy. To combat
therapy resistance, patients are commonly treated in sev-
eral treatment lines with different targeted agents [3, 4].
Despite the availability of several targeted therapies, they
mainly target two cellular pathways, that is the induction
of angiogenesis through tyrosine kinases (TK) and the
mTOR pathway. Initial response rates to anti-angiogenic
TK inhibition (TKI) therapy vary between 30 and 40%
[5], whereas around 10-30% of patients are sensitive to
mTOR pathway inhibition [6, 7]. In most cases, the tu-
mors recur under therapy or advance to metastatic disease
[8]. The limited number of targeted pathways in ccRCC
therapy leaves non-responding patients with almost no
therapeutic options and therefore very poor prognosis. In
2015, the immune checkpoint inhibitor nivolumab was
approved for ccRCC therapy and represented an import-
ant step forward in extending the therapeutic options in
ccRCC therapy. The promising response rates of 25% [9],
and the possibility of long-term effects, highlight the po-
tential of immunotherapy in ¢ccRCC management. Cur-
rently, combination regimens of immune checkpoint
inhibitors and other agents are clinically investigated [4]
and first studies support for instance the combination of
atezolizumab and bevacizumab as a first-line treatment
option for patients with advanced RCC [10]. Whether im-
mune checkpoint inhibition, alone or in combination, is
able to achieve long-term responses in advanced and
metastatic ccRCC, similar to the responses observed in
malignant melanoma, will emerge in the future.

First studies also indicated that a multi-peptide vaccine
was beneficial in metastatic RCC patients when com-
pared with a contemporary control cohort [11]. How-
ever, currently, no cancer peptide vaccine is approved

for therapy due to missing clinical benefit [12], indicat-
ing the need for new approaches to select promising tar-
gets. One important requirement for the recognition and
killing of cancer cells by specialized cells of the immune
system, such as cytotoxic CD8" T lymphocytes (CTL), is
the presentation of tumor-specific peptides by major
histocompatibility =~ complex (MHC; also human
leukocyte antigen (HLA)) molecules on the cell surfaces
of the cancer cells. We have previously characterized the
landscape of HLA-presented peptides, termed the HLA
ligandome, of several cancer entities to identify HLA
class I- and class II-restricted peptides [13-17]. In can-
cer therapy, such peptides are exploited in vaccines or
adoptive T cell therapy (ACT) to activate CTLs and
prime them for the killing of a patient’s cancer cells
[18-20]. Naturally, the selection of appropriate peptides
is critical for the induction of efficient CTL activation,
recognition of cancer cells, and sustained anti-tumor re-
sponses. In contrast to melanoma or lung cancer, ccRCC
is a cancer entity with a low mutational load [21], result-
ing in a low frequency of shared somatically mutated
neo-epitopes between patients. Thus, tumor over-
represented non-mutated self-peptides might represent
an alternative to mutated neo-epitopes as targets in RCC
immunotherapy.

To aid the selection of appropriate peptides and gain
further insight into ccRCC pathogenesis, we developed a
workflow to identify HLA-presented ccRCC-specific
peptides, with source genes involved in ccRCC-affected
pathways (Fig. 1a). By selection of functionally relevant
source genes, we expect to antagonize resistance devel-
opment due to rapid peptide loss under therapeutic
pressure. ccRCC-associated peptides were identified by
MS-based HLA ligandome analysis of 55 ccRCC tissues
and paired non-tumor kidney tissues, as well as 158 tis-
sues of other healthy organs. In the same patient cohort,
gene set enrichment analysis (GSEA) on whole tran-
scriptome data was performed. ccRCC-specific peptide
source genes were intersected with genes of functionally
enriched pathways to obtain a list of candidate genes.
The genes were validated in an independent ccRCC pa-
tient cohort from The Cancer Genome Atlas (TCGA)
on the level of pathway enrichment, expression level,
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Fig. 1 Workflow for candidate gene identification. a Genes were selected as candidate therapeutic targets if tumor-exclusive, frequent HLA-
presented peptides were detected and if the source genes were involved in ccRCC-enriched pathways in ccRCC cohort 1. The candidate genes
were validated and further filtered in a second ccRCC cohort (KIRC) from TCGA, yielding 113 candidate genes. b Comprehensive characterization of the
113 candidates by GO annotation, metabolomics, and proteomics analyses. Selected candidates were further tested for their immunogenicity and the
presence of single nucleotide polymorphisms (SNPs) in patient cohort 1. The blue, orange, and green colors indicate whether data was generated
from ccRCC patient cohort 1, single cell proximal tubule sequencing [22], or from TCGA KIRC cohort, respectively.

significant induction in tumors versus non-tumor tis-
sues, and low variability of expression in tumor tissue,
yielding 113 final candidate genes. All candidate genes
were comprehensively characterized on different levels
(Fig. 1b). Therefore, we investigated their potential regu-
lation by DNA methylation and the presence of somatic
mutations in tumors. Gene ontology (GO) analysis was
performed for functional annotation, and the candidate
genes were correlated with tumor metabolites and the
expression of a set of onco-immune related proteins to
refine their functions. Three of the candidate genes that
are known to be frequently mutated in ccRCC were se-
quenced to identify potential neo-epitopes, which could
represent targets for individualized treatment strategies.
For selected candidate genes, non-mutated tumor-
specific peptides were analyzed for their ability to induce
naive T cells, which is the basis for applicability in tumor
peptide vaccines. Finally, the candidate target prolyl hy-
droxylase 3 (PHD3; EGLN3) was further investigated in
different ccRCC cell culture models to evaluate its eligi-
bility as drug target in ccRCC.

Methods

Patient cohorts

Primary ccRCC tumors and paired non-tumor renal tis-
sues (n=55) were collected at the Department of Ur-
ology, University Hospital Tuebingen, Tuebingen,
Germany. Use of the tissue was approved by the ethics
committee of the University of Tuebingen, and informed
written consent was provided by each subject prior to
surgical resection. Furthermore, data from patients with
¢ccRCC (KIRC cohort, 1 =452) of The Cancer Genome
Atlas (TCGA) project were included [23]. Patient char-
acteristics are summarized in Table 1.

Analysis of HLA ligands by LC-MS/MS and identification
of ccRCC-presented peptides

HLA ligandomics was performed by reversed phase li-
quid chromatography coupled mass spectrometry as pre-
viously described [15, 24, 25]. The monoclonal
antibodies W6/32, T1i39, and L243 (in-house production
at the Department of Immunology, University of Tue-
bingen, Tuebingen, Germany) were used for immunoaf-
finity purification of HLA «class I and II peptide
complexes. Five technical replicates were measured per
sample. For annotation, data was processed against the

human proteome as available from the Swiss-Prot data-
base (release: September 27, 2013; 20,279 reviewed pro-
tein sequences contained) [26] within the Proteome
Discoverer (v1.3, Thermo Fisher Scientific) software.
The search was not restricted to enzymatic specificity,
and oxidized methionine was enabled as dynamic modi-
fication. Percolator [27] assisted false discovery rate
(FDR) was set at 5%, and results restricted to rank 1
(best match for each spectra) and length of 8—12 amino
acids for HLA class I and 9-25 amino acids for class II
peptides. NetMHCpan-3.4 [28] (rank < 2 or 500 nM) and
SYFPEITHI [29] (= 60% of maximal score) were used to
define the HLA ligands. The average purity, which deter-
mines the amount of peptides with HLA binding motifs
for the respective HLA allotypes of the patients in com-
parison to all identified peptides, is 90% (range 78—97%).
The uniprot mapping tool [30] was used to assign Entrez
Gene IDs to the uniprot IDs. Non-mapped uniprot IDs
were manually assigned to their respective Entrez Gene
IDs. A list of peptides from the 113 candidate genes
identified in this study is provided in Additional file 1:
Tab. SI1.

HLA typing

HLA typing of patients from cohort 1 and healthy do-
nors for PBMC isolation was carried out by the Depart-
ment of Hematology and Oncology, University of
Tuebingen, Tuebingen, Germany. An overview of the
HLA typing is shown in Additional file 2: Tab. S2.

Transcriptome analyses

Genome-wide mRNA expression analysis of tumor sam-
ples was performed using the Human Transcriptome
Array 2.0 (Thermo Fisher Scientific) as previously de-
scribed [31, 32]. In brief, RNA was purified from fresh-
frozen ccRCC tissue using the mirVana™ miRNA Isola-
tion Kit (Life Technologies) and microarrays were proc-
essed according to the manufacturer’s procedure
(Thermo Fisher Scientific). Quality control and prepro-
cessing using RMA normalization were carried out as
previously described [31, 32]. HTA 2.0 transcript cluster
IDs were assigned to corresponding Entrez Gene IDs
with the Affymetrix annotation file downloaded from
NetAffx™ Analysis Center [33]. Entrez Gene IDs with
multiple probes were summarized by calculation of the
mean expression per sample.
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Cohort 1 TCGA
No. of patients % No. of patients %
No. of patients 55 452
Sex
Male 37 67.3 290 64.2
Female 18 32.7 162 358
Age median (range) 70 (32-84) 61 (29-90)
Stage
1 24 436 221 489
2 3 55 44 9.7
3 14 255 116 25.7
4 14 255 69 153
NA - - 2 04
Primary tumor
1 26 473 227 50.2
2 4 7.3 56 124
3 24 436 164 363
4 1 1.8 5 1.1
N
0 46 836 203 449
1/2 7 12.7 1 24
X 2 36 238 52.7
M
0 42 764 377 834
1 13 236 68 15.0
X - - 7 1.5
G
1 8 14.5 10 22
2 38 69.1 188 416
3/4 9 164 251 555
X - - 1 0.2
NA - - 2 04
Median follow-up time [years] (range) 2.9 (0-10.1) 35(0-124)
Overall survival® [years]
Deceased 28 509 145 321
Alive 26 473 307 67.9

Abbreviations: N regional lymph nodes, M distant metastasis, G grading, NA not available

Information on overall survival was not available for all patients

Preparation of expression data from single cell kidney
proximal tubules

Proximal tubule single cell RNA sequencing data was
taken from Young et al. [22] and prepared as described
with the R packages Seurat (v. 3.0.0) [34, 35], scran (v.
1.8.4) [36], and sva (v. 3.28.0) [37]. The ENSEMBL gene
identifiers were matched to their respective Entrez Gene
IDs with Genome wide annotation for Human package

(org. Hs.eg.db; v. 3.6.0) [38] in R [39]. Entrez Gene IDs
with multiple probes were summarized by calculation of
the mean expression per sample.

Processing of RNA-seq KIRC data from TCGA for GSEA

Transcriptome profiling data (“HTSeq — FPKM-UQ”)
were downloaded from the Genomic Data Commons
Portal [40] on December 9, 2016. For analysis in this
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study, the data was transformed to log,(FPKM) values.
The Ensemble Gene IDs were mapped to their respect-
ive Entrez Gene IDs using the NCBI Gene record data-
base [41]. Entrez Gene IDs with multiple probes were
summarized by calculation of the mean expression per
sample.

GSEA

Gene signatures for gene set enrichment analysis (GSEA)
were taken from the Molecular Signatures Database ver-
sion 6.1 [42]. We included the hallmark gene sets, the
KEGG, Biocarta, and Reactome gene sets from the C2
curated gene set collection, the C4 computational gene
sets, and the C6 oncogenic gene sets in the analysis
(Additional file 2: Tab. S3). In addition, immunological
modules were included from a publication of Nath et al.
[43]. The Illumina probe identifiers were mapped to the
respective Entrez Gene IDs with the Illumina
HumanHT-12 v4 annotation file (2017/11/30). We used
the Entrez Gene IDs as identifiers in all analyses. The
GSEA was computed with the GSVA package [44] using
the method of single-sample GSEA (ssgsea) with
normalization (v. 1.32.0). Gene sets with an enrichment
score > 0.5 in 80% of cohort samples were considered to
be enriched. In case of the single cell proximal tubule re-
gion dataset, only samples with at least 3000 measured
genes were included in the GSEA. Of note, the coverage
of gene signatures was lower in the single cell data than
in bulk gene expression data. The GSEA was run indi-
vidually for every sample to include only genes with ex-
pression values in the respective sample.

TCGA DNA methylation data preparation and analysis
Whole genome DNA methylation data and the corre-
sponding probe map from TCGA KIRC cohort were
downloaded from UCSC Xena browser [45]. For the in-
vestigated genes, associated CpG sites were retrieved
from the probe map.

TCGA somatic mutation data preparation and analysis
Somatic mutations were obtained from Kandoth et al.
[46]. The authors prepared a set of strictly filtered som-
atic variants for selected TCGA cancer entities. For 392
of 452 TCGA ccRCC tumors used in this work, muta-
tion data were available.

NGS panel sequencing

Sequencing of the candidate genes MET, TSC2, and RBI
was performed using a TruSeq Custom Amplicon gene
panel. The panel was designed using Design Studio (Illu-
mina) and includes probes to sequence regions of inter-
est in 32 genes which were known to be frequently
mutated in RCC samples from TCGA or identified in
other RCC studies. High-quality DNA was isolated from
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fresh-frozen tissue of cohort 1 using the QIAamp DNA
kit (Qiagen). Library preparation was performed accord-
ing to the TruSeq Custom Amplicon Low Input proto-
col. The final libraries were sequenced on the MiniSeq
platform (Illumina) with a median coverage of 1600.
Further processing was performed on the MiniSeq using
the Base Space Tru Seq Amplicon App for alignment
and variant calling. The data analysis software Illumina
Variant Studio 3.0 was used for variant annotation, fil-
tering, and classification. Single nucleotide variants
(SNVs) and small insertions and deletions (indels) were
analyzed for the target genes MET, TSC2, and RBI.

DNA methylation analyses through MALDI-TOF MS
Bisulfite conversion and subsequent MALDI-TOF MS
was used to measure the DNA methylation levels at se-
lected CpG sites in the EGLN3 gene region of samples
from the ICEPHA patient cohort, as previously described
[47]. Primer sequences are provided upon request.

CD8" T cell in vitro priming assays and tetramer staining

To investigate the immunogenicity of tumor-associated
peptides, peripheral blood mononuclear cells (PBMCs)
were isolated from whole blood of 6 healthy donors
using a Ficoll (Merck Millipore) density gradient. CD8"
T cells were isolated from HLA-matched PBMC cultures
by magnetic cell separation using a-CD8 beads (Miltenyi
Biotech) according to the manufacturer’s instructions.
For priming, 1 x 10° T cells were incubated with 2 x 10°
artificial antigen-presenting cells (aAPCs) coated with
HLA-bound peptides (donor-matched HLA:peptide
monomers, in-house production) and «-CD28 in the
presence of 5ng/ml IL-12 (PromoCell) as previously de-
scribed [48]. Priming was repeated weekly for 4 weeks.
Two days after each stimulation, 40 U/ml IL-2 and 5 ng/
ml IL-7 were added. Monomers with HLA ligands of
interest were produced by UV-mediated exchange as
previously described [49]. CD8" T cell priming was eval-
uated by tetramer staining using PE-labeled tetramers,
PerCP-labeled a-CD8 monoclonal antibody, and the
aqua live/dead stain solution (Thermo Fisher Scientific).
Data was acquired on a FACS Canto II analyzer and
evaluated using the software FlowJo 10.0.7. A 3-fold lar-
ger and distinct tetramer-positive population compared
to the negative control was considered positive priming.

Targeted metabolomics of ccRCC tissues

Targeted metabolomics/lipidomics analysis of tissue
samples was performed using liquid chromatography
and flow injection analysis mass spectrometry by Bio-
crates Life Sciences (Innsbruck, Austria) as previously
described [50]. In total, 204 metabolites could be quanti-
fied (Additional file 2: Tab. S4). For analysis, the abso-
lute metabolite quantifications were glog,-transformed
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[51]. The metabolites were assigned to molecule classes
or cellular pathways as indicated in Additional file 2:
Tab. S4.

Olink Proteomics

Targeted proteomics analysis of tumor tissues was per-
formed using the proximity extension assay (PEA) with
the immuno-oncology panel by Olink Proteomics (Upp-
sala, Sweden). The method allowed relative quantifica-
tion of 92 proteins (Additional file 2: Tab. S5), reported
as normalized protein expression (NPX). Proteins were
assigned to functional groups according to the com-
pany’s specifications. Group assignments are given in
Additional file 2: Tab. S5.

Statistical analyses

All statistical analyses were performed in R Studio (ver-
sion 1.0.153) [52] with R [39], with additional packages
Hmisc (v. 4.2-0) [53] and gplots (v. 3.0.1.1) [54].

Cell culture methods

Cell lines

A498, 786-0, and Cakil were purchased from CLS Cell
Lines Service (Eppelheim, Germany). A498 cells were
cultivated in EMEM (Lonza) supplemented with 10%
FBS (Merck) and 2 mM L-glutamine (Lonza). 786-O cells
were cultivated in RPMI 1640 medium (Lonza) supple-
mented with 10% FBS and 2 mM L-glutamine. Cell lines
were routinely tested for mycoplasma infection using a
PCR-based test (Venor® GeM Classic, Minerva Biolabs
GmbH), and authentication of cell lines was performed
using the PowerPlex® 21 System (Promega) according to
the manufacturer’s protocol.

siRNA-mediated knockdown of EGLN3 gene expression
EGLN3 knockdown was performed using the siGEN-
OME siRNA pool 112399 (GE Healthcare) together with
the DharmaFECT 1 transfection reagent (GE Health-
care). The siRNA pools siGENOME Non-targeting
siRNA Pool #1 (Ctr. 1) and ON-TARGETplus Non-
targeting Pool (Ctr. 2) were used as negative control
siRNA pools. Transfections were carried out as specified
in the manufacturer’s protocol. In brief, cells were
seeded in culture dishes and transfected the following
day at a confluency of ~60% with a final concentration
of 25nM siRNA. Assays were performed 48h after
transfection.

Untargeted metabolomics analysis

For metabolomics analysis, the 786-O kidney carcinoma
cell line was used. Cells were seeded and transfected in
T25 cell culture flasks and harvested 72 h after transfec-
tion. Two hours before harvest, the cell culture medium
was replaced by Opti-MEM serum-free medium

Page 7 of 24

(Thermo Fisher Scientific). Cells were washed with PBS,
detached with StemPro Accutase (Thermo Fisher Scien-
tific), taken up in ice-cold PBS, and collected by centri-
fugation for 10 min at 500xg and 4 °C. The supernatant
was discarded, and the pellets transferred to cryogenic
tubes. After another centrifugation step, the cell pellets
were flash-frozen in liquid nitrogen. The following steps
were performed on ice or at 4 °C, if not stated otherwise.
For metabolite extraction, pellets were resuspended in
160 pl methanol to water (1:1). To disrupt cells, cells
were sonicated 4 x 30 s and vortexed for 10 min. Subse-
quently, cells were centrifuged for 10 min at 15000 rpm.
The supernatant (aqueous phase) was transferred to new
tubes and evaporated with N,. The metabolites were
reconstituted with acetonitrile to water (95:5) at the day
of the measurement. A quality control sample (pool of
all samples) was included in the analysis, and samples
were randomized prior to the analysis. For a detailed de-
scription of the analysis method by LC-QTOEF-MS,
please refer to Leuthold et al. [55]. MassHunter Profin-
der software (Agilent Technologies) was used for data
analysis and feature extraction. A total of 1522 features
were identified in positive ionization mode. An internal
library [55] and the METLIN Metabolomics online data-
base [56] were used to assign metabolites to measured
features. For analysis of differently abundant metabolites,
data was exported and analyzed with R and R studio,
with the base package stats (v. 3.4.0) and the additional
package beeswarm (v. 0.2.3) [57]. Data was log,-trans-
formed. To calculate the significance of differences be-
tween test and control groups, Student’s ¢ test was used
and p values were corrected for multiple testing with the
Benjamini-Hochberg method.

Cell replication

The incorporation of bromdesoxyuridine (BrdU) into
DNA was detected to measure cell replication via FACS
analysis. Therefore, siRNA transfected cells were incu-
bated with 10 uM BrdU for 1h and subsequently fixed
and stained with the anti-BrdU primary antibody B44
(BD Biosciences) and an Alexa Flour 488 goat anti-
mouse secondary antibody (Jackson ImmunoResearch).
DNA content was stained with propidium iodide. Ana-
lysis was performed with the FACS Calibur and the Cell-
Quest Pro software (BD Biosciences).

Apoptosis

FITC-coupled Annexin V (BD Biosciences) was used to
detect apoptotic cells by FACS analysis. Propidium iod-
ide was used for DNA staining. FACS analysis was per-
formed with the FACS Calibur and the CellQuest Pro
software (BD Biosciences).
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Seahorse glycolysis

To measure cellular glycolysis, extracellular flux analysis
was performed with the Seahorse XF96 Extracellular
Flux Analyzer (Agilent Technologies) and the Glycolysis
Stress Test kit (Agilent Technologies), according to the
manufacturer’s instructions. Cells were seeded and
transfected in Seahorse XF96 microplates, to be compat-
ible with the XF instrument. At the day of the assay, the
cell culture medium was exchanged to buffer-free Base
medium (Agilent Technologies) supplemented with 1
mM L-glutamine and the cell plate equilibrated for 1h in
a non-CO, incubator. During the assay, 10 mM glucose,
1 uM oligomycin, and 50 mM 2-DG were serially added
to the cell medium and the response in extracellular
acidification rate (ECAR) was measured. After the ex-
periment, the growth area of the cell layer in each well
was determined and used for normalization of the ECAR
measurements. Analysis was carried out with Wave 2.4
software (Agilent Technologies).

Seahorse mitochondrial function

The oxygen consumption rate (OCR) of cells was mea-
sured to assess mitochondrial respiration. Therefore, the
Seahorse XF96 Extracellular Flux Analyzer and the Mito
Stress Test kit were used (Agilent Technologies), follow-
ing the manufacturer’s instructions. The assay workflow
is similar to the Glycolysis Stress Test described above;
only the Base medium is supplemented with 2 mML-
glutamine, 10 mM glucose, and 1 mM Na-pyruvate. The
compounds that are serially added during the assay are
1 uM oligomcyin, 0.5 uM FCCP, and 0.45 pM rotenone/
antimycin A. OCR measurements were again normalized
to the cell growth area per well.

Spheroid formation assay

To measure the ability of cells to form stable spheroids,
cells were seeded in Poly (2-hydroxyethyl methacrylate)
coated round-bottom 96-well plates at 500—10,000 cells
per well. Images were taken at days 1 and 4 after
seeding.

Cell viability assay

For assessment of cell viability, 3000-4000 cells were
seeded in a 96-well plate in 150 pl standard growth
medium. siRNA transfection was carried out the follow-
ing day. Forty-eight hours after transfection, 15 ul WST-
1 reagent (Sigma-Aldrich) was added per well and ab-
sorbance at 440 and 620 nm measured 30 min (A498/
786-0) or 2 h (Cakil) later. For analysis, the 620-nm ab-
sorbance was subtracted from the 440 absorbance.

Statistical analysis of data from cell culture experiments
Replicate FACS experiments to measure cell replication
and apoptosis were summarized by calculation of the
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mean and standard deviation of individual experiments.
Two-tailed Student’s ¢ test was used to assess statistical
significance, with a p value threshold of 0.05. In the case
of the extracellular flux analyses, the means and stand-
ard deviations were calculated per experiment which in-
cluded 2-3 replicate wells per condition. To summarize
replicate experiments, mean values of the individual ex-
periments were calculated and the standard deviation

was computed using the following formula: A

d2sd2+...+sd? . ..
=/ %, where sd is the standard deviation and

n the number of replicate experiments. Two-tailed Stu-
dent’s ¢ test was used to assess statistical significance,
with a threshold of 0.05.

Results

Over-represented self-peptides in ccRCC determined by
HLA ligandomics

Since ccRCC is known as a cancer entity with low muta-
tional load [21], we aimed to identify tumor over-
represented non-mutated peptides. HLA class I- and II-
bound peptides were extracted from 55 and 49 ccRCC
tissues, respectively, as well as paired adjacent non-
tumor tissues of patient cohort 1 (Table 1), and analyzed
by mass spectrometry. Analysis of ccRCC tissue yielded
a total of 34,226 unique class I and 19,325 unique class
II peptides from 10,524 and 4053 possible source pro-
teins, respectively. The average purity of HLA class I-
restricted peptides was 90% (range 78-97%), demon-
strating good quality of sample preparations. To identify
ccRCC-specific peptides, a library of HLA class I and II
ligands from 158 tissues of healthy organs and leukocyte
preparations served as a control pool to exclude globally
presented peptides (Fig. 2) [58]. The highest overlap of
ccRCC HLA class I-presented peptides was observed
with tumor adjacent benign kidney tissue from the same
patients (47.9%), followed by leukocytes (44.9%) and
lung tissue (30.6%) (Fig. 2a, lower panel). ccRCC HLA
class II-presented peptides also showed the strongest
overlap with tumor-paired adjacent benign kidney tissue
(41.8%), lung tissue (35.0%), and leukocytes (28.5%)
(Fig. 2b, lower panel). Peptides that were detected in at
least three ccRCC tumor tissues and in none of the non-
tumor tissues or leukocyte preparations were considered
ccRCC-specific. The analysis revealed 443 ccRCC-
specific class I and 203 class II peptides, which were
mapped to 382 and 139 possible source genes, respect-
ively. The median number of ccRCC-associated HLA
class I- and II-presented peptides was 25 (range 1-113)
and 9 (range 0-45) peptides, respectively. Of note, the
presence of tumor-associated class I and class II peptides
did not significantly correlate with patient survival (Add-
itional file 2: Fig. S1), which might be due to the
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generally tolerogenic and immune suppressive micro-
environment in ccRCC [59]. Finally, to receive a list of
candidate targets for immunotherapeutic approaches,
the source proteins of HLA class I and II peptide targets
were combined, vyielding 499 proteins, which are
encoded by 499 unique genes (Fig. 1a).

Source genes of ccRCC-presented peptides are involved

in pathways that are activated by ccRCC tumors

In order to identify ccRCC-associated pathways and pro-
cesses, we selected 2182 individual gene signatures from
Hallmark, C4 Cancer Module, and C6 Oncogenic Signa-
ture collections, and the Biocarta, Kegg, and Reactome
pathways from the C2 Curated Gene Set collection of
the Molecular Signatures Database (MSigDB) [42], as
well as eight immune module signatures published in a
study by Nath et al. [43]. The signatures were applied in
single-sample gene set enrichment analyses (ssGSEA) of
whole transcriptome data from 51 tumor tissues of pa-
tient cohort 1 for which HLA-ligandomics data and
high-quality RNA was available (Fig. 1). The ssGSEA
method allows the calculation of pathway activity scores
in individual samples on the basis of gene expression
levels [60]. For our purpose, a certain pathway or
process was considered to be activated in an individual
sample if the ssGSEA enrichment score exceeded 0.5 in

that sample. In addition, as we were interested in targets
broadly applicable in the population of ccRCC patients,
at least 80% of the cohort patients needed to show path-
way activation. Applying these criteria, 53 of the 2182
individual gene signatures were considered activated in
ccRCC cohort 1 (Fig. 3a). The activated signatures were
part of the Hallmark, the C4 Cancer Module, and the C6
Oncogenic Signature collections, as well as the Reac-
tome and Biocarta pathways and the immune modules.
To ensure that the observed activated pathways are a
consequence of the malignant transformation of the
tumor tissue and not a characteristic of the cell type of
tumor origin, the same enrichment analysis was applied to
a set of single cell sequencing data from the kidney prox-
imal tubule region of 5 patients (data taken from Young
et al. [22]), representing the cell type of origin for ccRCC
[23, 61]. We chose single cell proximal tubule gene ex-
pression data over bulk normal kidney sequencing as nor-
mal kidney tissue is composed of functionally distinct cell
types, with widely differing gene expression profiles [62].
Five signatures were enriched in the collection of 210
proximal tubule cells, three of which overlapped with the
enriched signatures in cohort 1 (Fig. 3b). Therefore, these
three overlapping signatures (blue asterisks in Fig. 3a, b)
were excluded, leaving 50 ccRCC-enriched signatures. Of
the 3293 genes associated with these signatures, 185
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overlapped with the 499 genes from the HLA ligandome
analysis (Fig. 3c) and were considered in further analysis
steps as potential immunotherapeutic targets associated
with ccRCC pathogenesis.

Validation of targets in an independent ccRCC patient
cohort from The Cancer Genome Atlas

To validate the 185 candidate genes, we used publicly
available data from a ccRCC cohort of The Cancer
Genome Atlas (TCGA) project, comprising tumor tis-
sues of 452 patients and additional paired non-tumor
tissues of 67 patients (Table 1). Analogous to cohort
1, ssGSEA was performed, supporting the enrichment
of 42 of the 50 pathways from the analysis of cohort
1 (Fig. 4a), thereby confirming 173 of the candidate
genes. All of the 173 genes were expressed above a

minimal expression threshold in TCGA patient co-
hort, defined by the local minimum of the log,
FPKM-UQ frequency distribution (Fig. 4b). To select
for genes that are induced in ccRCC tumors com-
pared to adjacent non-tumor tissue, the expression
differences between tumor and non-tumor tissue were
calculated. One hundred seventeen candidates were
significantly induced (p <0.05) in tumor tissues in
paired and unpaired analyses (Fig. 4c). Because we
aimed to identify potential targets that are present in
the majority of patients with ccRCC, we finally fil-
tered the candidate gene list for low expression vari-
ability in tumors of TCGA patient cohort. Only four
of thell7 genes showed a coefficient of variation
(CV) = 10%. The remaining 113 genes comprised the
final candidate gene list (Fig. 4d).
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Fig. 4 Validation of targets in an independent ccRCC patient cohort from The Cancer Genome Atlas (TCGA). a Heatmap of enrichment scores in
TCGA patient cohort (KIRC). Shown are 50 signatures that were identified as ccRCC-enriched in analysis of cohort 1 and proximal tubule cells.
Signatures that were not enriched by an enrichment score of 2 0.5 in at least 80% of TCGA cohort samples are marked by blue asterisks. Genes
exclusively included in those signatures were removed in further analyses. b Kernel density estimate of mean log, gene expression levels in TCGA
ccRCC tumor samples. Mean log, expression levels of the 173 candidate genes are marked in red. The minimal expression threshold was set at
the local minimum of the estimated frequency distribution at a log, expression of 6.5 (gray vertical intersected line). All candidates passed the
threshold. ¢ Volcano plot of gene expression fold changes in tumors compared to non-tumor tissues. Shown are the values of the unpaired

analysis. Expression values that passed the set thresholds at FC >0 and p < 0.05 in both unpaired and paired analyses are marked in red. d
Plotted are the coefficients of variation (CV) in percent. The intersected line marks the set threshold of CV < 10% for candidate selection.
Candidates that did not pass the threshold are printed in black
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Characterization of candidate targets: regulation of gene
expression and gene function

Tumor cells frequently display an altered epigenetic
landscape, with a global impact on gene expression. In
ccRCC, DNA hypermethylation is frequently observed in
promoter regions of tumor suppressor genes, with im-
pact on tumor stage and grade [63, 64]. We investigated
whether the candidates of our analysis workflow are af-
fected by altered DNA methylation in ccRCC tumors,
which could explain their upregulation in tumor tissues.
Altered methylation at specific sites could offer the op-
portunity of epigenetic modulation, in addition to im-
munologic targeting as therapeutic strategy. Therefore,
we took again advantage of the publicly available ccRCC
dataset from TCGA. For 273 of the cohort tumor sam-
ples and 143 of the non-tumor samples, DNA methyla-
tion B-values were available at the time of data analysis.
We calculated the difference of DNA methylation in
tumor and non-tumor tissues and determined the cor-
relation with gene expression in tumor tissues. Forty-five
genes with significant negative (p <0.05) correlation of
DNA methylation and gene expression (Spearman’s cor-
relation coefficient < — 0.3) were considered to poten-
tially be regulated by DNA methylation in tumor tissue
(Additional file 2: Tab. S6 and Fig. S2). Since the effect
of clinically approved DNA demethylating agents like
decitabine on the processing and presentation of anti-
gens has recently been proposed [65, 66], epigenetic
therapy might induce the expression of the correspond-
ing immunogenic antigens in ccRCC.

In addition to DNA methylation, somatic mutations in
genes might affect their expression, stability, and func-
tion, as well as the design of target-specific therapeutics.
Therefore, we investigated the frequency of somatic vari-
ants including point mutations and small indels in the
candidate target genes. From TCGA project, data was
available for 392 of the ccRCC samples. Seventy-seven of
the candidate genes showed somatic variants in at least
one patient (Additional file 2: Tab. S7 and Fig. S3). None
of the candidate genes were mutated in more than 8
(2.0%) patients of the cohort, which is in line with the
reported low mutational rate in ¢ccRCC tumors [21].
Additionally, only 5 mutations were shared between two
or more patients (Additional file 2: Tab. S8). As shown
in Additional file 2: Fig. S3, somatic point mutations or
indels resulting in protein alterations only occur in sin-
gle cases. Three of the candidates, namely MET, TSC2,
and RBI, that were affected by somatic mutations in
TCGA patient cohort are genes found to be frequently
mutated in ccRCC, either in literature [67—69] or in own
data analyses (unpublished data), and were therefore se-
lected for deep sequencing in patient cohort 1. Taken
together, 13, 25, and 1 patients of the 53 sequenced pa-
tients displayed non-synonymous coding variants in
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exonic regions of MET, TSC2, and RBI, respectively
(Additional file 2: Tab. S9). Forty-five of the detected
variants result in amino acid substitutions, potentially
leading to patient and tumor-specific mutated peptides,
the so-called neo-epitopes or neo-antigens. Neo-epitopes
are potent inducers of T lymphocytes and mediators of
anti-tumor immunity [70-73]. Their utilization in cancer
therapy is, however, complicated by the fact that most
neo-epitopes are patient-specific, requiring a personal-
ized timely discovery and manufacturing pipeline for
each individual patient [74]. Shared neo-epitopes have
been studied for the therapy of glioblastoma [75], acute
myeloid leukemia [76], and chronic myelogenous
leukemia [77], representing cancer entities with common
somatic mutations. Most of the mutations of MET,
TSC2, and RBI that were detected in cohort 1 of this
study were private and would therefore not qualify for a
broadly applicable “off-the-shelf” cancer vaccine or ACT
approach.

Characterization of candidate targets: functional
consequences in ccRCC

The selection of candidate genes in this study was based
on the presence of gene-derived HLA-presented peptides
in ccRCC tumor tissue and on the involvement of these
genes in ccRCC-associated pathways and/or processes.
To investigate common gene ontology (GO) among the
candidate genes, we performed DAVID functional anno-
tation analysis (Fig. 5a) [78-80]. The candidate genes
were most significantly enriched in the GO terms “extra-
cellular exosome” and “extracellular matrix.” Significant
enrichment was also observed for pathways involved in
antigen processing and presentation, immune processes,
response to hypoxia, and others. To annotate all 113
candidate genes with their GO-Slim Biological Process
terms, we used the GO PANTHER classification system
(Fig. 5b) [81, 82].

Since ccRCC is known as a metabolic disease with major
alterations in energy and lipid metabolism [50, 83-86], we
were further interested in possible metabolic interactions of
the candidates. Therefore, tissue metabolites of 30 samples
from cohort 1 were assessed by targeted metabolomics
using liquid chromatography and flow injection analysis
mass spectrometry [50], allowing the absolute quantifica-
tion of 204 metabolites of eight different molecule classes
(acyl/alkylphosphatidylcholines, diacylphosphatidylcholines,
lysophosphatidylcholines, acylcarnitines, amino acids, bio-
genic amines, sphingomyelins, and hydroxysphingomye-
lins), and 10 metabolites involved in cellular energy
metabolism (Additional file 2: Tab. S4). Candidate genes
were considered to be correlated with a certain metabolic
process or molecule class, if the Pearson correlation coeffi-
cients between gene expression and minimum 25% of me-
tabolites of the metabolic group were above 0.3 and
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Additional file 2: Tab. S10

Fig. 5 Functional associations of candidate target genes. a DAVID GO analysis of the candidate genes. Plotted are the Bonferroni (BF) corrected p
values of the enrichment. The colors of the dots represent the enrichment fold changes. b Circular bar graph of biological functions assigned to
the candidate genes by PANTHER GO analysis. ¢ Correlations of candidate genes with tumor metabolites. Plotted are the medians and ranges of
Pearson's correlation coefficients of the candidates with the metabolites of the indicated metabolite classes (Additional file 2: Tab. S4). Only
significant (p < 0.05) correlations with median correlation coefficients of = 0.3 are plotted. d Correlation of candidate genes with immuno-
oncological processes. An overview of markers descriptive of the processes is given in Additional file 2: Tab. S5. Plotted are the medians and
ranges of Pearson'’s correlation coefficients if the candidate genes correlated with a coefficient of = 0.3 in at least 25% of samples. e Overview of
the final 113 candidates. The color range indicates for each of the plotted parameters the respective values. Exact values can be retrieved from

significant (p <0.05). In addition, the median correlation
coefficient with all metabolites of a group needed to be
> 0.3. With the applied criteria, 21 candidates correlated
with one up to six different metabolite classes (Fig. 5c). Sev-
eral of the correlating candidates are known for their role
in lipid metabolism, such as the cholesterol and phospho-
lipid transporter ABCA1; the glycolytic enzyme ALDOA,
which is also involved in glycogen storage; the sulfotransfer-
ase GAL3ST1, the high-density lipoprotein (HDL) scaven-
ger receptor SCARBI; and the stearoyl-CoA desaturase
SCD. SCD is an important generator of unsaturated fatty
acids, to counteract the cytotoxicity of accumulating satu-
rated fatty acids and improve cell viability, also in ccRCC
[87]. The hepatocyte growth factor (HGF) receptor MET,
which correlated with different classes of lipid species, is
already used as therapeutic target in ccRCC [88].

Finally, we were interested in immune-oncological inter-
actions of candidate genes and therefore investigated the
associations of candidate gene expression with the pres-
ence of immune-oncological markers. The abundancies of
92 immunological marker proteins in 37 tumor tissues of
patient cohort 1 were measured using an immune-
oncology panel (Olink Proteomics). The marker proteins
were grouped into six biological processes, according to
the panel description (Additional file 2: Tab. S5). To de-
termine the associations of candidate gene expression and
immune-oncological processes, we performed correlation
analyses of candidate gene and marker expression. If a
candidate correlated significantly with a Pearson correl-
ation coefficient above 0.3 with more than 25% of process
markers, the candidate was considered to be associated
with the process. Fourteen of the 113 candidate genes ful-
filled the criteria (Fig. 5d). Eleven candidates were associ-
ated with chemotaxis, four with the suppression of tumor
immunity, four with metabolism and autophagy, three
with promotion of tumor immunity, one with vascular
and tissue remodeling, and none with apoptosis and cell
killing. Note that the same candidate could be associated
with more than one biological process.

Taken together, the functional characterization of the
candidates with GO annotations, and metabolic and
onco-immunological interactions is intended to aid the
prioritization of candidate targets and to propose a

direction for deeper experimental studies to analyze the
molecular functions of candidates and their suitability as
drug targets in ccRCC. All gathered information on the
candidates of our analysis workflow is summarized in
Fig. 5e. A tabular overview of the information can be
found in Additional file 2: Tab. S10.

Peptides of candidate genes activate CD8" T cells in
priming assays

If ccRCC-specific peptides are to be used in cancer vac-
cines, they need to be able to activate naive T cells into
effector T cells. In the scope of this study, we tested
twelve HLA class I peptides from the five candidate
genes EGLN3, NNMT, ANGPTL4, PFKP, and P4HA2 for
their immunogenic potential in CD8" T cell priming as-
says (Fig. 6). Thereby the immunogenicity of nine pep-
tides derived from EGLN3, NNMT, and ANGPTL4 and
restricted to the HLA alleles A*02, B*07, B*08, B*15, and
B*40 was proven (Table 2). In combination, the nine im-
munogenic peptides were detected in 24 patients (43.6%)
of patient cohort 1.

Functional analyses of EGLN3 as target for ccRCC therapy
The hypoxia inducible factor (HIF) prolyl hydroxylase 3
(PHD3; EGLN3) was one of the most promising candi-
date targets of our analysis approach. In total, 13
ccRCC-specific peptides derived from EGLN3 were iden-
tified (Fig. 7a), five of which were proven to be immuno-
genic (Table 2). Interestingly, the presence of EGLN3-
derived peptides was associated with higher infiltration
of those tumors by CD8" T cells (p=0.061), as deter-
mined by GSEA with a signature developed by Rooney
et al. [89]. At the same time, however, the tumors were
infiltrated by higher numbers of regulatory T cells (p =
0.076), indicating active immune suppression (Add-
itional file 2: Fig. S4). Other immune cells, including B
cells, macrophages, and natural killer (NK) cells, did not
correlate with the presence of EGLN3-derived peptides
(Additional file 2: Fig. S4). Supporting the notion of acti-
vated immune suppression is the positive correlation of
EGLN3-derived peptide presentation and PD1 RNA ex-
pression in the tumor tissue (p = 0.020). Of note, we as-
sume that PD1 is expressed by tumor-infiltrating
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Fig. 6 Assessment of immunogenicity of selected candidate peptides. The immunogenicity of 12 peptides from 5 candidate genes was assessed
by CD8" T cell priming and tetramer staining assays (Table 2). Left column: tetramer staining of CD8" T cells primed with the indicated ccRCC-
specific peptide. Middle column (negative control): ccRCC-specific peptide tetramer staining of CD8™ T cells primed with an unrelated, HLA-
matched peptide. Right column (UV peptide): tetramer staining of positively primed CD8* T cells with the respective UV-sensitive

peptide tetramer

lymphocytes within the tissue sample and not by the
cancer cells themselves, as previously demonstrated by
Giraldo et al. [90]. Concerning regulation, EGLN3 ex-
pression was found to be potentially regulated by DNA
methylation in TCGA patient cohort (Additional file 2:
Tab. S6), which could be confirmed in patient cohort 1
using MALDI-TOF MS-based quantification of DNA
methylation (Additional file 2: Fig. S5). Somatic muta-
tions of EGLN3 were not detected in TCGA cohort
(Fig. 5e). EGLN3 was not associated with any of the me-
tabolite classes or onco-immunological processes; how-
ever, the “cellular response to hypoxia and stress” and
the “regulation of HIFa” were functions annotated to
EGLN3 by PANTHER GO complete analysis (data not
shown). Analysis of cellular metabolites by untargeted
metabolomics furthermore revealed differentially regu-
lated metabolites in EGLN3 knockdown and control
cells. Very prominently, cytosine and deoxycytidine were
present in increased abundancies in EGLN3-depleted
cells (Fig. 7b), in addition to other features representing
nucleotide/nucleoside structures and the purine derivate
hypoxanthine. Abundance of creatine and pantothenic
acid on the other hand was decreased in EGLN3 knock-
down cells. All features that were detected by metabolo-
mics analysis are plotted in Additional file 2: Fig. S6. To
assess whether EGLN3 could represent a drug target in
ccRCC, we investigated its function in ccRCC cell
culture models. EGLN3 knockdown decreased cell

replication in A498 cells (Fig. 7d) and increased apop-
tosis in A498 and 786-O cells (Fig. 7e), pointing towards
a pro-proliferative and anti-apoptotic function of EGLN3
in these cell lines. In addition, EGLN3 knockdown im-
paired glycolysis in A498 cells, which could be a reason
for the decreased cell replication (Fig. 7f, g). Mitochon-
drial function was also affected by EGLN3 knockdown;
however, effects differed in A498 and 786-O cells.
Whereas mitochondrial respiration and ATP production
were increased in A498 cells with EGLN3 depletion, res-
piration in 786-O cells was decreased (Fig. 7h, i). An in-
teresting phenotype of EGLN3 knockdown cells was
their impaired ability to form stable spheroids, in con-
trast to untreated or non-targeting siRNA transfected
control cells (Fig. 7j). EGLN3 knockdown did not affect
cell viability (Fig. 7k).

Discussion

Workflow for the identification of drug targets in ccRCC
using multi-omics analyses

Despite targeted therapies, ccRCC is still a cancer with
very poor survival rates when tumors have reached ad-
vanced or metastatic stages. Currently available treat-
ment options rarely achieve durable responses, resulting
in a 5-year survival rate of only 12% for patients with ad-
vanced/metastatic disease [2], and further treatment
strategies are warranted. Although the mutational load
in ccRCC tumors is low, ccRCC is an immunogenic

Table 2 Immunogenicity of candidate gene-derived peptides in CD8" T cell priming assays

Protein Peptide HLA restriction® Number of positive tumors (%) Immunogenic Positive population
ANGPTL4 AQNSRIQQLF B*15 4(7.3) Yes 0.75%
AQNSRIQQL B*15 3(5.5) Yes 1.19%
EGLN3 FLLSLIDRL A*02 9 (164) Yes 0.11%
MPLGHIMRL B*07, B*08, B*35, B*51, B*53 8 (14.5) Yes 0.37%
EAKKKFRNL B*08 1(1.8) Yes 0.13%
YVKERSKAM B*08 1(1.8) Yes 0.10%
SLIDRLVLY B*15 3(55) Yes 0.48%
VQPSYATRY B*15 3(5.5) No -
NNMT SQILKHLL B*08 3(55) Yes 0.49%
AESQILKHLL B*40, B*44 4(7.3) Yes 041%
PAHA2 AEKELVQSL B*40, B*41, B*44 50.0 No -
PFKP RSFAGNLNTY B*15 4(73) No -

@HLA restrictions for which the immunogenicity of the respective peptide was tested are marked in bold
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Fig. 7 Functional investigation of the candidate target gene £GLN3. a Tumor-exclusive FGLN3-derived peptides detected by HLA ligandomics in
patient cohort 1. The number of positive tumors and the HLA restriction of the respective peptides are given. b Cellular metabolites regulated by
EGLN3 knockdown (EGLN3) in the 786-O kidney carcinoma cell line (ctr. siRNA 1, cells transfected with the non-targeting siRNA pool 1; UT,
untreated cells). Metabolites were identified by untargeted metabolomics analysis. ¢ Legend for the graphs in the figure. Untreated, untreated
cells; ctr. siRNA 1/2, cells transfected with two different non-targeting siRNA pools; EGLN3, EGLN3 knockdown cells. d Percentage of cells in S-
phase. The A498 and 786-O cell lines were used in the experiments. The effect of EGLN3 knockdown was non-significant (p = 0.05). e Percentage
of apoptotic A498 and 786-O cells. The asterisks mark significant effects with p < 0.05. f Profiles of extracellular acidification rate (ECAR) in A498
and 786-0 cells treated with glucose, oligomycin, and 2-DG (Glycolytic Stress Test, Agilent Technologies). The x-axis shows the measurement
cycle. g Effect on glycolysis in A498 and 786-O cells. The asterisks mark significant differences (p < 0.05), whereas ns indicates non-significant
differences. h Profiles of oxygen consumption in A498 and 786-O cells treated with oligomycin, FCCP, and rotenone/antimycin A (Mito Stress Test,
Agilent Technologies). i Effects on ATP production, basal respiration, and maximal respiration. The asterisks mark significant differences (p < 0.05),
whereas ns indicates non-significant differences. j Brightfield images of spheroids formed by £EGLN3 knockdown and control cells of the Cakil and
A498 cell lines. k Cell viability of Cakil, A498, and 786-O cells assessed by the WST-1 proliferation reagent

cancer with high numbers of cytolytic tumor-infiltrating
lymphocytes (TILs) [59, 89, 91, 92], making it a tumor
entity susceptible to immunotherapeutic intervention.
Here, we have developed a workflow that integrates
tumor immunogenicity with tumor-associated pathways
in order to identify target structures for cancer vaccines
or ACT therapy. Our approach of comparative HLA
ligandome profiling with our unique large dataset of be-
nign tissue samples and adjacent non-tumor tissues and
especially the combination with other -omics data might
enable the selection of suitable targets for peptide-based
immunotherapy. HLA ligandomics in tumors and non-
tumor tissues was used to detect ccRCC-specific pep-
tides presented to the immune system on the surface of
tumor cells. Today, HLA ligandomics is the only method
for direct measuring of the HLA peptidome of a cell or
tissue, as reliable in silico methods to predict peptide
presentation from, for example, transcriptome or prote-
ome data are missing [93, 94]. A recent study demon-
strates even feasibility of immunopeptidomics using
colorectal cancer organoids, thereby enabling the identi-
fication of only cancer cell-specific peptides without im-
pairment of peptides derived from intratumoural stroma
or immune cells [95]. The application of similar tech-
nologies using organoids derived from renal cell carcin-
oma in the future may further refine characterization of
ccRCC-specific peptides.

However, we have to emphasize that the sensitivity of
shotgun mass spectrometry, even in the context of
massive technical developments in the last decades [96],
is for sure limited since the HLA ligandome is a highly
dynamic and complex assembly of peptides. Neverthe-
less, mass spectrometry-based immunopeptidomics is
currently the only unbiased methodology to identify the
entirety of naturally processed and presented HLA pep-
tides in primary tissue samples [97]. Importantly, tumor-
exclusive peptides may be effective in the treatment of
metastatic disease, since peptide profiles have been
shown to be preserved between primary tumor tissues
and metastatic sites [98]. For ccRCC, the vaccine

IMA901, containing 10 ccRCC-associated peptides, has
been developed for therapy and undergone successful
phase I and II clinical trials, before it failed to show a
therapeutic benefit in combination with sunitinib,
compared to treatment with sunitinib alone in the con-
secutive phase III study [99, 100]. Another vaccine con-
taining ccRCC-associated peptides has undergone a
phase I/II clinical investigation as adjuvant treatment for
patients with advanced disease, showing beneficial ef-
fects for overall patient survival [11]. In the here pre-
sented study, the mere presence of tumor-exclusive
peptides did not correlate with overall survival of pa-
tients, which is not surprising considering the immune
suppressive microenvironment of established ccRCC tu-
mors [59]. In a recent study, we could show that spon-
taneous pre-existing T-cell responses against novel
defined tumor-associated antigens are correlated with
overall patient survival in chronic lymphocytic leukemia
patients indicating that not only the presentation of
tumor-associated antigens but rather the recognition of
these antigens by T cells is important for patient survival
[17]. Local and systemic immune suppression might be
the reason why cancer vaccination trials in the past did
not achieve the expected clinical benefits for patients, al-
though antigen-reactive T cells were detected in some
cases [101-103]. In clinical applications, combination of
peptides with immune-activating agents, such as check-
point inhibitors, might therefore be necessary to fully
unleash the potential of tumor-associated antigens as
target structures.

In our workflow design, we followed the rationale that
peptides represent best tumor targets if their source pro-
teins/genes are also involved in tumor pathogenesis. We
would expect such peptides to be widely presented
throughout the tumor tissue, and delayed resistance de-
velopment due to peptide loss. Therefore, we performed
GSEA based on transcriptome data with selected signa-
ture collections from the Molecular Signatures Database
(MSigDB) and additional immunologic signatures from a
recent publication [43], to identify ccRCC-enriched
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molecular pathways. Single cell sequencing data of the
kidney proximal tubule cells, representing the origin of
ccRCC tumors, served as an additional control to ex-
clude pathways that are associated with the region of
tumor origin in the nephron, rather than with tumor de-
velopment and progression. Expression data from prox-
imal tubules were selected because we previously
showed that tumor aggressiveness in ccRCC is correlated
with the level of divergence from its cell of origin within
the nephron region [32, 62]. The combined analysis of
ccRCC-associated peptides and pathways in the same
tumor tissues yielded 185 potential target proteins/
genes, of which 113 could be confirmed by additional
data analysis of an independent patient cohort from
TCGA project. Taken together, our candidate list repre-
sents an unbiased pre-selection of genes with target
structures on ccRCC tumor cells, in the form of HLA-
bound peptides, and with potential involvement in
tumor pathophysiology.

The drug target list—characterization of candidates and
targeting

First, before candidate gene-derived peptides can be
used in peptide vaccines, their immunogenicity (meaning
their ability to activate patient immune cells) needs to be
assessed. In the scope of this study, we tested the im-
munogenicity of twelve selected peptides from our can-
didates in T cell priming assays. We selected such
peptides for immunogenicity screenings that were pre-
sented on >3 patients and are restricted to HLA-A*02,
HLA-B*07, HLA-B*08, HLA-B*15, HLA-B*40, and HLA-
B*44. Nine of the tested peptides were able to induce
CD8" T cells and, hence, represent promising vaccine
candidates. If a candidate gene does not generate im-
munogenic peptides, or if immunologic targeting is not
feasible for any reasons, direct targeting of the candidate
genes/proteins could represent an alternative therapeutic
option. In fact, selective inhibitors of, for example, the
candidates NNMT [104-106] and SLCI16A3 [107] are
available. The candidate VEGFA is the target structure
of bevacizumab, a monoclonal antibody that is already
approved for ccRCC therapy [108, 109].

To investigate the potential of the candidates as drug
targets, we integrated further -omics data (e.g., genomic,
metabolomic, and proteomic data) (see Fig. 5 and Add-
itional file 2: Tab. S10). For instance, in addition to pep-
tide vaccines or direct targeting, epigenetic modulation
of the candidates could provide another therapeutic op-
tion. We identified decreased DNA methylation in the
gene regions of several candidate targets as potential
mechanism of upregulation in tumors. In ccRCC, DNA
methylation has been shown to be greatly altered [63],
with DNA methylation patterns being preserved in me-
tastases [31]. Thus, in the future, site-specific DNA
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methylation [110, 111] could represent a strategy to in-
hibit the expression of affected candidates and could be
beneficial also for patients with metastatic disease. In
addition, demethylating agents like decitabine are used
in clinical practice, e.g., for treatment of myelodysplastic
syndromes. These agents are known to induce the ex-
pression of tumor suppressor genes and/or induce global
hypomethylation in tumor cells. We could already show
that treatment of RCC cells with the hypomethylating
agent decitabine resulted in an upregulation of import-
ant drug transporters thereby influencing cisplatin treat-
ment effect [31]. In addition, the immune-modulatory
effect of demethylating agents is increasingly recognized.
Several in vitro and in vivo studies indicate that treat-
ment with demethylating agents leads to an upregulation
of immunogenic molecules such as cancer testis antigens
[112, 113] and neo-antigens [66] in tumor cells. There-
fore, demethylation induced by demethylating agents in
RCC might result in restoration or induction of HLA-
presented antigen targets. As shown in Additional file 2:
Fig. S7, our selected candidates are generally induced in
the tumor tissue compared to normal kidney tissue, but
inter-individual variability in expression is still observed,
and subsequently, combination therapies with demethy-
lating agents might induce stable expression of vaccine
candidates. As DNA demethylating agents have been as-
sociated with increased antigen processing and presenta-
tion [65], a combination therapy of epigenetic drugs
with peptide vaccination might overcome the limitations
of both as single therapies.

Moreover, somatic mutations in candidate genes
could be exploited in individualized treatment plans
within the concept of personalized medicine. Neo-
antigens arising from somatic mutations in tumor tis-
sues are considered promising targets in cancer ther-
apy, since they are not expressed on any normal tissue,
avoiding immune-tolerance as well as off-target side ef-
fects. Although personalized peptide vaccines contain-
ing neo-epitopes are currently tested in patients, with
promising results in melanoma [114] and glioblastoma
[115, 116], the identification of tumor-presented neo-
epitopes is still a challenge [117, 118]. Moreover, most
somatic mutations are present only in subpopulations
of the bulk tumor tissue, contributing to the observed
intratumor heterogeneity in ccRCC [119-121], compli-
cating vaccination against mutated neo-antigens in
ccRCCs. Therefore, our study focused on the identifica-
tion of non-mutated self-peptides presented by at least
3 patients. Analyses of somatic variation within the
identified candidate genes indicated that somatic point
mutations or small indel mutations occur only in single
cases. Thus, alteration by somatic mutations can be ex-
cluded as relevant confounder for the candidate-
derived peptide presentation.
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Functional relevance of candidates in ccRCC

Several of our candidate genes are known to be closely
connected with ccRCC pathogenesis. Among them is the
angiogenic mediator VEGFA, the lactate transporter
SLC16A3/MCT4, or the hypoxia-induced genes ANGPTL4,
PLIN2, and EGLN3. To provide functional information for
all candidates of our workflow, we performed GO analysis.
Significant enrichment was observed for terms related to
extracellular matrix, antigen processing and presentation,
immune processes, and response to hypoxia. In contrast to
a previous study by Klatt et al. [122] where network analysis
with ¢ccRCC HLA ligand source proteins was performed,
our candidate list was pre-filtered for tumor exclusivity.
Nevertheless, hypoxic signaling and extracellular matrix
organization were top hits in both studies, underlining the
importance of those processes in ccRCC carcinogenesis. In
addition, to reveal potentially novel functions of the candi-
dates, we analyzed the relationships between candidate
gene expression, tumor metabolism, and the presence of
onco-immunological markers in representative matched
tumor samples of cohort 1 for which enough tissue material
was available after ligandomics, transcriptomics, and gen-
etic analyses. Especially, the candidates ABCA1, MET, and
SCD were entangled with tumor metabolism, while
FCGRIA and ITGB2 showed the widest interactions with
immunological processes. GO annotation and metabolic
and immune-oncological interactions of candidates were
not used for further candidate filtering but rather intended
to provide additional information which may guide candi-
date selection and design of in-depth analysis of their func-
tion and suitability as drug target in ccRCC. In this study,
we focused on the functional analysis of the hypoxia-
regulated gene EGLN3. Based on our ligandomics analysis,
13 EGLN3-derived peptides were ccRCC-specifically pre-
sented, two of which were among the most frequently pre-
sented peptides. Five out of six peptides included in the T
cell priming assays were determined to be immunogenic
and represent promising candidates to be included in a
peptide vaccine for ccRCC patients. The presence of
EGLN3-derived peptides was furthermore associated with
higher expression of PD1, and CD8" and regulatory T cell
infiltration, indicating interactions with the immune system.
Thus, we decided to further investigate the function of
EGLN3 in ccRCC and performed experiments in different
ccRCC cell culture models. Untargeted metabolomics ana-
lysis in 786-O kidney carcinoma cells revealed an impact of
EGLNS3 depletion on the abundance of different cellular nu-
cleotide components and nucleotide-related structures,
such as cytosine and deoxycytidine. The accumulation of
the nucleotide-related molecules in EGLN3 knockdown
cells could be the consequence of increased synthesis/sal-
vage, decreased usage, or increased DNA or RNA degrad-
ation. In further analyses, we showed that EGLN3 acts pro-
proliferative and anti-apoptotic, and hence, could
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contribute to ccRCC malignant transformation and pro-
gression. Both decreased proliferation and enhanced apop-
totic signaling in EGLN3-depleted cells might result in the
accumulation of nucleotide-related molecules that we ob-
served in the untargeted metabolomics analysis. Further-
more, and in agreement with a recent publication [123], we
measured impaired glycolysis in EGLN3-depleted cells,
pointing to a glycolysis-promoting function of EGLN3. At
the same time, cell respiration, a direct marker for mito-
chondrial oxidative phosphorylation, was enhanced in
EGLN3-depleted cells, most likely to compensate for the
loss in glycolytic activity. Finally, we found EGLN3 deple-
tion to impair cells’ ability to form stable spheroids. The
mechanism underlying this phenotype is currently un-
known, as is the potential consequence for in vivo tumor
development, formation, and progression. So far, various
functions have been proposed for EGLN3 in cancer, ran-
ging from pro-apoptotic [124—126] to growth-promoting
[127, 128] and metabolic functions [129-131]. The variety
of identified functions, as well as the cell type-dependent ef-
fects of EGLN3 knockdown we observed in our experi-
ments, point towards a complex interaction network of
EGLNS3. 1t seems possible that the function of EGLN3 de-
pends on co-expressed factors, which might deviate in the
different cell culture models. Thus, one limitation of our
study is that other model systems that better resemble the
in vivo tumor situation, such as microtumors or cancer
organoids, might be more appropriate to understand the
function of EGLN3 in ccRCC and to assess its feasibility as
a drug target.

Our study exemplarily highlights that comprehensive
integration of different -omics technologies, including es-
pecially HLA ligandomics, provides not only the basis
for the identification of novel immunologic targets and
further insight into their regulation, but offers the poten-
tial for identification of novel combination therapies.

Conclusions

The HLA class I- and class II-presented peptides identi-
fied in this study represent immunologic targets that
could complement ccRCC therapy in the future. Their
frequent and tumor-specific presentation, as well as the
involvement of their source genes in tumor pathogen-
esis, renders them eligible as components of cancer vac-
cines or targets of ACT. In both cases, further validation
of their immunogenicity and considerations concerning
the appropriate form (long vs short peptides, combined
class I and II epitopes) and formulation (e.g., vaccine ad-
juvants) are, however, mandatory. Since ccRCC is an im-
munogenic cancer with a low mutational frequency and
a high mortality in advanced disease, tumor-specific
over-presented self-peptides could increase response
rates and benefits for patients, especially in combination
with immune checkpoint inhibition.
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