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Abstract

To predict lung nodule malignancy with a high sensitivity and specificity for low dose CT (LDCT) 

lung cancer screening, we propose a fusion algorithm that combines handcrafted features (HF) 

into the features learned at the output layer of a 3D deep convolutional neural network (CNN). 

First, we extracted twenty-nine handcrafted features, including nine intensity features, eight 

geometric features, and twelve texture features based on grey-level co-occurrence matrix (GLCM) 

averaged from five grey levels, four distances and thirteen directions. We then trained 3D CNNs 

modified from three 2D CNN architectures (AlexNet, VGG-16 Net and Multi-crop Net) to extract 

the CNN features learned at the output layer. For each 3D CNN, the CNN features combined with 

the 29 handcrafted features were used as the input for the support vector machine (SVM) coupled 

with the sequential forward feature selection (SFS) method to select the optimal feature subset and 

construct the classifiers. The fusion algorithm takes full advantage of the handcrafted features and 

the highest level CNN features learned at the output layer. It can overcome the disadvantage of the 

handcrafted features that may not fully reflect the unique characteristics of a particular lesion by 

combining the intrinsic CNN features. Meanwhile, it also alleviates the requirement of a large 

scale annotated dataset for the CNNs based on the complementary of handcrafted features. The 

patient cohort includes 431 malignant nodules and 795 benign nodules extracted from the LIDC/

IDRI database. For each investigated CNN architecture, the proposed fusion algorithm achieved 

the highest AUC, accuracy, sensitivity, and specificity scores among all competitive classification 

models.
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I. INTRODUCTION

Lung cancer is the leading cause of cancer-related death in the United States and China. 

Early detection and diagnosis improve the prognosis for patients with early stage lung 

cancer treated with surgical resection. The landmark national lung screening trial (NLST) 

has shown that low-dose computed tomography (LDCT) screening reduces lung cancer 

mortality by 20% compared to chest radiography (National Lung Screening Trial Research 

et al., 2011). As more evidence on the benefits of LDCT screening emerges, the U.S. 

Preventive Services Task Force has recommended “annual screening for lung cancer with 

LDCT in adults aged 55 to 80 years who have a 30 pack-year smoking history and currently 

smoke or have quit within the past 15 years” (Cho et al., 2010)(Cho et al., 2010)(Cho et al., 
2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 
2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 
2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010)(Cho et al., 2010). The Centers 

for Medicare & Medicaid Services (CMS) have also determined that the evidence is 

sufficient to add annual screening for lung cancer with LDCT for appropriate beneficiaries. 

While LDCT screening has demonstrated a 20% survival benefit over chest radiography, the 

overall false positive rate in NLST was high (26.6%), and the positive predictive value was 

low (3.8%) (National Lung Screening Trial Research et al., 2011; Pinsky et al., 2015). False 

positive tests may lead to anxiety, unnecessary and potentially harmful additional follow-up 

diagnostic procedures, and associated healthcare costs. A reliable strategy is needed to 

reduce false-positive rates, unnecessary biopsies, and ultimately, patient morbidity and 

healthcare costs.

To reduce the high false-positive rate in LDCT lung cancer screening, the American College 

of Radiology developed a new classification scheme named Lung CT Screening Reporting 

and Data System (Lung-RADS) that 1) increases the size threshold to classify a nodule as 

positive from 4 mm to 6 mm and 2) requires growth for pre-existing nodules. While 

applying the Lung-RADS criteria to the NLST data greatly reduced the false-positive rate, it 

also reduced the baseline sensitivity by nearly 9%, adversely affecting the benefit of LDCT 

screening to reduce mortality (Pinsky et al., 2015). With the aim of obtaining high true-

positive rate and true-negative rate by the computer-aided techniques, a number of 

algorithms were proposed to automatically characterize the lung nodules (Chan et al., 2008; 

Armato et al., 2003). In the recent years, the radiomics-based approaches were proposed to 

analyze various diseases based on medical imaging, presenting a promising way for lesion 

malignancy classification (Zhang et al., 2017; Sutton et al., 2016; Gillies et al., 2016; Hao et 
al., 2018). By extracting and analyzing large amounts of quantitative features from medical 

images, radiomics can build a predictive model by machine learning algorithms to support 

clinical decisions. However, even the model that achieved the highest accuracy (80.12%) 

using a 10-folder cross validation still had a relatively low sensitivity at 0.58. These findings 
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indicate the difficulty of predefining quantitative features that fully reflect the unique 

characteristics of a particular lesion (Audrey G. Chung, 2015). Thus, developing an effective 

model based on other input is needed so that only patients with a high probability of 

developing malignancies undergo additional imaging and invasive testing.

Deep learning has achieved great success in various applications in computer vision (Ding 

and Tao, 2018) and medical imaging processing and analysis (Fu et al., 2018; Huang et al., 
2018b; Zhu et al., 2018a; Parisot et al., 2018). In a recent lung cancer detection challenge 

organized by Kaggle, most top-scored models were based on a deep convolutional neural 

network (CNN). Unlike handcrafted feature-based classifiers (Zhou et al., 2017; Liu et al., 
2017; Wimmer et al., 2016; Lian et al., 2016; Vallières et al., 2015; Parmar et al., 2015; 

Namburete et al., 2015), CNN-based classifiers (Kooi et al., 2017; Shin et al., 2016; Roth et 
al., 2016; Zhu et al., 2018b) use the original images as input and learn features automatically 

to classify, eliminating the need to extract predefined features. In general, to obtain a good 

classification performance, CNN requires a large scale annotated dataset to learn the 

representative nature of a lesion by training a large number of parameters (Miotto et al., 
2018). Many successful applications of CNN have used more than 100,000 samples, such as 

ImageNet with millions of images (Krizhevsky et al., 2017), the skin cancer dataset with 

129,450 images (Esteva et al., 2017), and the retinal fundus photographs dataset with 

128,175 images (Gulshan et al., 2016). For many other medical problems, obtaining such a 

large annotated dataset is still challenging. This challenge is commonly surmounted through 

transfer learning, which fine-tunes a CNN model pre-trained on a large scale dataset 

(Kermany et al., 2018; Shin et al., 2016; Akcay et al., 2018).

However, for medical imaging with the three dimensional (3D) tensor form, such as CT, 

transfer learning is not optimal, as most of large datasets are 2D, and there lacks a large 

scale 3D dataset with pre-trained 3D CNN architecture. Using a conventional classifier (such 

as SVM) with the CNN features as input is another common technique to improve the 

performance of CNNs (Shen et al., 2015; Shen et al., 2017). This technique is available for 

medical imaging with the 3D tensor form, however it can’t solve the challenge intrinsically 

because the natural representation of a lesion can’t be learned well by CNNs without a large 

scale annotated training dataset.

Currently, most models use either handcrafted features or features learned based on CNN 

alone. Model performance can be improved by incorporating visual CT findings or domain-

knowledge based features into construction of predictive models (Shi et al., 2008; Causey et 
al., 2018). On one hand, a combining algorithm could overcome the disadvantage of the 

handcrafted features’ inability to fully reflect the unique characteristics of a particular lesion 

by combining the intrinsic CNN features. On the other hand, it could alleviate the 

requirement of a large scale annotated dataset for the CNN because of the complement of 

handcrafted features for the CNN features. In general, the architecture of a typical CNN 

(Fig. 1) is structured as a series of stages: 1) convolutional layers and pooling layers with 

tensor output; 2) hidden fully connected layers with vector output; and 3) an output layer 

with vector output (LeCun et al., 2015). In most existing combination methods, the 

representation learned at the final hidden fully connected layer is combined into the 

handcrafted features, improving the performance of both the handcrafted features and the 
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CNN (Antropova et al., 2017). Causey et al. also proposed a fusion algorithm based on the 

random forest classifier by combining the CNN presentation learned at the last hidden fully 

connected layer before the output layer into the handcrafted features, achieving high 

accuracy for lung nodule malignancy prediction (Causey et al., 2018). However, as pointed 

out by Y. LeCun and G. Hinton, “deep-learning methods are representation-learning 

methods with multiple levels of representation, obtained by composing simple but non-linear 

modules that each transform the representation at one level (starting with the raw input) into 

a representation at a higher, slightly more abstract level” (LeCun et al., 2015). This indicates 

that the representation learned at the output layer is at a higher level and more abstract than 

the representation learned at the final hidden fully connected layer. Thus, a fusion algorithm 

could achieve better performance by combining handcrafted features into the CNN 

representation learned at the output layer, instead of the final hidden fully connected layer. 

To the best of our knowledge, this is the first attempt to explore a fusion algorithm between 

the CNN features at the output layer and the handcrafted features.

Specifically, we propose a fusion algorithm (SS-OLHF) (Fig. 1) that combines the highest 

level CNN representation learned at the output layer (OL) of a 3D CNN into the domain 

knowledge, i.e. handcrafted features (HF), using the support vector machine (SVM) coupled 

with the sequential forward feature selection method (SFS) to select the optimal feature 

subset and construct the final classifier. The proposed fusion algorithm could lead to better 

performance in differentiating malignant and benign lung nodules for LDCT lung cancer 

screening.

II. Materials

We downloaded the Lung Image Database Consortium and Image Database Resource 

Initiative (LIDC/IDRI) (Armato et al., 2011) (http://www.via.cornell.edu/lidc) to evaluate 

the proposed fusion classifiers. This dataset includes 1,010 cases, each of which includes 

images from a clinical thoracic CT scan and an associated XML file that records the 

annotations from four radiologists. 7,371 lesions were marked “nodule” by at least one of 

the four radiologists, and 2,669 of those nodules had sizes equal to or larger than 3 mm and 

were rated with malignancy suspiciousness from 1 to 5 (1 indicates the lowest malignancy 

suspiciousness, and 5 indicates the highest malignancy suspiciousness).

We considered all nodules with sizes equal to or larger than 3 mm. In total, 2,340 nodules 

were considered. For each nodule, the malignancy suspiciousness rate was the average value 

of all rates given by all radiologists who outlined the nodule. By removing ambiguous 

nodules with malignancy suspiciousness rated at 3, we obtained a total of 431 malignant 

nodules (average rating>3) and 795 benign nodules (average rating <3) to evaluate our 

models’ performance. Finally, for each nodule, the 3D nodule region of interest (ROI) was 

extracted based on the contour given by the radiologist who gave the malignancy 

suspiciousness rate closest to the average. For all nodules considered in this study, the 

measurement conditions including pixel size in transaxial image, slice thickness, 

reconstruction interval and nodule volume are summarized in appendix Table A1. The 

difference between the reconstruction interval and the slice thickness (DIT) are presented in 
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appendix Table A2, where DIT<0 implies that there is an overlap between neighboring slices 

of reconstructed CT.

III. Methods

3.1. The workflow of the fusion algorithm SS-OLHF

The overall workflow of the fusion algorithm SS-OLHF is illustrated in Fig. 2. A 5-fold 

cross validation method was employed in this work, where 3 folds were used for training, 

one fold was used for validation and the remaining fold was set aside for testing. For each 

nodule, the handcrafted features were extracted and the nodule tensor was constructed based 

on the segmented 3D nodule ROI. The augmentation processing was performed on the 

training nodule tensors by rotating and flipping. The 3D tensor, including training tensors 

and augmentation tensors with the same size, were used as the input for training the 3D 

CNN to train CNN. Then, the CNN features learned at the output layers before softmax 

operation were extracted based on the trained CNN. We obtained the fusion features by 

combining the CNN features into the handcrafted features. We used SVM with radial basis 

function kernel coupled with SFS to obtain the optimal fusion feature labels selected and 

hyper-parameters of SVM, based on the training samples only. Once the SVM model was 

fixed with the hyper-parameters based on validation fold, it was applied on the test cases 

using optimal fusion feature subset from the testing samples.

3.2. Handcrafted feature extraction

In this study, we combined the handcrafted features into the highest level CNN features 

learned at the output layer with high abstract. Imaging features, including intensity, 

geometric and texture features, extracted from contoured nodules (Zhou et al., 2017) were 

used to construct the fusion algorithm. The following intensity features were extracted based 

on the intensity histogram: minimum, maximum, mean, standard deviation, sum, median, 

skewness, kurtosis, and variance. Geometric features associated with a nodule were volume, 

major diameter, minor diameter, eccentricity, elongation, orientation, bounding box volume, 

and perimeter. To obtain high level texture features, all 3D nodule ROIs were first 

interpolated to a fixed resolution with 0.5 mm/voxel along three axes using a 3D spline 

interpolation method. Thirteen 3D gray-level co-occurrence matrices (GLCMs) (Davis L.S., 

1979) were constructed based on these interpolated ROIs at 13 standard 3D directions in 3D 

linear space, respectively, denoted as [0 1 0], [−1 1 0], [−1 0 0], [−1 −1 0], [0 1 −1], [0 0 −1], 

[0 −1 −1], [−1 0 −1], [1 0 −1], [−1 1 −1], [1 −1 −1], [−1 −1 −1], [1 1 −1], for a particular 

grey levels and displacement distance. The following twelve texture features were obtained 

from the GLCM by averaging the above thirteen GLCMs: energy, entropy, correlation, 

contrast, texture variance, sum-mean, inertia, cluster shade, cluster prominence, 

homogeneity, max-probability, and inverse variance. Four displacement distances 1, 2, 3, 4 

and five grey levels 8, 16, 32, 64, 128 were used construct different groups to extract 20 

groups of texture features. The averaging texture features over such 20 groups of texture 

features were used to construct the fusion algorithm SS-OLHF.
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3.3. Nodule tensor construction for CNNs

After all 3D nodule ROIs were interpolated to a fixed resolution with 0.5 mm/voxel along 

three axes using a 3D spline interpolation method, training data were augmented by 2D 

rotation of [90°, 180°, 270°] along all three axes and flipping along all three coordinate 

planes. Subsequently, for each interpolated nodule ROI and augmentation data, we 

constructed the 3D nodule tensor whose center the tumors were located in and whose 

periphery zeros were filled in. Each nodule tensor had the same size of 105×97×129, 

determined by the biggest nodule size among all interpolated nodule ROIs and augmentation 

data. We used these nodule tensors from all interpolated nodule ROIs and augmentation data 

as the input for all CNNs to train the CNN architectures and extract the CNN features.

3.4. Convolutional neural network

3.4.1. 3D CNN architectures—Because nodule imaging has an intrinsic 3D tensor 

structure, the 3D CNN architectures with the 3D nodule tensors as input were trained to 

extract the CNN features for the proposed fusion algorithm. This study used three 3D CNN 

architectures, which were modified from two 2D CNN architectures (AlexNet (Krizhevsky 

et al., 2012) and VGG-16 Net (Simonyan and Zisserman, 2014)) and one recently developed 

2D CNN architecture dedicated to classifying lung malignancy (Multi-crop Net (Shen et al., 
2017)). Unlike the original 2D CNN architectures, which use 2D convolutional kernels and 

2D pooling, our CNN architectures with input in the form of 3D nodule tensors use 3D 

convolutional kernels to perform 3D convolution in all convolutional layers and 3D max-

pooling in all pooling layers. Meanwhile, the 3D CNNs preserve structures, such as layer 

number at every stage and unit number at every layer (except the output layer with two 

units), the stride size in most convolutional and pooling layers, and padding processing. The 

three 3D CNN architectures with corresponding details are shown in Fig. 3 and explained 

below.

a) 3D AlexNet: The first 3D CNN architecture is modified from the AlexNet, which 

achieved significant improvement over other non-deep learning methods for ImageNet Large 

Scale Visual Recognition (ILSVRC) 2012 (Krizhevsky et al., 2012). This 3D AlexNet 

architecture includes 5 convolutional layers, three max-pooling layers, two hidden fully 

connected layers, and one output layer with approximately 113 million free parameters, 

whose details are shown in Fig. 3(a). The features learned at all convolutional layers and 

max-pooling layers are in the form of 4D tensors with the size [7 7 9 256] at the final 

convolutional layer and [4 4 5 256] at the final max-pooling layer. All features learned at the 

hidden fully connected layers and the output layer are in the form of vectors with the size [1 

4096] at the final hidden fully connected layer and [1 2] at the output layer.

b) 3D VGG-16 Net: The second 3D CNN architecture is modified from the 16-layer 2D 

CNN developed by the visual geometry group (VGG-16) at the University of Oxford for 

ImageNet Large Scale Visual Recognition (ILSVRC) 2014 (Simonyan and Zisserman, 

2014). This architecture consists of five stacks of convolution-pooling operation, in which 

each max-pooling layer is tailed by a few convolutional layers (Fig. 3(b)). Overall, it 

includes thirteen convolutional layers, five max-pooling layers, two hidden fully connected 

layers, and one output layer with approximately 65 million free parameters. Unlike the 
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original 2D CNN architecture that used all 2D kernels with size 3 and stride 1 in 

convolutional layers, the first convolutional layer uses 3D kernels with size 11 and stride 4, 

so that the large input size (105×97×129) works with the available memory of our computer 

with the modified 3D VGG-16. The features learned at the final convolutional layer, final 

max-pooling layer, final hidden fully connected layer, and output layer are in the forms of a 

4D tensor with size [2 2 3 512], a 2D tensor with size [2 512], a vector with size [1 4096], 

and a vector with size [1 2], respectively.

c) 3D Multi-crop Net: The third 3D CNN architecture (Fig. 3(c)) is based on a recently 

developed multi-crop CNN dedicated to lung malignancy classification (Shen et al., 2017). 

The multi-crop CNN extracts salient nodule information using a multi-crop pooling strategy 

that crops center regions from convolutional feature maps and then applies max-pooling at 

different times. The multi-crop CNN outperforms other state-of-the-art models for 

classifying lung nodule malignancies, so we chose it as an improved 3D CNN architecture to 

evaluate our fusion algorithm. In this 3D CNN architecture, which has approximately 0.5 

million free parameters, the multi-crop pooling strategy is used after the first convolutional 

layer, and there are two additional convolutional layers, two max-pooling layers, one hidden 

fully connected layer, and one output layer. Like the 3D CNN modified from VGG-16 Net, 

the kernel size is 11 and the stride is 4 at the first convolutional layer. The features learned at 

the final convolutional layer, final pooling layer, final hidden fully connected layer, and the 

output layer are in the form of a 4D tensor with size [4 4 5 64], a 4D tensor with size [2 2 3 

64], a vector with size [1 32], and a vector with size [1 2], respectively.

3.4.2. CNN training procedures—For binary classification, the output of the CNN is a 

two dimensional vector (y0, y1) for each sample with label, where q equals either 0 or 1. The 

softmax of (y0, y1), defined as

pi = exp yi
exp y0 + exp y1

, i = 0, 1, (1)

indicates the probability distribution over the two classes. The networks were trained by 

minimizing the loss function defined by averaging the cross entropy along each batch with 

size, as follows:

Loss = 1
N ∑− qlogp1 + 1 − q logp0 . (2)

We used the Adam optimization algorithm, based on a first-order gradient (Kingma and Ba, 

2014), to optimize the objective function (2). We used minibatch Stochastic Gradient 

Descent (SGD) to compute the gradient in small batches for the available memory of our 

computer. The batch size was set to 70. Then, we used the standard backpropagation to 

adjust weights in all layers. We used Layer (Channels) normalization, introduced by Ba et al. 

(Jimmy Lei Ba, 2016), to normalize the input to one nonlinear output based on the mean and 

standard deviation over all channels (units) in a layer, as follows,
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yLN x; W, γ, β = g xW − μ xW
σ xW γ + β , (3)

where g was the standard rectified linear unit (ReLU), W was the learned weight in this 

layer, and the extra parameters γ and β need to be trained during training the CNN. Dropout 

regularization was used for all hidden fully connected layers with the dropout ratio set to 

0.9. The changing learning rate was initially set to 0.005 for the first epoch, 0.001 from the 

second epoch to the fourth epoch, 0.0005 from the fifth epoch to the eighth epoch, and after 

the ninth epoch. The training processing stopped automatically when the loss function value 

achieved 0.01 and iterative steps achieved 100 epochs for each CNN. To deal with the data 

imbalance problem in training CNNs, we selected part of the majority augmentation data 

rather than all majority augmentation data to obtain the balanced binary training samples.

3.5. Feature selection and classification

The fusion features (Table 1) comprise 29 handcrafted features, as described in section 3.2, 

and 2 CNN features learned at the output layer before softmax operating, which are the 

highest level representation learned by CNN. For each testing sample, one of these 2 CNN 

features is directly connected with the prediction probability belonging to positive class, 

which is denoted as CNN featureP, and the other one is directly connected with the 

prediction probability belonging to negative class, which is denoted as CNN featureN. 

Because of the redundancy and similarity among these fusion features, feature selection is 

needed to improve the model performance. As a traditional feature selection method, the 

sequential forward feature selection (SFS) method (Kohavi and John, 1997) coupled with the 

SVM classifier (SS) was used to select the feature subset. We used the area under the receive 

operating characteristic (ROC) curve (AUC) by a 5-fold cross validation method in the 

training dataset as the criterion to select the optimal feature subset. Finally, the SVM based 

classifier with RBF kernel was further trained on the training dataset and classified the 

testing dataset using the selected optimal feature subset as input.

IV. Experimental Setup

4.1. Methods for comparative testing

For each CNN architecture investigated, we first compared the original 2D CNN and the 

modified 3D CNN with our proposed fusion algorithm SS-OLHF. We also compared our 

algorithm with other two conventional CNN feature based methods that utilize the features 

learned at the final hidden fully connected layer (FFL).

1. S-FFL. One common CNN feature based method first extracts the CNN features 

learned at FFL and then uses a third classifier to perform the classification (Shen 

et al., 2015; Shen et al., 2017). In this method, the 3D CNN features learned at 

FFL were extracted first, the variance analysis method selected the CNN feature 

subset to be used as input of a third classifier by removing features with a 

variance smaller than the mean variance, and SVM with RBF kernel was used to 

train the classifier and perform the classification.
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2. S-FFLHF. Conventional fusion algorithms for combining handcrafted features 

(HF) and CNN extractedfeatures usually use the CNN features learned at the 

FFL (Antropova et al., 2017), rather than the output layer. We compared our 

fusion algorithm with this fusion strategy that combines the CNN features 

learned at FFL into 29 handcrafted features. We used ReliefF (Kononenko et al., 
1997), the classical feature selection method, to obtain the optimal feature set 

based on the training dataset. The SVM model with an RBF kernel was used to 

construct the classifier.

Additionally, we compared our fusion algorithm with three other state-of-the-art methods 

that use different dataforms as input. Firstly, the original experimental method of Multi-crop 

Net that used the nodule patch without segmentation as input (oriMulti-crop) was compared 

with our proposed fusion algorithm using the segmented 3D nodule ROI as input. To show 

that the CNN features can be as the complement of handcrafted features to improve the 

classification accuracy, the same classifier and feature selection processing using 

handcrafted features (SS-HF) only as input was compared with our fusion algorithms. The 

third method compared with our fusion algorithms is the support tensor machine with the 3D 

nodule tensor as input. These three compared approaches are descripted in detail as 

following:

1. oriMulti-crop. Different from the our proposed fusion algorithm using segmented 

3D nodule ROIs, the original experimental method of Multi-crop net (oriMulti-

crop) used 3D nodule patches without ROI segmentation as the input (Shen et al., 
2017). The experimental results show that the oriMulti-crop outperforms other 

state-of-art models in classifying lung nodule malignancies. We compared results 

from the oriMulti-crop with the 3D nodule patches covering the nodule as the 

input with our fusion algorithm, using the nodule patch size 32*32*32 with the 

same resolution and the same training protocols for both algorithms.

2. SS-HF. We also evaluated our fusion algorithm by comparing it with the 

classification using just the 29 handcrafted features with the same feature 

selection processing (SFS) and classifier training method (SVM).

3. STM. The support tensor machine (STM) (Tao et al., 2007), which uses a high 

order tensor as input, is a common tensor space model and has been applied 

successfully to pedestrian detection, face recognition, remote sensors, and 

medical imaging analysis (Guo et al., 2016; Biswas and Milanfar, 2017; Li et al., 
2018). The 3D STM uses the 3D nodule tensors directly as input, so it doesn’t 

require the extraction of predefined features. Moreover, the parameters needed to 

train are much smaller than with CNN. When we compared STM with our 

proposed algorithm, we used all original 3D nodule tensors without 

augmentation tensors to train the STM model to perform classification.

4.2. Experimental setting

To solve the class imbalance problem, for the vector space models, we used the Synthetic 

Minority Over-sample Technique (SMOTE) (Chawla et al., 2002) to generate a synthetic 

vector sample based on minority class information to augment the decision region of the 
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minority class using the K-nearest neighborhood (KNN) graph based on Euclidean distance. 

For all CNNs, we handled the imbalance problem in training processing by randomly 

selecting part of the augmentation tensors in the majority class and all of the augmentation 

tensors in the minority class to obtain a balanced training dataset. For the STM, we used the 

original nodule tensors to train the model, randomly selecting part of the nodule tensors in 

the majority class and all of the nodule tensors in the minority class to obtain a balanced 

training dataset.

We employed a 5-fold cross validation (CV) method to evaluate the performance of the 

different classifiers. All samples were randomly partitioned into 5 subsets with a size of 

either 245 or 246. These five subsets were fixed for each method investigated in this study, 

where one subset was used as the testing subset and the rest were used as training data. 

Within the features selection processing, we employed again the 5-fold CV method on 

training set to select the feature subset which consisted of all features selected for at least 

four times in such 5-fold CV experiments. The classification models were then trained on all 

samples in the training set using this selected feature subset. Finally, the trained models 

performed classification on the testing subset.

For each testing subset, we calculated the AUC, classification accuracy, sensitivity, and 

specificity. We used the average results and standard deviations from one round of 5-fold 

experiments which are equivalent to 5 independent experiments, as the evaluation criteria. 

The receiver operating characteristic curve (ROC) is also used to analyze the performance of 

different predicting algorithms. Additionally, the ISO-accuracy lines (Nicolas Lachiche, 

2003) are used, defined as

TPr = P N
P P FPr + a, (4)

where TPr and FPr are the true positive rate and false positive rate, respectively, P(N) and 

P(P) are the probability of the positive class and the probability of the negative class, 

respectively, and a is a variable. The ISO-accuracy lines are a family of lines that are 

parallel, i.e. that have the same slope. The point on the ROC curve where the ISO-accuracy 

line is tangent obtains the optimal probability threshold to obtain the optimal accuracy. 

Therefore, we also used the ISO-accuracy line tangent to the ROC curve to evaluate the 

performance of all classification approaches in this study.

V. Results

5.1. Comparison with CNN-based methods

The results comparing our fusion algorithm with different CNN architectures and other 

methods based on CNN are summarized in Table 2. For each CNN architecture, the 3D 

CNN obtained better results than the 2D CNN. SVM with the CNN features learned at the 

final hidden fully connected layer as input (S-FFL) improved the performance of 3D CNNs 

in terms of AUC, classification accuracy, sensitivity, and specificity. The conventional fusion 

algorithm combining the CNN features learned at the final hidden fully connected layer into 

handcrafted features (S-FFLHF) obtained better results than S-FFL in most of cases, but not 
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for all four evaluated metrics of the three CNN architectures. Our proposed fusion algorithm 

obtained the best performance for every CNN architecture. The best

The ROC curves of our proposed algorithm always lie above the ROC curves of the 2D 

CNN, 3D CNN, and S-FFL, which indicates that our proposed fusion algorithm outperforms 

the 2D CNN, 3D CNN, and S-FFL for all three CNN architectures (Fig. 4 (a)–(c)). The ISO-

accuracy line tangent to ROC for our fusion algorithm is above and to the left of the 

conventional fusion algorithm for all three investigated CNN architectures (Fig. 4 (a)–(c)). 

This indicates that our proposed fusion algorithm obtains a better TPr and smaller FPr than 

the conventional fusion algorithm S-FFLHF, though the ROC curve of our fusion algorithms 

doesn’t always lie above the ROC curve of S-FFLHF.

Our proposed fusion algorithms based on three CNN architectures yield results with small 

differences (Table 2). The fusion algorithm based on Multi-crop net has steadier results than 

the other algorithms, because its standard deviations (AUC: 1.92; ACC: 2.70; SEN: 6.13; 

SPE: 1.86) for five independent experiments are the smallest. It obtained results of 0.9306, 

88.58%, 82.60%, and 91.82% for AUC, accuracy, sensitivity, and specificity, respectively.

5.2. Comparison with other state-of-the-art approaches

Table 3 shows the results obtained from the three state-of-the-art approaches with different 

forms of data as input for modeling and testing, as described in section 4.1. All of the fusion 

algorithms with three CNN architectures outperformed the other three competitive 

approaches (Fig. 4 (d) and Fig. 5). The corresponding p-values in T-test for AUC and 

accuracy and in bivariate Chi-Square test by ROCKit software for ROC are reported in Table 

4 from the 5 independent experimental results compared with the fusion algorithm based on 

Multi-crop Net as it is steadiest. These results show that the fusion algorithm based on 

Multi-crop Net is significantly better than the other three methods, as shown by the p-values 

< 0.05.

5.3. Features selected by the fusion algorithms

The features selected in each testing fold by our fusion algorithm with three CNN 

architectures are shown in Table 5. The fusion algorithm based on AlexNet selected 5 

optimal features: 2 intensity features, one texture feature, one geometry feature, and one 

CNN feature. The fusion algorithm based on VGG16 selected 8 features: 4 intensity 

features, one texture feature, 2 geometry features, and one CNN feature. The fusion 

algorithm based on Multi-crop Net selected 9 features: 2 intensity features, 4 texture 

features, 2 geometry features, and one CNN feature. Variance as the intensity feature, 

contrast as the texture feature, minor diameter as geometry feature, and CNN featureP were 

selected by all three fusion algorithms, which indicates the complementarity among these 

three types of handcrafted features and CNN features.

5.4. The influence of CT reconstruction conditions and nodule size

The influence of nodule volume and CT reconstruction conditions including pixel size, slice 

thickness and the difference between reconstruction interval and slice thickness (DIT) on the 

predicted performance is presented Table 6 for six compared methods, including SS-OLHF-

Li et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alex, SS-OLHF-VGG16, SS-OLHF-Multi-crop, STM, oriMulti-crop and SS-HF. The 

nodule size measured by the volume greatly influences the predictive performance, 

especially for the false positive rates (FPR) on cases with the volume ≥ median and the false 

negative rates (FNR) on cases with the volume < median. These results suggest that that 

nodule size is a key factor influencing the malignancy identification. The reconstruction 

conditions also influence the predicted results. Specifically, the FNRs for all algorithms on 

cases with pixel size ≥ median are higher than the case with pixel size < median, and the 

FNRs for all algorithms on cases with slice thickness ≥ median are also higher than cases 

with slice thickness < median. Meanwhile, the FPRs for all compared algorithms on cases 

with slice thickness < median are lower than cases with slice thickness ≥ median. These 

results suggest that predictive performance of these algorithms improves with higher image 

resolution. Additionally, most FPRs and FNRs for our proposed three fusion algorithms are 

lower than the other three compared algorithms, which further shows that our proposed 

fusion algorithms are better than the other three compared algorithms.

5.5. Complementary characteristics of CNN features and handcrafted features

We selected a malignant nodule (Fig. 6(a) left) and a benign nodule (Fig. 6(a) right) to 

illustrate the complementary characteristics provided by CNN features. These two nodules 

were predicted correctly by the three fusion algorithms and the three corresponding CNNs 

but were predicted incorrectly by the SS-HF. For such two nodules and each investigated 

CNN, three randomly selected 3D CNN feature maps from the last convolutional layer with 

many channels (Fig. 3) were illustrated in Fig. 7 by unfolding into 2D feature maps in the 

columns, where the malignant nodule is located in the left tree columns and the benign 

nodule is located in the right three columns. In Fig. 7, the white circles show the major 

discriminative information in the CNN feature maps while they can hardly be differentiated 

from each other by the shapes shown in Fig. 6 (a).

To show the complementary characteristics provided by the handcrafted features for the 

CNN features, two selected nodules were presented in Fig. 6 (b), in which left column shows 

the malignant nodule while the right column show the benign nodule. Both nodules were 

predicted correctly by the three fusion algorithms and the SS-HF but predicted incorrectly 

by the three corresponding CNNs. This could be caused by the limited CNN features learned 

from the dataset with limited annotated samples, which couldn’t characterize such nodules. 

The handcrafted features can characterize better them since the shape of the malignant 

nodule (Fig. 6 (b) left) is more complex than the benign nodule (Fig. 6 (b) right).

VI. Discussions and conclusions

Lung cancer screening based on LDCT has shown to reduce the mortality of lung cancer 

patients in the NLST but false positive rate is very high. CNN has been a powerful tool in 

many fields. However, it generally requires a large scale annotated dataset to learn the 

natural representation of an object. The conventional radiomics method, based on 

handcrafted features, has performed well for many tasks with relatively small sample size. 

However, the handcrafted features may not fully reflect the unique characteristics of 

particular lesions. To solve these problems and to develop a highly sensitive and specific 
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model that differentiates between malignant and benign lung nodules, we proposed a fusion 

algorithm that incorporates the CNN representation learned at the output layer of a 3D CNN 

into the handcrafted features, using the feature selection method SFS coupled with SVM 

selects the optimal feature subset and constructs the classifier. Unlike conventional fusion 

methods that combine the CNN representation learned at the final hidden fully connected 

layer into the handcrafted features, our proposed fusion algorithm combines the highest level 

CNN representation learned at the output layer into the handcrafted features.

We investigated three 3D CNN architectures – AlexNet, VGG-16 Net, and Multi-crop Net – 

modified from the 2D CNN architectures with different parameter values in our proposed 

fusion algorithm. The experimental results (Table 2–4) show that the fusion algorithm 

performed best in all competitive approaches. The fusion algorithm based on Multi-crop Net 

obtained steadier results than our fusion algorithms based on the other two CNN 

architectures. As the steadiest fusion algorithm (achieving lowest standard deviation of 

different evaluation criteria), the fusion algorithm based on Multi-crop Net obtained 82.60% 

and 91.82% for sensitivity and specificity, respectively. The false positive rate is 8.28% and 

false negative rate is 17.4%, which are relatively low. While both sensitivity and specificity 

are improved in the proposed fusion algorithm as compared to other state-of-art classifiers, 

the sensitivity isn’t that high (<85%), which might be induced by the imbalanced patients 

between the classes. One feasible solution to obtain more balanced solution is to develop a 

multi-objective model where both sensitivity and specificity are considered as the objectives 

during model optimization (Zhou et al., 2018). The three CNN investigated in this study 

were proposed in 2012, 2014, and 2017, respectively. The performance of the fusion 

algorithm could be further improved by using more advanced CNN architectures such as 

ResNet (He et al., 2015) and DenseNet (Huang et al., 2018a). Furthermore, a prospective 

study is desired to evaluate the proposed fusion algorithm.

In this study, the following features: variance as the intensity feature, contrast as the texture 

feature, minor diameter as the geometry feature, and CNN featureP were selected by all our 

three fusion algorithms based on three CNN architectures, although different optimal feature 

subsets were obtained by different CNN architectures (Table 5). These selections are 

desirable as the first two features selected by all three fusion algorithms indicate the 

heterogeneity of lesions, the third one indicates the size of lesions, and the CNN featureP 

learned at the output layer of CNN indicates the intrinsic characteristics. On the other hand, 

we used the SFS feature selection method coupled with SVM classifier to select the optimal 

feature subset. Different optimal features were obtained by the fusion algorithms based on 

different CNN architectures, which implies that the feature selection results are closely 

correlated with the different CNN features learned by different CNNs. For example, the 

multi-crop Net focuses on learning information on the central region by cropping the central 

regions from convolutional feature maps, which could require the selected handcrafted 

features to focus on the global information. The outputs of the last pooling layer in VGG16 

are 2D tensors, which could lose some useful information than Alex Net with the output in 

forms of 4D tensors (Fig. 3). Therefore, the complementary handcrafted features selected by 

the SS-OLHF-VGG16 are more than the SS-OLHF-Alex. Feature selection generally 

depends on many factors, such as classifiers, feature set, database and selection processing 

(Zhou et al., 2016). For CT images acquired under different acquisition conditions, one may 
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need to identify robust features through test-retest analysis (Timmeren et al., 2016) so that 

only reliable features are extracted, thereby improving the repeatability of feature selection.

As a successful and classical machine learning algorithm, SVM was applied as the classifier 

for the final classification task. SVM is trained on the training set by constructing a hyper-

plane in training samples space to maximize the margin between binary training samples. 

Thus, the imbalance database will weaken the performance of SVM. Therefore, the SMOTE 

technique was used to generate the synthetic vector samples to augment the decision region 

of the minority class for solving the imbalance problem. The influence of the size of the 

synthetic samples generated by SMOTE is presented on Fig. 8. The case generating the 

synthetic samples with the number which is the difference between the numbers of two 

classes (All-SMOTE) have best AUC performance compared with the case without the 

synthetic sample (0-SMOTE) and the case just generating the synthetic samples with half of 

the number which is the difference between the numbers of two classes (half-SMOTE).

As shown by the different predicting performance on different conditions and nodule size 

(Table 6), the nodules with volume smaller than median has higher FNR and the nodules 

with volume larger than median has higher FPR. These results indicate that the volume is a 

very important geometry feature but also has a negative effect on identifying large benign 

nodules and small malignant nodules. The lesion surrounding region may provide additional 

characteristics for large benign nodules and small malignant nodules. For example, the shell 

descriptor proposed by Hao et al. (Hao et al., 2018) descripting the different morphologic 

patterns in the tumor periphery could be used to improve the performance of the fusion 

algorithms, which will be studied in the future.

Our proposed fusion algorithms were performed on the nodule ROI with manual 

segmentation by four radiologists. The manual segmentation is time consuming as well as 

bringing difference between different radiologists. Many automatic segmentation methods 

were proposed (Badrinarayanan et al., 2017; Chen et al., 2018). Recently, many researchers 

focus on the CNN research and disease quantification without segmentation (Tong et al., 
2019). These techniques can be incorporated into our fusion algorithm removing the step of 

manual segmentation.

Acknowledgement

This work was partly supported by the American Cancer Society (ACS-IRG-02-196), the US National Institutes of 
Health (5P30CA142543), and the National Natural Science Foundation of China (NSFC, 11771456 and 
U1708261). The authors would like to thank Dr. Jonathan Feinberg for editing the manuscript.

Li et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Appendix. The statistics on the measurement conditions and nodule 

characteristics

Table A1.

The statistics on the measurement conditions and nodule characteristics

Conditions Pixel size (mm) Slice thickness (mm) Reconstruction Interval 
(mm)

Nodule volume (mm3)

Mean±SD 0.68±0.08 1.95±0.75 1.76±0.86 737.78±1815.3

≥Mean, no.(%) 606 (49.43) 707 (57.67) 626 (51.06) 239 (19.49)

<Mean, no.(%) 620 (50.57) 519 (42.33) 600 (48.94) 987 (81.51)

Median 0.68 2.00 1.80 100.20

Min 0.46 0.60 0.50 4.39

Max 0.98 5.00 5.00 18280

≥Median, no.(%) 620 (50.57) 707 (57.67) 626 (51.06) 613 (50)

<Median, no.(%) 606 (49.43) 519 (42.33) 600 (48.94) 613(50)

Note. The reconstruction interval is calculated as the difference between two adjacent slice-locations annotated in DICOM 
files. SD: standard deviation.

Table A2.

The difference between the reconstruction interval and the slice thickness (DIT).

DIT

< 0, no.(%) 423 (34.50%)

= 0, no.(%) 803 (65.50%)

> 0, no.(%) 0 (0%)
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Fig. 1. 
Illustration of the proposed SS-OLHF algorithm by fusing the highest level CNN 

representation learned at the output layer (OL) of a 3D CNN into the handcrafted features 

(HF). In the CNN architecture, Stage I mainly includes convolutional layers and pooling 

layers with tensor output; Stage Ⅱ mainly includes hidden fully connected layers with vector 

output; Stage Ⅲ is the output layer with vector output.
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Fig. 2. 
The overall workflow of the fusion algorithm SS-OLHF.

Li et al. Page 20

Phys Med Biol. Author manuscript; available in PMC 2020 September 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Three 3D CNN architectures modified from two widely used 2D architectures and one 3D 

CNN dedicated to lung nodule malignancy classification. The vector at bottom of each 

rectangle indicates the size of the output tensor at this layer for a patient case, with the last 

number being the unit number. The workflow is from top to bottom and left to right on 

adjacent rectangles, and along the arrow direction on non-adjacent rectangles. KS: kernel 

size; RS: region size.
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Fig. 4. 
The ROC curves for the compared methods: (a) five methods based on AlexNet architecture; 

(b) five methods based on VGG-16 Net architecture; (c) five methods based on Multi-crop 

Net architecture; (d) six methods, including our three fusion algorithms, based on different 

CNN architectures and three conventional approaches with different data forms as input.
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Fig. 5. 
The comparison results among our three fusion algorithms and other three state-of-the-art 

approaches.
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Fig. 6. 
Four randomly selected examples for analyzing the complementary characteristics of CNN 

features (a) and handcrafted features (b).
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Fig. 7. 
2D illustration by unfolding into the columns for three randomly selected feature maps 

learned in the last convolutional layers from: (a) Alex Net (a), (b) VGG16 Net and (c) Multi-

crop Net. In the (a), (b) and (c), all left three columns are corresponding to the malignant 

nodule showed in left Fig. 6 (a) and all right three columns are corresponding to the benign 

nodule showed in right Fig. 6 (a). The white circles show the major discriminative 

information between the malignant nodule and benign nodule in the feature maps of each 

CNN: (a) Alex Net (a), (b) VGG16 Net and (c) Multi-crop Net.
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Fig. 8. 
The AUC performance of the different size of synthetic samples generated by SMOTE. 0-

SMOTE: without the synthetic sample; Half-SMOTE: generate the synthetic samples with 

half of the number which is the difference between the numbers of two classes; All-SMOTE: 

generate the synthetic samples with the number which is the difference between the numbers 

of two classes.
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Table 1.

The fusion features used in our fusion algorithms

Intensity features Geometry features Texture features CNN features

Minimum Volume Energy CNN featureP

Maximum Major diameter Entropy CNN featureN

Mean Minor diameter Correlation

Stand deviation Eccentricity Contrast

Sum Elongation Texture Variance

Median Orientation Sum-Mean

Skewness Bounding box volume Inertia

Kurtosis Perimeter Cluster Shade

Variance Cluster Prominence

Homogeneity

Max-Probability

Inverse Variance
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Table 2.

Performance of different predictive models based on CNNs

Methods 2D 3D S-FFL S-FFLHF SS-OLHF

AlexNet

AUC(%) 88.87±2.87 90.56±1.81 91.13±1.70 91.25±1.87 93.03±2.92

ACC(%) 84.67±2.01 84.99±1.86 86.05±1.87 86.88±0.40 88.66±3.72

SEN(%) 78.60±7.42 80.88±5.15 81.99±4.28 81.06±1.81 82.60±8.09

SPE(%) 88.10±2.84 87.30±1.99 88.29±1.22 90.11±0.52 91.95±1.58

VGG16 Net

AUC(%) 86.22±3.26 90.34±4.00 91.76±3.01 91.05±3.17 93.07±2.33

ACC(%) 85.73±2.45 86.13±2.84 87.03±2.47 85.94±0.45 87.60±2.91

SEN(%) 80.05±8.08 80.29±4.36 80.71±7.20 80.84±2.95 82.85±7.97

SPE(%) 88.81±3.88 89.30±2.20 90.60±2.08 88.81±1.21 90.14±3.71

Multi-crop Net

AUC(%) 89.18±3.14 90.48±3.51 90.86±2.95 92.70±2.34 93.06±1.92

ACC(%) 85.73±2.64 86.46±2.53 86.62±1.61 86.05±0.80 88.58±2.70

SEN(%) 80.44±6.57 81.91±6.28 82.28±5.14 80.37±2.08 82.60±6.13

SPE(%) 88.70±1.79 88.93±1.88 89.06±0.73 90.37±2.71 91.82±1.86

Note. ACC is accuracy, SEN is sensitivity and SPE is specificity, which are available for following tables.
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Table 3.

Performance of three state-of-the-art approaches

Methods AUC(%) ACC(%) SEN(%) SPE(%)

oriMulti-crop 89.24±1.81 82.54±2.76 80.94±3.65 83.36±4.00

SS-HF 90.45±2.58 85.62±2.37 81.21±6.20 89.56±1.17

STM 88.47±4.09 84.26±3.33 83.29±8.02 84.78±2.60

AUC (=0.9307) was obtained based on VGG-16 Net, the best sensitivity (82.60%) was obtained based on AlexNet and Multi-crop Net, and the best 
specificity (91.95%) and classification accuracy (88.66%) were obtained based on AlexNet.
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Table 4.

P-values in the unpaired T-test for AUC and ACC and in bivariate Chi-Square test by ROCKit software for 

ROC between our fusion algorithm based on Multi-crop net and the other three methods

Methods AUC ACC ROC

oriMulti-crop 0.0135 0.0161 <10−4

SS-HF 0.0493 0.0004 0.0058

STM 0.0462 0.0275 10−4
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Table 5.

The features that are selected by our fusion algorithms

The fusion algorithms Intensity features Geometry features Texture features CNN features

SS-OLHF-Alex Stand deviation
Variance

Minor diameter Contrast CNN featuresP

SS-OLHF-VGG16 Maximum
Stand deviation
Sum
Variance

Major diameter
Minor diameter

Contrast CNN featuresP

SS-OLHF-Multi-crop Sum
Variance

Volume
Minor diameter

Contrast
Texture Variance
Cluster Shade
Inverse Variance

CNN featuresP
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Table 6.

False positive rates and false negative rates on different reconstruction conditions and nodule volume.

Condition No. No. % SS-OLHF-
Alex

SS-OLHF-
VGG16

SS-OLHF-
Multi-crop

STM oriMulti-crop SS-HF

Pixel size

≥ Median (620)
385 FPR 8.31 8.05 7.53 11.17 18.44 8.57

235 FNR 13.62 12.34 13.62 12.34 15.74 14.47

<Median (606)
410 FPR 7.32 11.46 9.51 12.20 14.88 11.46

196 FNR 21.94 21.43 21.94 29.08 22.96 23.98

Slice thickness

≥ Median (707)
448 FPR 9.60 10.94 9.38 14.73 16.74 10.71

259 FNR 10.04 8.49 9.65 9.65 15.06 11.58

<Median (519)
347 FPR 5.48 8.36 7.49 7.78 16.43 9.22

172 FNR 28.49 28.49 29.07 35.47 25.00 29.65

DIT

< 0 (422)
311 FPR 7.85 8.70 7.66 14.08 17.18 8.49

111 FNR 17.19 16.56 17.19 18.75 17.19 19.38

=0 (804)
484 FPR 7.72 11.54 9.94 8.01 15.71 12.50

320 FNR 18.02 16.22 18.02 23.42 24.32 17.12

Volume

≥ Median (613)
230 FPR 23.91 28.26 25.22 34.35 30.00 30.87

383 FNR 8.36 7.31 7.31 10.18 13.32 9.14

<Median (613)
565 FPR 1.24 2.30 1.77 2.48 11.15 1.59

48 FNR 89.58 89.58 97.92 97.92 64.58 95.83

All 1226 795 FPR 7.80 9.81 8.55 11.70 16.60 10.06

431 FNR 17.40 16.47 17.40 19.85 19.03 18.79

Note. The number in each row in the second column presents the number of nodules satisfying the corresponding condition. The third column 
presents the number of benign nodules (upper) and the number of malignant nodules (bottom) in each condition.
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