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Abstract

Background: Brassica is a very important genus of Brassicaceae, including many important oils, vegetables, forage crops,
and ornamental horticultural plants. TLP family genes play important regulatory roles in the growth and development of
plants. Therefore, this study used a bioinformatics approach to conduct the systematic comparative genomics analysis of
TLP gene family in B. napus and other three important Brassicaceae crops.

Results: Here, we identified a total of 29 TLP genes from B. napus genome, and they distributed on 16 chromosomes of
B. napus. The evolutionary relationship showed that these genes could be divided into six groups from Group A to F. We
found that the gene corresponding to Arabidopsis thaliana AT1G43640 was completely lost in B. rapa, B. oleracea and B.
napus after whole genome triplication. The gene corresponding to AT1G25280 was retained in all the three species we
analysed, belonging to 1:3:6 ratios. Our analyses suggested that there was a selective loss of some genes that might be
redundant after genome duplication. This study proposed that the TLP genes in B. napus did not directly expansion
compared with its diploid parents B. rapa, and B. oleracea. Instead, an indirect expansion of TLP gene family occurred in
its two diploid parents. In addition, the study further utilized RNA-seq to detect the expression pattern of TLP genes
between different tissues and two subgenomes.

Conclusions: This study systematically conducted the comparative analyses of TLP gene family in B. napus, discussed the
loss and expansion of genes after genome duplication. It provided rich gene resources for exploring the molecular
mechanism of TLP gene family. Meanwhile, it provided guidance and reference for the research of other gene families
in B. napus.

Keywords: TLP gene family, Polyploid, Orthologous and paralogous, Gene duplication and loss, Expression analysis, B.
napus

Background

B. napus belonged to the Brassica genus, which included
many important oils, vegetables crops and ornamental
horticultural plants. The allotetraploids B. napus (Brassica
napus; AACC, 2n = 38) was obtained by crossing of the
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two diploid basic species of B. rapa (Brassica rapa; AA,
2n = 20), and B. oleracea (Brassica oleracea; CC, 2n = 18)
[1-3]. B. napus was not only one of the world’s four major
oil crops, but also one of the most important oil crops in
China. Currently, the genomes of these species have been
sequenced and the datasets have been released [2, 4-6].
Recently, several important achievements and progress in
comparative genomics and functional genomics research
have been achieved, which reflected the importance and
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practicality of these data [7-9]. Therefore, we could use
bioinformatics to dig deeper into these public data. Until
now, the TLP gene family of B. mapus has not been
reported at the genome level.

The Tubby-like proteins (TLP) family was a smaller gene
family in animals, it played very important role in animal
growth and development [10, 11]. The Tubby gene was first
isolated by positional cloning in obese mice, subsequently,
other members of TLP gene family were successively identi-
fied [10, 12]. Studies have shown that following activation
of G protein subsets by phospholipase C-p, mouse Tubby
was transferred from the cytoplasmic membrane to the
center [13, 14]. TLP gene family members contained a
tubby domain about 270 amino acids in the C-terminal,
and a plurality of different domains in the N-terminal. Di-
versity of the N-terminal indicated the diversity functions
of TLP genes [11, 15]. In 1999, Shapiro Lab published the
crystal structure of the tubby domain, laying the foundation
for studying its function [16].

The spatial structure of the tubby domain consisted of a
hydrophobic a-helix and a 12-fold inverted B-fold. The
hydrophobic a-helix was located at the C-terminus of TLP
protein [16, 17]. Unlike the diversity of N-terminal struc-
tures in animals, the N-terminus of TLP protein in plants
often contained a conserved F-box domain [16, 18]. This
F-box domain was first described as a sequence motif of
cyclin F, and it interacted with the protein S-phase kinase-
associated protein 1 (SKP1). Experimental results indicated
that SKP1 could bridge different F-box proteins to
CDC53(Cullin), forming the designated SKP1/Cullin/F-
box (SCF) complexes, which function in recognizing of tar-
get proteins specifically for ubiquitin-dependent proteoly-
sis. F-box proteins regulated different biological processes,
including cell cycle cycling, translational control, and sig-
nal transduction. For example, TIR1 was involved in auxin
response during plant growth and development, and UFO
was critical in flower organ identity determination
[19-21], COII participated in jasmonic acid mediated
defense response [22, 23], and ZTL or FKF1 control
circadian clock [24, 25].

The TLP genes were widespread in many plants [26]. In
Oryza sativa, A. thaliana, Zea mays, Malus domestica,
Cicer arietinum and other plants, a genome-wide TLP
gene family has been studied [27-30]. However, it has not
been reported in Brassica crops, especially in B. napus.
Therefore, this study used bioinformatics tools to conduct
the comprehensively analyses of Brassica TLP gene family,
including identification, gene structure, chromosomal dis-
tribution, orthologous and paralogous, duplication and
loss, and expression pattern analyses at the genome level.
Furthermore, comparative analyses were conducted with
its two native parents (B. rapa and B. oleracea) and A.
thaliana. This study will lay the foundation for further in-
vestigating the biological function of this family members
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in B. napus. At the same time, it provided a methodo-
logical reference for studying this gene family in other oil
crops and related species.

Results

Identification and comparative analysis of TLP gene
family in B. napus

Totally, 29 TLP transcription factor members were identi-
fied from the whole genome of B. napus using bioinformat-
ics methods (Table 1). Further analysis showed that the
domain of gene (BnaC09¢g39130D) was incomplete and
removed in the subsequent analysis. In order to explore the
structure and biological function of TLP family genes in B.
napus, we compared them with the model plant A. thali-
ana. The results showed that TLP family genes of B. napus
had a high homology with A. thaliana corresponding genes
(E-value<7E-136 ~ 0), which provided a good guidance for
studying the function of TLP family genes in B. napus.
Among the 28 B. napus genes identified, BnaA10g05260D
was the longest, over 4145 bp; BnaC04¢51080D was the
shortest, only 1586 bp (Table 1). To investigate the evolu-
tionary relationship of this family in Brassicaceae crops, we
identified 14, 15 and 11 TLP family genes from B. rapa, B.
oleracea. and A. thaliana, respectively. The phylogenetic
tree was constructed using TLP family genes of these four
species (Fig. 1a). According to the topology of phylogenetic
tree, 28 BnTLPs were divided into 6 groups, named Group
A to F. It could be seen from the phylogenetic tree that
Group A contains the most TLP family genes, with 10
genes in B. napus, followed by Group F (6), Group D (4),
and Group E (4). In Group A, there were 5 genes from sub-
genome A, and 3 genes from subgenome C.

Chromosome distribution analysis of TLP family genes in
B. napus

To more intuitively understand the distribution of TLP
family genes on the chromosomes of B. napus, we per-
formed a chromosomal localization analysis (Fig. 1b). Since
the genomic data of B. napus has not yet been fully mapped
to the chromosome, the chromosomal location of some
genes are still unclear, so these genes are not shown on the
map (two genes, BnaCnng51010D and BnaCnng66230D).
The localization information showed that members of this
family were distributed in 16 of 19 chromosomes of B.
napus. There was no TLP gene distribution on the three
chromosomes of ChrA01, ChrA03 and ChrCO01. ChrA07
and ChrA08 chromosomes had the most genes (3 genes).
For the same group of genes, they were also distributed on
multiple chromosomes, and there was no obvious
phenomenon that the genes in the same group were clus-
tered in a certain interval. For example, the six genes in
Group F were distributed on six chromosomes. However,
the distribution of genes on chromosomes was not uni-
form. Most genes were distributed at both ends of the
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Table 1 The summary of TLP gene family members in B. napus and compared with A. thaliana

B. napus Gene start Gene end Gene length Group A. thaliana Identity (%) E-value Score
BnaC03g75660D 4,377,802 4,380,799 2997 A AT1G25280.1 84.56 0 711
BnaA04g29500D 1,400,068 1,402,078 2010 D AT2G47900.3 88.29 0 692
BnaA07g36880D 741,264 743,428 2164 A AT1G25280.1 8842 0 730
BnaA05g30970D 21,446,109 21,448,431 2322 D AT3G06380.1 76.04 0 587
BnaC07903480D 4,680,016 4,682,051 2035 F AT2G18280.1 86.04 0 629
BnaC03g69560D 59,391,825 59,394,400 2575 E AT1G53320.1 91.32 0 622
BnaA05g 14540D 8,994,374 8,996,696 2322 C AT1G53320.1 86.43 0 619
BnaC04g51080D 48,418,230 48419816 1586 D AT2G47900.3 87.32 0 654
BnaC08g46700D 945,065 946,978 1913 F AT1G47270.1 77.27 0 572
BnaCnng48830D 48,277,183 48,280,749 3566 A AT1G76900.1 81.68 0 731
BnaCnng51010D 50,479,652 50,481,521 1869 A AT1G25280.1 85.52 0 723
BnaA06g10770D 5,654,536 5,656,427 1891 B AT1G16070.2 86.72 0 707
BnaA08g19290D 14,882,996 14,886,001 3005 A AT1G25280.1 85.27 0 709
BnaA09928410D 21,293,066 21,295,808 2742 A AT1G25280.1 85.97 0 702
BnaC02g23810D 20,887,558 20,890,224 2666 A AT1G76900.1 8341 0 744
BnaC09g39120D 41,813,712 41,815,558 1846 D AT5G18680.1 86.55 7.00E-136 387
BnaC06909960D 11,871,153 11,873,618 2465 C AT1G53320.1 86.7 0 638
BnaA02g17850D 10,791,533 10,794,166 2633 A AT1G76900.1 84.13 0 738
BnaA07902000D 1,660,832 1,662,975 2143 F AT2G18280.1 85.53 0 608
BnaCnng66230D 65,942,721 65,944,602 1881 E AT1G16070.2 86.22 0 710
BnaA08903920D 3,231,533 3233325 1792 F AT1G47270.1 8127 0 624
BnaC06g00180D 279,021 281,085 2064 F AT1G47270.1 84.14 0 651
BnaA08g01170D 891,151 893,938 2787 E AT1G53320.1 87.99 0 595
BnaC05g45450D 41,346,349 41,348,694 2345 D AT3G06380.1 7839 0 603
BnaA10g05260D 3,001,258 3,005,403 4145 F AT1G47270.1 799 0 615
BnaC05920780D 14,250,016 14,252,879 2863 A AT1G25280.1 83.93 0 664
BnaA07g33110D 22,783,241 22,786,597 3356 A AT1G76900.1 81.72 0 731
BnaA10g16280D 12,422,564 12,424,770 2206 D AT5G18680.1 83.59 0 611

chromosome (such as ChrA04, ChrA07, ChrA08, ChrC04,
ChrC05, ChrC07, ChrC08), and there were fewer TLP
genes near the centromere. This may be due to the fact that
there are more repeat sequences in centromere, resulting in
a small distribution of genes on the whole [31, 32].

Conservative motif and gene structure analyses of TLP
gene family

The sequence characteristics of 28 TLP genes in B. napus
were analyzed using MEME software (Fig. 2a), and a total
of 6 conserved motifs were obtained. The position of
motif3 was in the front, and the position of motifl and
motif2 were backward. Twenty-three genes contained all
six conserved motifs from motifl to motif6. BnaA04g295
00D and BnaA05g51080D (GroupD) lacked motif6; BnaAO
9¢39120D (GroupD) lacked motifl, motif2 and motif4;
BnaA06g10770D and BnaCnng66230D (GroupB) lacked
motif2, motif3, motif4, motif6. The results showed that

there was no loss of any conservative motifs in the four
groups (GroupA, GroupC, GroupE, and GroupF). Of the 6
genes in GroupD, 3 of them lost part of the conserved
motif. We found that motif5 was present in all 28 TLP
genes in B. napus, indicating its presence or absence as a
marker for the identification of TLP genes. In addition,
motifl was lost only in one gene (BnaA09¢39120D), and
motif3 was lost only in two genes (BnaA06g10770D and
BnaCnng66230D). This indicated that these conserved
motifs were relatively conservative and might play a very
important role in the function of TLP gene family. Taken
together, these results indicated that the gene conservation
motifs within the group were relatively consistent and had
a more consistent positional distribution across the genes.
In the study of molecular evolution, the distribution of
introns provided important evidence for the phylogenetic
relationship among members of the gene family. Gene
structure analysis showed that TLP gene family structure
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of B. napus was relatively complex, and each gene con-
tained introns (Fig. 2b). BnaA06g05260D contained the
most introns and had 10 introns, followed by
BnaA06g¢10770D and BnaCnng66230D with 8 introns.
From the perspective of gene length, BnaA10g05260D was
significantly longer than other genes. The three genes
BrnaA06g10770D, BnaCnng66230D and BnaA07¢33110D
lacked UTR region at two ends, while some genes lacked
UTR region at one end. Through gene structure analysis,
it was found that the genes in the same group had similar
intron/exon distribution patterns. For example, two genes
in the GroupB had almost the same genetic structure dis-
tribution characteristics.

Analysis of orthologous and paralogous TLP family genes

in Brassicaceae crops

We further analyzed the orthologous and paralogous of
TLP gene family between B. napus and A. thaliana, B.
rapa, or B. oleracea. The orthologous and paralogous net-
work maps between B. napus and these three species were
constructed by Circos program (Fig. 3a). Orthologs referred
to genes that have evolved from vertical pedigrees from dif-
ferent species and typically retained the same function as
the original gene. Here, 50 pairs of orthologous genes were
identified in B. napus and A. thaliana; 78 pairs of ortholo-
gous genes were identified in B. napus and two diploid par-
ents, B. rapa, B. oleracea (Fig. 3b, Table S1). Paralogs
referred to genes that were found in the same species and
derived from gene duplication, and might evolve new and
previously related functions. A total of 4, 13, 13 and 63
pairs of paralogous genes were identified in A. thaliana, B.
rapa, B. oleracea and B. napus (Fig. 3b, Table S2).

In addition, the divergence time and selection types of
orthologous TLP gene pairs were calculated according to
the nonsynonymous substitutions (Ka) and synonymous
(Ks). To avoid the misalignment, we only used the
orthologous gene pairs with Ks < 1 according to previous
report [33]. Finally, we obtained the Ks, Ka, Ka/Ks, selec-
tion types, and divergence time of 133 orthologous gene
pairs (Table S3). The results showed that most of ortho-
logous gene pairs (132/133) had Ka/Ks ratios < 1, indi-
cating purifying selection on these orthologous TLP
gene pairs. Furthermore, we estimated the divergence
time of orthologous TLP gene pairs according to syn-
onymous substitution rate (Table S3). The results indi-
cated that the divergence time was 12.81~31.89 million
years ago (Mya) for 28 orthologous TLP gene pairs be-
tween B. napus and A. thaliana. Based on the diver-
gence time (14.5 Mya) of B. napus and A. thaliana, 22
and 6 orthologous genes pairs were formed before and
after the divergence of B. mapus and A. thaliana, re-
spectively. The divergence time was from 0.12 to 29.80
Mya for the orthologous TLP gene pairs between B.
napus and B. oleracea. Based on the divergence time
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(0.045 Mya) of B. napus and B. oleracea, all 52 ortholo-
gous genes pairs were formed before the divergence of
B. napus and B. oleracea. Similar, the divergence time of
orthologous TLP gene pairs was 0.25~32.14 Mya be-
tween B. napus and B. rapa. Based on the divergence
time (0.045 Mya) of B. napus and B. rapa, all 53 ortholo-
gous genes pairs were formed before the divergence of
B. napus and B. rapa.

Duplicated type identification and synteny analyses of B.
napus and other 3 species

The gene duplications have contributed to the expansion
of gene family. We examined 5 types of gene duplications:
singleton, dispersed, proximal, tandem, and WGD or seg-
mental duplication by MCScanX program (Table 2, Table
S4). Here, we found evidence that WGD likely contributed
most to the expansion of this gene family in B. napus and
B. oleracea. The percentage of WGD was 82.1% in B.
napus, B. rapa (35.7.0%), B. oleracea (80.0%), and A. thali-
ana (18.2%) (Table 2). However, dispersed duplication
contributed most to gene expansion in B. rapa (64.3%)
and A. thaliana (72.7%). No proximal and tandem dupli-
cation were detected for TLP gene family among these
four species. Actually, by checking gene collinearity within
a genome, we found that 82.1, 35.7, 80.0 and 18.2% of TLP
genes were located in collinear blocks for B. napus, B.
rapa, B. oleracea, and A. thaliana, respectively (Table 3).
The percentage of TLP genes located in the collinear
blocks was significantly larger than the average genome-
wide level for B. napus and B. oleracea.

Expansion analysis of TLP gene family in Brassica species
In order to further explore whether the expansion of
TLP gene family in B. napus was a direct or indirect ex-
pansion, we conducted a more detailed analysis. In gen-
eral, for most genome-wide replication events, including
WGD (whole genome duplication) and WGT (whole
genome triplication), replication was accompanied by
loss of genes [34, 35]. To elucidate the evolution of TLP
gene family in Brassica, we performed gene loss and rep-
lication retention analysis. Compared with A. thaliana, a
WGT and hybridization event occurred in B. napus after
differentiation with A. thaliana [4-6]. Here, 11 TLP
family genes were identified in A. thaliana. In theory,
there should be 66 TLP genes in B. napus (11 x 3 x 2),
while only 28 TLP genes were identified in B. napus. Al-
though a WGT event occurred after the differentiation
of Brassica species and A. thaliana, the number of TLP
genes did not increase significantly. There were only 14
and 15 genes in B. rapa and B. oleracea species, indicat-
ing that this WGT event did not result in a significant
expansion of the TLP gene, or a gene loss occurred after
expansion.
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Table 2 The identification of duplicated type for TLP genes and all genes in B. napus and other three Brassicaceae species
Species Singleton Dispersed Proximal Tandem WGD or segmental Total
Genome TLP Genome TLP Genome TLP Genome TLP Genome TLpP Percentage Genome TLpP
B. napus 7768 0 26,907 5 2428 0 2708 0 61,229 23 82.1% 101,040 28
B. rapa 3666 0 10,622 9 873 0 2369 0 23,489 5 35.7% 41,019 14
B. oleracea 4807 0 25,232 3 2515 0 2523 0 24,148 12 80.0% 59,225 15
A. thaliana 5156 1 10,670 8 1046 0 3026 0 7519 2 182% 27417 1
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Table 3 The synteny analyses of TLP genes and all genes in B. napus and other three Brassicaceae species

Species All genes TLP genes
Total collinear  Gene number in  Total genes  Percentage (%) Collinear blocks TLP gene in Total TLP Percentage (%)
blocks collinear blocks contained TLP gene  collinear block  genes

B. napus 2914 61,229 101,040 60.6 24 23 28 82.1

B. rapa 650 23,489 41,019 573 4 5 14 357

B. oleracea 747 24,148 59,225 408 8 12 15 80.0

A thaliana 216 7519 27417 274 1 2 11 182

We obtained quantitative changes in the number of TLP
genes in different evolutionary stages based on the phylo-
genetic reconstruction (Fig. 4). In phylogenetic tree of A.
thaliana and B. rapa, one A. thaliana gene should theoret-
ically correspond to three genes of B. rapa, but we clearly
saw that one A. thaliana gene corresponded to only one
gene in B. rapa for GroupB, GroupC and GroupF, and two
genes were lost. The gene (AT1G25280) in GroupA was
completely retained after WGT in B. rapa (AT1G25280 vs
Bra010985, Bra024763 and Bra012486), indicating that
these genes might play a very important role in B. rapa. In
particular, it might be a gene dosage effect, explaining the
significant differences between B. rapa and A. thaliana for
some certain traits. The gene corresponding to AT1G43640
in GroupA was completed lost in B. rapa, indicating that
this gene might not function in B. rapa. In GroupD and E,
one gene was lost in B. rapa corresponding to A. thaliana.

In phylogenetic tree of A. thaliana and B. oleracea
(Fig. 4), the loss of gene in GroupA, B, C, D, and F was
consistent with that of B. rapa. In GroupE, three genes of
B. oleracea were not lost (AT1G53320 vs Bo6g097290,
Bo3g183970 and Bo3g185010). In B. rapa, there were only
two copies of this gene in A. thaliana, and a gene loss oc-
curs in GroupE.

In phylogenetic tree of A. thaliana and B. napus
(Fig. 4), one A. thaliana gene corresponded to six B.
napus genes. The TLP gene in B. napus had a lot of loss
after WGT event. In fact, the loss number of each group
varied from 2 to 6 genes. For example, the gene corre-
sponding to AT1G43640 had all been lost in B. napus.
However, the six genes corresponding to AT1G25280
were all retained in B. napus. In fact, based on the ana-
lysis of B. oleracea and B. rapa, it was clear that the loss
of TLP gene did not occur directly in B. napus. The loss
of TLP genes occurred during the WGD event of the
diploid parents B. oleracea and B. rapa. The phylogen-
etic tree connection showed that the total number of
genes in each group of B. napus has been evolved to be
sum of the number of corresponding groups of B. olera-
cea and B. rapa (28 vs 14 +15). Only in GroupE, the
number of B. rapa relative to A. thaliana genes was lost
(Ath: 1 vs Bra: 2), and B. oleracea gene was not lost
(Ath: 1 vs Bol: 3). Therefore, there should be 5 TLP
genes in GroupE of B. napus. However, we found that

there were only 4 TLP genes in this group, which meant
that 1 gene was lost after the formation of B. napus. Of
course, there was also a case that we originally filtered
out BnaC09¢g39130D from subgenome C, which was
most likely from this group. However, a significant do-
main was loss in this gene, resulting in the failure to this
group. In summary, we found that the genes in B. napus
did not directly expand compared to their diploid par-
ents B. oleracea and B. rapa. Thus, the expansion of this
gene family of B. napus is an indirect expansion, that is,
the expansion occurred in its two diploid parents.

Gene expression pattern analysis of TLP gene family in B.
napus

To explore the potential function of TLP family genes in
different tissues of B. napus, the transcriptome data was
used to calculate the expression of TLP family genes in
two tissues, including roots and leaves. The expression
levels were estimated by RPKM, and the deeper of the
blue, the higher of the expression (Fig. 5, Table S5). The
results showed that most of TLP genes had higher expres-
sion levels in roots and leaves except for the low expres-
sion levels of the two genes in GroupB. Of course, the
expression patterns of some TLP genes in two tissues were
slightly different. For example, the expression levels of
BnaA09¢g28410, BnaC05g20780D, BnaA10g16280D, BnaC
09¢39120D and BnaC06g09960D in roots were higher than
those in leaves.

In addition, we also compared the expression differences
of TLP genes in roots and leaves in subgenome A and sub-
genome C for each group (Fig. 6). The results showed that
the expression patterns of TLP genes between subgenome
A and subgenome C were similar. BnaCnng48830D in
GroupA was highly expressed compared to other genes.
The expression of BnaA09¢28410D and BnaC05¢20780D,
BnaA08¢g19290D, BnaC03g75660D, BnaA10gl6280D, Bna
C06g09960D, BnaC09¢39120D in roots were significantly
higher than that in leaves, indicating that these genes might
play an important role in the morphogenesis of roots. The
expression of BnaA06g10770D and BnaCnng66230D were
extremely low in roots and leaves of B. mapus. Several
genes were also highly expressed in roots and leaves, such
as BnaA07¢36880D and BnaCnng51010D, BnaA08g0117
0D and BnaC03g69560D. These genes might be involved
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in the transcriptional regulation of various physiological
and biochemical change in the whole growth and develop-
ment cycle of B. napus. In conclusion, it was found that
not only the group had similar conservative motifs, but also
had similar expression patterns, which made the gene

structure and function uniform.

Discussion

Systematical and comprehensive analyses of TLP gene
family in B. napus
This study systematically compared and analyzed the TLP
gene family of B. napus on the basis of predecessors. Up
to now, we have systematically analyzed multiple gene
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families of B. rapa and B. napus, such as BESI, AP2/ERF,
CO-Like, bHLH, BES1, HSF, GARS, and cold-related genes
[36—46]. The methods, techniques, and experiences of
these studies laid the foundation for an in-depth analysis
of TLP gene family. In order to further analyze the evolu-
tionary relationship between B. napus and other species
homologous genes, this study constructed a phylogenetic
tree of B. napus and B. rapa, A. thaliana and B. oler-
acea TLP family genes. In the structural analysis of
TLP genes, it was found that the gene family struc-
ture of B. mapus was relatively complicated. In the
paralogous gene analysis, it was found that there were
63 pairs of paralogous genes in B. mapus. So many
paralogous genes also gave us a new understanding of
the TLP gene family in B. napus.

Evolution and expansion of TLP gene family in Brassica
species

In the analysis of the duplication and loss of TLP gene
family during evolution, we found a very interesting
gene, the A. thaliana ATI1G25280 gene from GroupA
group. The gene corresponded to 3, 3 and 6 TLP genes
in B. oleracea, B. rapa and B. napus, respectively. It indi-
cated that all copies of this gene are preserved after
WGT in Brassica crops, which was in accordance with
1:3:6 duplication ratios. It indicated that they might have
very important functions for the growth and develop-
ment of Brassica and even in B. napus. Of course, the
opposite evolutionary pattern was the AT1G43640 gene
of A. thaliana. Its homologous genes were not detected
in B. oleracea, B. rapa and B. napus, that was, the gene
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was completely lost after WGT event. This indicated
that the gene might not play any functional role for
Brassica genus. In addition, this study found that the
loss of TLP family genes was not directly in the B. napus
genome through comparative analysis. It occured in the
WGD process of the diploid parents B. rapa and B. oler-
acea. Therefore, the TLP family genes in B. napus did
not directly expand compared to their two diploid par-
ents. Thus, the expansion of this gene family in B. napus
was an indirect expansion, that was, the expansion of
this family genes in its two diploid parents.

In addition, we also identified 7LP gene family in other
Brassica species for comparative analyses. Totally, 42, 28,
14, 13, and 14 TLP genes were detected in the B. napus
‘ZS1Y’, B. napus ‘Tapidor’, B. rapa ‘Z1’ (yellow sarson), B.
oleracea ‘kale-like’, and B. oleracea ‘HDEM’ (broccoli)
(Figs. S1, S2, S3, S4 and S5). We found that the number of

the TLP genes in these species except B. napus “ZS11" was
similar with the 3 Brassica species used in our study. The
TLP genes in B. napus ‘ZS11’ was more than that in other
B. napus species. This might be due to genome assembly
and gene prediction, because the number of genome-wide
genes in B. napus ‘ZS11’ (123,465) was also more than that
in B. napus ‘Tapidor’ (70,162) and B. napus ‘Darmor-bzh’
(101,040).

Furthermore, we have performed the analysis of gene du-
plication and loss. It was found that the evolution pattern
of most TLP genes in these species had similar patterns of
duplication and loss as the three Brassica species we stud-
ied (Figs. S1, S2, S3, S4 and S5). However, there were some
inconsistencies among these species. For example, com-
pared with the AT1G25280.1 gene in Arabidopsis, no hom-
ologous gene was lost in B. napus ‘Darmor-bzh’ and B.
napus “ZS11’, while one gene was lost in B. napus ‘Tapidor’.
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Compared with the AT1G47270.1, two gene were lost in B.
napus ‘Darmor-bzh’ and B. napus ‘Tapidor ‘, while three
genes were lost in B. napus “ZS11’. Compared to the
AT1G16070.2, four genes were lost in B. napus ‘Darmor-
bzh’ and B. napus “ZS11’, while only one gene was lost in B.
napus “Tapidor “.

Exploring TLP gene function in more species

In recent years, with the deepening of TLP gene research,
it has been found that they played a major role in plant
growth, development and stress response. Studying the dis-
tribution, gene structure and expression analysis of TLP
family genes in plant was great significant for further study
of their function. In previous studies on TLP genes, 11 TLP
family members have been found in A. thaliana, 14 family
members in O. sativa, and 15 TLP family members in
maize. The widespread presence of TLP genes indicated
that they played an extremely important role in the life
process [28, 29]. For example, a partial disease phenotype
was produced when a genetic mutation occurred in a TLP
gene. Although the function of TLP family genes in ani-
mals and plants has not yet been fully clarified, some re-
search results have been obtained on the mining and
research of their function and structure. The highly con-
served nature of TLP domain indicated that they had im-
portant physiological functions in multicellular eukaryotes
[16-18]. In particular, studies of plant TLP gene family
have revealed that multiple TLP genes were involved in
plant responses to biotic and abiotic stresses [15, 27]. This
indicated that TLP genes could be used as candidate genes
for plant stress-resistant breeding and applied to plant
resistance breeding. The comparative genomics study of
TLP gene family of B. napus in this research system will
inevitably lay a solid foundation for the functional study of
TLP gene family.

Conclusions

In conclusion, we comprehensively analyzed the evolution-
ary pattern, gene structure, orthologous and paralogous
genes, duplication type, gene synteny, gene duplication or
losses, and gene expression pattern of TLP genes in B.
napus and other Brassicaceae species. A total of 68 TLP
genes were identified in these species, and 28 genes were
identified in B. napus. Identification of these transcription
factor genes was likely to assist in clarifying the molecular
genetics basis for B. napus genetic improvement, and also
provided the functional gene resources for transgenic re-
search. Until now, few genes representing this gene family
have been characterized in detail from B. napus. Therefore,
this is the first comprehensive and systematic analyses of
TLP gene family in B. napus. This study provides useful
resources for future studies on the structure and function
of TLP genes in B. napus. In addition, our analyses showed
that the directly expansion of TLP genes existed in B.
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napus, and the real TLP expansion occurred in its diploid
parents B. rapa and B. oleracea. This study may also
facilitate our understanding of the effect of duplication
or losses during the evolution of B. napus or others

polyploidy.

Methods

Collection of genomic data and identification of TLP gene
family

The A. thaliana genome-related data used in this study
was derived from Tair website (Tairl0, https://www.arabi-
dopsis.org). B. napus ‘Darmor-bzh’ (v5.0) and B. rapa
‘Chiifu’ (v3.0) genomic data were derived from BRAD data-
base (http://brassicadb.org/brad/index.php) [1]. B. oleracea
var. capitata line 02-12 genome (v1.1) datasets were de-
rived from Bolbase database (http://www.ocri-genomics.
org/bolbase/index.html) [4]. The protein sequences of B.
rapa ‘Z1’ (yellow sarson) and B. oleracea ‘HDEM’ (broccoli)
were downloaded from genoscope (http://www.genoscope.
cns.fr/externe/plants/chromosomes.html) [47]. The gen-
ome sequences of B. oleracea kale-like type TO1000 were
downloaded from EMBL [6]. The genome sequences of B.
napus “ZS11’ (v2.0) were derived from NCBI (https://www.
ncbinlm.nih.gov/genome/203), and B. napus ‘Tapidor’
(v6.3) genome sequences were downloaded from applied
bioinformatics group (http://appliedbioinformatics.com.au/
index.php/Darmor_Tapidor) [48]. The Pfam (http://pfam.
sanger.ac.uk) database was used to perform domain search
on the amino acid sequences of the downloaded species,
and the genes containing “TLP” domain were extracted by
the self-programmed Perl program (PF01167). At the same
time, in order to ensure the accuracy of the results, the
SMART  (http://smart.embl-heidelberg.de/smart/change_
mode.pl) and CDD (https://www.ncbi.nlm.nih.gov/Struc-
ture/cdd) databases were further used to perform domain
validation on the genes identified above [30, 49].

Gene structural and conservative motif analyses of TLP
genes in B. napus

Information on the location of TLP genes in B. napus,
such as chromosome, genomic location, CDS, protein
sequence, etc., were obtained from the databases men-
tioned above. The gene structure was analyzed by the
online tool GSDS (http://gss.cbi.pku.edu.cn/index.php)
[50]. It could show the position of introns, exons, and
un-translated regions (UTRs) of the gene. The gff file of
TLP family genes was submitted to the GSDS program
to obtain a schematic diagram of the gene structure. The
online analysis software MEME (http://meme.nbcr.net/
meme4-1/cgi-bin/meme.cgi) was used to analyze the
amino acid sequence of TLP genes in B. napus, and 6
motifs were obtained and used for further analyses.
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Evolution analysis of TLP gene family in B. napus

The ClustalW program was used to perform multiple
alignments of the amino acid sequences of the TLP gene
family using default parameter values (https://www.gen-
ome.jp/tools-bin/clustalw). The incomplete reading
frame sequences and redundant sequences were manu-
ally removed. The phylogenetic tree of TLP gene family
was constructed with Neighbor-Joining (NJ) method
using Mega7.0 software (http://megasoftware.net) [51,
52]. The evolutionary tree was evaluated by Bootstrap
method, and the value was set as1000 [51]. The pos-
ition information on the chromosome of TLP family
genes was extracted from gff file, and the chromo-
some map was drawn using Perl program.

Identification of orthologous and paralogous genes

The orthologous and paralogous relationships between
the TLP genes of B. napus and A. thaliana, B. rapa,
B. oleracea were identified using OrthoMCL software
(http://orthomcl.org/orthomcl/) [53]. Images of the
relationships between the paralogous and orthologous
of A. thaliana, B. rapa, B. oleracea, and B. napus
were drawn using Circos software (http://circos.ca/)
[54].

Ka/Ks calculation and dating the divergent time

To estimate the divergence of orthologous genes, the
sequences of orthologous TLP gene pairs between B.
napus and other three species (A. thaliana, B. rapa,
B. oleracea) were aligned using ClustalW (https://
www.genome.jp/tools-bin/clustalw). Then, the nonsy-
nonymous rate (Ka), synonymous rate (Ks), and evo-
lutionary constraint (Ka/Ks) between the orthologous
gene pairs were calculated according to their coding
sequence alignments by using Nei-Gojobori method
implemented in the Ka/Ks_calculator program [55,
56]. The orthologous gene pairs with Ks <1 were
used for the divergence time estimation based on the
neutral substitution rate 1.5x 10~ % substitutions per
site per year [57].

Analysis of expression pattern of TLP gene family in B.
napus

The RNA-seq data was used to analyze TLP gene expres-
sion patterns in leaves and roots in B. napus [58]. This
dataset contained three replicates, and RPKM value was
log10 transformed. The average value was used to com-
pare the expression level of TLP genes between subge-
nome A and C, or root and leaf. The heatmap package
(https://cran.r-project.org/web/packages/pheatmap/index.
html) of R was used to draw the expression heatmap.
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