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Abstract

Background: Random effects regression imputation has been recommended for multiple imputation (MI) in cluster
randomized trials (CRTs) because it is congenial to analyses that use random effects regression. This method relies
heavily on model assumptions and may not be robust to misspecification of the imputation model. Ml by predictive
mean matching (PMM) is a semiparametric alternative, but current software for multilevel data relies on imputation
models that ignore clustering or use fixed effects for clusters. When used directly for imputation, these two models
result in underestimation (ignoring clustering) or overestimation (fixed effects for clusters) of variance estimates.

Methods: We develop MI procedures based on PMM that leverage these opposing estimated biases in the variance
estimates in one of three ways: weighting the distance metric (PMM-dist), weighting the average of the final imputed
values from two PMM procedures (PMM-avg), or performing a weighted draw from the final imputed values from the
two PMM procedures (PMM-draw). We use Monte-Carlo simulations to evaluate our newly proposed methods relative
to established Ml procedures, focusing on estimation of treatment group means and their variances after Ml.

Results: The proposed PMM procedures reduce the bias in the Ml variance estimator relative to established methods
when the imputation model is correctly specified, and are generally more robust to model misspecification than even
the random effects imputation methods.

Conclusions: The PMM-draw procedure in particular is a promising method for multiply imputing missing data from

CRTs that can be readily implemented in existing statistical software.
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Background

A cluster-randomized trial (CRT) is a trial in which intact
groups, or clusters, rather than individuals are random-
ized to treatment conditions. As with any study, CRTs are
plagued by problems with dropout and nonresponse. The
added statistical challenge for CRTs is that the assump-
tion of independence is violated: subjects within the same
cluster tend to have correlated outcomes. When data are
missing in a CRT, procedures used to fill in, or impute, the
missing data should account for this correlation; failure to
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do so may result in inflated Type I error rates [1] and thus
misleading conclusions.

Fully parametric procedures for imputing missing data
from a CRT are commonly used in practice, but a semi-
parametric procedure for imputation should be more
robust to misspecification of the imputation model. In this
article, we propose three new semiparametric procedures
for multiple imputation and compare them to established
methods for CRTs.

Estimation and inference after multiple imputation

When data are missing from a CRT, how we handle the
missing data depends in part on the reason behind the
missing data. These missing data mechanisms are com-
monly classified into one of three types: missing com-

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12874-020-00948-6&domain=pdf
mailto: bebailey@amherst.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Bailey et al. BMC Medical Research Methodology (2020) 20:72

pletely at random, missing at random, or missing not at
random [2]. We say data are missing completely at ran-
dom (MCAR) if the probability that data are missing does
not depend on any observed or unobserved data. A more
reasonable assumption in many cases is that the data are
missing at random (MAR), meaning the probability that
data are missing depends on the observed data, but does
not depend on any missing observations. Lastly, we say
data are missing not at random (MNAR) if the proba-
bility that data are missing depends at least in part on
unobserved data (e.g., the observations that are missing).

Multiple imputation (MI) is a common procedure for
handling missing data that is valid under MAR and
involves three phases: imputation, analysis, and pool-
ing. In the imputation phase, we copy the incompletely
observed data D times and augment each incomplete
dataset with different imputed estimates of the missing
values. Then in the analysis phase, we analyze each of the
D imputed datasets using the planned method of analy-
sis for the study (e.g., random effects models for CRTs).
Finally, in the pooling phase, we use Rubin’s rules to com-
bine the results of the D analyses to produce a single
result [3]. We are primarily concerned with the imputa-
tion phase in this paper, but for completeness we describe
the analysis and pooling phases below.

Assume we measure a continuous outcome y;; and a
set of covariates x;; for subject i = 1,...,m in clus-
ter j = 1,...,k of study condition / = 1,2 for a total
of 2km participants. The data generating model is J’gl =

id.
111'3 + bj; + e;j where the cluster-specific intercepts bﬂ ~

N (0, 07) and are mutually independent of the random
error terms, e,,l i
o? = ob + a , and the intracluster correlation coefficient
(ICC), whlch measures the within-cluster association, is
given by p = O'b2/0'2.

Of primary interest is the /th treatment group mean, 6;,
estimated in complete data by 6; = 3., with corresponding
variance

Var (é;) =

When o2 and p are unknown, we can estimate this quan-
tity with

N (0 o, ) The total variation in yy; is

0.2
—[1+(m—1p].
m

2k
Var (91> 2k(k D Z ZO’;I —y.0%

=1 j=1

using the ANOVA method [4]. If we only observe out-
comes for the first r out of m subjects (without loss of
generality) in each of the k clusters and we impute the

remaining m — r values with y(d) then the estimator of the
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treatment group mean in the dth imputed dataset is

6@ = km ZZ Vi +Z Z y

j=1 i=1 j=1 i=r+1

with estimated variance

2k
(d) (d) @ =)
W, Var(9 ) Zk(k_l)lZUXl:(,z _J’z) .

Pooling these results for d = 1,...,D, the MI estima-
tor of 6; is simply élMI %Zél(d). The correspond-
ing variance estimator after MI captures both the vari-
ability within each imputed dataset (W; =3 \/Vl(d)>
and the variability between the D imputed datasets

R 2
(Bl = ﬁ > [Ol(d) — QIMI] ) The MI variance estimator

is
: )
=B,
D

where the factor (1 + %) corrects the bias due to the
finite number of imputed datasets [3]. Inference on 6 can
proceed by assuming the test statistic

M = Var (M) = W, + <1+

oM — 6,
ty = —
T MI
Vi

follows a t distribution with v degrees of freedom. The
typical formula for the degrees of freedom after MI is

but a different formula should be used in small samples
or in study designs with limited degrees of freedom, as
in CRTs where the degrees of freedom are driven by the
number of clusters rather than the number of subjects
[2, 5]. In this case, the degrees of freedom are v* =

-1 A W, \ ( veom+1
o ~com T =
< +v 0bs> , where Dgps = o (Vcom +3) and veom

are the degrees of freedom based on complete data.

Fully parametric imputation

While estimation and inference for CRTs are fairly
straightforward after multiple imputation, the imputation
phase itself poses the greatest challenge. Ideally, the impu-
tation model is congenial to the analysis model, meaning
the model used to analyze the data can be derived from the
imputation model [6]. For CRTs, this means we should use
a random effects model to impute the missing data. Some
authors have shown this method to work well in limited
simulations [1, 7], but it relies heavily on model assump-
tions. Additionally, the number of clusters may be quite
small for some CRTs, and random effects models may
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not be the most appropriate or most powerful analysis
approach [8, 9].

Although the random effects model is an appropriate
congenial imputation model for CRTs, models that ignore
clustering or model clusters as fixed effects have been
used in practice [10-13]. For continuous outcomes, the
imputation model that ignores clustering is the standard
regression model:

yijt = %P + e,
iid. 2

eji ~ N0, ¢;).
We use ¢> here to distinguish the imputation model
parameters from the data-generating parameters of the
random effects model. The fixed effects imputation model
is similar, with the intercept term replaced by the follow-
ing set of indicators:

2k
Z ZﬂOCgl(C =jg=0D.

g=1c=1

Neither of these models are congenial to a random
effects analysis model, but they still produce unbiased
estimates of the treatment group mean. However, these
imputation models result in biased estimates of the vari-
ance when used for fully parametric multiple imputation
[1, 7]. Specifically, assuming the data are MCAR and the
response rate 7 is the same for all clusters, the bias of the
multiple imputation variance estimator based on the fixed
effects (FE) imputation model as D — oo is

N 2(1 — 7)(1 — p)o?

kmm
which is always positive [7]. This overestimation is worse
with smaller ICCs and smaller cluster sizes. On the other
hand, the bias of the MI variance estimator when ignoring
clustering (IGN) in the imputation model is

, (1)

o2p

— (mrn —-2)(x%*-1), (2
kmm — 1

BiasIGN (‘A/ZMI) =
which is always negative and worsens with larger ICCs.
The derivation of (2) can be found in Additional File 1.

Imputation by predictive mean matching

An alternative approach to imputation that is relatively
less reliant on model assumptions is predictive mean
matching (PMM), where the missing outcome for a non-
respondent (or recipient) is imputed by the observed
outcome from a respondent (or donor) with a similar pre-
dicted mean outcome [14]. We outline a typical PMM
procedure here for recipient 0:

1. For a partially observed outcome y, use regression
models to obtain predicted means (¥;) for all subjects
and a posterior predicted mean (y§) for recipient 0.
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2. Find a pool of K donors that minimize the distance
d(o, i) = Iy — 3il-

3. Randomly select a single donor from the donor pool,
and use the observed value from this donor as the
imputed value for recipient 0.

To multiply impute, we repeat this procedure D times
and proceed with the analysis and pooling phases as
described previously. There are many different variants
of PMM, based on varying the way the predicted means
are calculated, the size of the donor pool, and the way
a donor is selected from the pool (e.g., [15-17]). For
a comprehensive review of the many flavors of PMM,
see [14].

Multiple imputation using predictive mean matching
has many desirable properties, particularly when data
do not satisfy the assumption of multivariate normality
that is common in fully parametric imputation methods.
PMM may be more robust to model misspecification than
fully parametric imputation methods since parametric
assumptions are only present in the metric used to match
donors to recipients. In addition, only plausible values are
imputed for the missing data, allowing distributions to be
preserved. In practice, PMM is also computationally sim-
pler than fully parametric imputation methods. We are
therefore interested in extending the PMM algorithm to
multiple imputation of CRT data in a manner that is both
convenient and statistically valid.

While PMM has been shown to work well in single-
level data, it is not clear how best to extend the procedure
to multilevel data as found in CRTs. To emulate fully
parametric imputation, a natural extension is to include
random effects for clusters in the predictive mean models.
This would involve using the best linear unbiased predic-
tion estimates to obtain y;; = x;ﬂﬂ + I;Oﬂ, and implement-
ing a Gibbs sampler to obtain posterior draws of B and
b for the posterior predictive mean model [18]. Although
this approach is a natural way to extend the PMM match-
ing procedure to multilevel data and is recently available
in an R package [19], it has not been extensively evaluated.

To our knowledge, only one group of authors has rec-
ommended a PMM procedure for multiple imputation of
multilevel data. Vink et al. in 2015 [20] proposed incorpo-
rating cluster indicators as fixed effects in the predictive
mean model to account for between-cluster variability.
They used simulation to compare a PMM procedure that
included fixed effects for clusters to two fully parametric
MI procedures that used random effects for clusters, eval-
uating bias in the estimated cluster means, coverage rate
of the corresponding 95% confidence intervals, and the
estimated ICC. The authors found that the PMM proce-
dure with a fixed effects model performed as well as the
fully parametric procedures across all cases, and that the
PMM procedure actually outperformed the parametric
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procedures when there was a large amount of missing data
or when cluster-level variables were missing.

Despite these promising results, the simulation in [20]
involved a single data set, and we suspect that the results
are not fully generalizable to a range of ICCs and cluster
sizes. Thus, more work is needed to evaluate the use of
PMM for multilevel data arising from CRTs.

In this paper, we use our knowledge of the biases
described in Egs. 1 and (2) to propose new PMM pro-
cedures for multiple imputation of multilevel data that
might mitigate the bias in the MI variance after MI and
can be implemented using current software. We evaluate
these methods in an extensive simulation study, compar-
ing them to both fully parametric imputation methods as
well as PMM methods based on fixed effects for clusters,
ignoring clusters, and the random effects model. We also
apply the new methods to data from the Work, Family, and
Health Study [21].

Methods

We know that ignoring clustering in the imputation model
results in underestimation of the variance of the treatment
group mean, while fixed effects imputation results in over-
estimation of the variance, so neither of these approaches
alone are appropriate for multiple imputation of CRT
data. While this bias is a direct result of the imputation
model for fully parametric procedures, the imputation
model only controls the donor pool for predictive mean
matching procedures. To reduce this bias without chang-
ing the imputation model itself, we need to adjust the
donor pool so that the final imputed values, and thus the
pooled estimates themselves, better reflect the true vari-
ability after multiple imputation. We propose to do this by
allowing both models to contribute to the donor pool in
an amount inversely proportional to the magnitude of its
expected bias. In the extreme, if one model is expected to
produce an unbiased estimate of the MI variance, it will
be the only model contributing to the donor pool. Cap-
italizing on the opposing directions in bias, we propose
three new weighted PMM procedures that combine both
an imputation model that uses fixed effects for clusters
and one that ignores clustering.

Choice of weights

We require weights that sum to one and that favor the
imputation model with the smaller magnitude of the bias.
We propose the following weight for the predictive mean
model that ignores clustering, noting that wgg = 1 —wign:

|BiasFE|

w =
" |Biaszen| + |Biasex|
Plugging in the derived formulas for the biases in (1) and

2
(2) and assuming 7 — ~ -7, we get
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121 — )1 - p)|
lp(mm —2)(x% = 2)| + [2(1 = 1)1 = p)|’

To estimate these weights, we use the observed response
rate for w and estimate p from a complete case analy-
sis of the data. Alternatively, depending on the extent and
nature of the missing data, we might consider using a
prior estimate of the ICC from similar studies. We note
that the bias formulae were derived assuming a balanced
design with equal numbers of respondents and nonre-
spondents in each cluster. It is unlikely that the number
of respondents per cluster is the same across all clusters,
so in practice m in the formula can be replaced by 7, the
average number of respondents per cluster.

WigN =

PMM-dist: minimize the weighted distance

The PMM imputation procedure can be modified at one
of two stages to incorporate the weighting of the two
single-level imputation models: the creation of the donor
pool (e.g., via definition of the distance metric) or the
final donor selection. Our first proposed procedure, which
we call PMM-dist, modifies the definition of the distance
metric (and therefore creation of the donor pool). We
define a new distance metric, d*(0,i), that weights the
magnitude of the distances from each single-level imputa-
tion procedure. We calculate the distances d1gy(0, i) and
drr(0, i) under each predictive mean model and combine
them in a final distance metric:

d*(0, i) = wiend1en(0;, i) + wrrdrx (0, i).

The PMM procedure then proceeds as usual: we find the
K donors that minimize d* (0, i) and randomly select a sin-
gle donor from this pool. Relative to the two methods we
describe next, the downside of this method is that it can-
not be implemented in existing software since creation of
a new distance metric requires internal modification of
the PMM algorithm.

PMM-draw: randomly draw from final two donors

To make implementation easier in available software, we
can instead weight the final donor selection after produc-
ing a donor from each imputation procedure separately.
That is, if we use PMM with a model that ignores cluster-
ing and select donorrgy, and use PMM with fixed effects
for clusters and select donorgg, then we can select one of
these two donors for final imputation with corresponding
probabilities wrgy and wgg. This is easily implemented in
existing software by running the two imputation proce-
dures separately, for each recipient generating a random
draw, S, from a Bernoulli distribution with probability
wien, then selecting donorigy if S = 1, and selecting
donorpg otherwise. This method, which we call PMM-
draw, is equivalent to selecting a donor from a combined
pool of 2K donors (K from each predictive mean model),
where the weight for each donor is either %WIGN or %WFE.
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PMM-avg: impute weighted average from final two donors
Our third proposed procedure, which we call PMM-avg,
combines the observed values of the final donors pro-
duced by each imputation procedure. Let yrgy represent
the observed value from donorigy and ypg represent the
observed value from donorgg. We define the final imputed
value as the weighted average of these two values; that
iS, y = WIGNJIGN + WFEJFE. As with the PMM-draw
method, this procedure can be readily implemented in
existing software. One potential disadvantage, however, is
the possibility of imputing values that are not observed or
plausible (for example, with discrete data).

Simulation study
We conducted a two-part simulation study to evaluate the
performance of the proposed PMM procedures (PMM-
dist, PMM-draw, and PMM-avg) relative to six existing
methods for multiple imputation of CRT data that are
available in current software. The six existing methods
were split between fully parametric procedures (NORM-
IGN, NORM-FE, and NORM-RE) and PMM procedures
(PMM-IGN, PMM-FE, and PMM-RE). As before, IGN
indicates an imputation or predictive mean model that
ignores clustering; FE indicates a model that uses fixed
effects for clusters; and RE indicates a model that uses
random effects for clusters.

We generated continuous outcomes for k clusters of
equal size m for each of two study conditions using the
three models below:

Model lazy;; = Bo + p1Tre; + b + ey
Model 1bzy;; = o + B1Trt; + Baxii + by + ey
Model 2:y;5 = Bo + P1Trt; + Poxyu + ﬁ3x,2/1 + b + e

where Trt; was the treatment group indicator and x;;; was
a continuous covariate.

In the first part of the simulation, Models 1a and 1b
were used to establish how well the proposed PMM pro-
cedures for CRTs performed in ideal circumstances for
multiple imputation; that is, the data were MCAR, and
imputation models for data generated from Model 1a cor-
rectly included only the treatment group indicator as a
covariate effect while imputation procedures for Model 1b
correctly included both the treatment group indicator and
the continuous covariate. In the second part of the sim-
ulation, Model 2 was used to examine how robust each
procedure was to misspecification of the mean structure
in the imputation models. Here, imputation models incor-
porated only the treatment effect and a linear effect of x;;,
ignoring the squared term.

To simplify exposition and without loss of generality, we
set Bo = B1 = O for all models. We fixed the total variance
at 02 = 16 across simulations, with the cluster-specific

Page 50f 16

intercepts generated as bj; ~ N(O, po?) and the residual
errors generated as e ~ N, (1— ,0)02). The continuous
covariate x;; in Models 1b and 2 was generated as x;; ~
N(1, 1) and remained fixed for all simulations. For Model
1b, we set By = 3. For Model 2, following [14], we set B2 =
0 and B3 = 3.33. This corresponds to a strong association
between x;; and y; (R? ~ 0.8).

We considered (k, m) = (4,400), (10, 8), (10, 40), (20,
8), (20, 40), (40, 8), (40, 40), (100, 4), which reflect typi-
cal study sizes from a variety of CRT designs, including
community-based trials, small psychotherapy trials, site-
randomized trials, and family-based trials. To reflect the
typical range of ICCs in CRTs, we simulated data with
p = 0.01, 0.03, 0.08, 0.15.

We generated missing data completely at random
(MCAR) with response rates of 7 = 0.60, 0.85. For Model
2 only, we additionally generated missing data at random
(MAR) using a logistic regression model with the coeffi-
cient of the covariate x;; chosen such that subjects with
smaller values of x were more likely to have observed out-
comes. The strength of the association between x;;; and
P(Rj; = 1) was defined as either weak (log odds ratio
of —1.25) or strong (log odds ratio of —2.5). The inter-
cept in the logistic regression model was chosen so as
to produce the desired response rate. Because the impu-
tation procedures under Model 1 correctly included all
data-generating covariate effects, there was no need to
additionally evaluate the imputation procedures under an
MAR missing data mechanism.

Data were imputed D = 50 times for all nine imputation
procedures. For all PMM procedures, we produced pools
of K = 5 donors that were matched to recipients based
on Type 1 matching, where predicted means for donors
are based on the maximum likelihood estimates from
the regression models, but predicted means for recipients
are based on draws of their posterior predicted means
[14]. After imputation, we estimated the treatment group
means for Models 1a and 2, and only the regression coef-
ficient B8, for Model 1b. We used Rubin’s Rules to pool the
imputed estimates and then tested whether the MI esti-
mate was different from zero using the ¢ test with small
sample degrees of freedom as described earlier.

We repeated this process 1000 times for each of the
nine imputation procedures, and evaluated the perfor-
mance of each procedure based on (1) bias in estima-
tion of the treatment group mean or the coefficient of
the continuous covariate, (2) magnitude of the empir-
ical variance, (3) relative percent error in the pooled

standard error after multiple imputation, v VM! (or MI
standard error), and (4) empirical coverage of 95% con-
fidence intervals for the treatment group mean. Bias in
estimation of the treatment group mean or the regres-
sion coefficient was calculated as the average of the
1000 mean estimates or coefficient estimates, denoted 6,
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minus the true data-generating treatment group mean
or regression coefficient. The relative percent error
in the pooled standard error (SE) was calculated as

-~ MI
SE Ml 1 1000 {/MI
100 (em/;EE — 1), where SE~ = v/ 7000 > 1 Vi and

— R N2
empSE = \/ 1 112010 (911\/[1 — 9) [22]. Results are

1000—1
presented with their corresponding Monte Carlo 95%
confidence intervals (see [22] for specific formulas).

Results

Simulation study

Results from the simulation study are described only
for the data generated with a response rate of 60%.
When the response rate was 85%, the direction of any
observed biases was the same, but the magnitude of
any biases was typically smaller. Where the magnitude
of the ICC had an impact, only p = 0.03 versus
p = 0.08 are shown for contrast. Increasing the size of
the study generally improved estimation, with increases
in cluster size showing a greater effect than increases
in number of clusters. Results are therefore shown for
only four of the eight sample sizes considered: (k,m)
= (100,4), (20, 8), (20,40), (4,400). Complete results are
available from the authors upon request.

Model 1a: estimation of treatment group mean with correctly
specified mean model

When data were MCAR and the models used for impu-
tation included the appropriate data-generating covariate
effects, estimation of the treatment group mean after
multiple imputation was unbiased for all MI procedures,
regardless of the response rate (not shown).

Although PMM methods yielded slightly smaller esti-
mates of the empirical variance relative to parametric
methods, there were no meaningful differences in effi-
ciency across imputation methods with the exception of
the PMM-RE approach, which was less efficient than all
other methods in this setting (Supplemental Figure 1).

Figure 1 shows the relative percent error in the MI stan-
dard error of the treatment group mean. As expected and
as previously shown, ignoring clustering in the imputation
procedure generally underestimated the empirical stan-
dard error, and the bias was worse for larger ICCs, larger
cluster sizes, and higher rates of missing data. Model-
ing clusters as fixed effects, on the other hand, generally
overestimated the empirical standard error, more so for
smaller ICCs, smaller cluster sizes, and higher rates of
missing data. We observed this same pattern of biases in
the results from the PMM-RE and PMM-dist procedures,
although they both offered some improvement over the
PMM-FE and NORM-FE procedures. Among all methods
considered, the newly proposed PMM-draw procedure
was the only one to produce unbiased estimates of the
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empirical standard error in all scenarios. The PMM-avg
procedure performed similarly, with some underestima-
tion of the variance when there was a higher rate of
missing data.

Coverage rates for 95% confidence intervals for the
treatment group mean are shown in Tables 1 and 2 and
correspond with the relative percent error in the MI stan-
dard error: methods where the MI standard error overes-
timated the empirical SE resulted in overcoverage of the
95% Cls, whereas methods where the empirical SE was
underestimated resulted in undercoverage.

Model 1b: estimation of regression coefficient with correctly
specified mean model

When we moved from estimation of the treatment group
mean to estimation of the regression coefficient for the
continuous covariate, an unexpected pattern emerged.
Figure 2 shows that the parametric procedures produced
unbiased estimates of By across all scenarios, but the
PMM procedures tended to underestimate the true data-
generating value of 82, which was mitigated by increasing
the cluster size or number of clusters. Further investiga-
tion revealed that this general underestimation of 8, with
the PMM procedures was complemented by a general
overestimation of By to the same degree (Supplemental
Figure 2), while all methods still produced unbiased esti-
mates of 81 (not shown). Although this bias was negligible
when the rate of missing data was low (within 0.5% of the
true value), the magnitude of the bias was two to 10 times
larger when the rate of missing data was higher.

As with estimation of the treatment group mean, we saw
no meaningful difference in efficiency across methods,
this time with the exception of the imputation methods
based on fixed effects models. When the rate of missing
data was higher, the PMM-FE and NORM-FE proce-
dures yielded relatively higher estimates of the empirical
variance (Supplemental Figure 3).

Figure 3 shows the relative percent error in the MI stan-
dard error of ;. Despite the bias in estimation of 8, all
methods except the PMM-avg procedure produced unbi-
ased estimates of its empirical standard error when the
rate of missing data was low. The PMM-avg procedure
generally underestimated the empirical standard error of
B2, and all other PMM procedures tended to underesti-
mate the empirical standard error when the rate of missing
data was higher and the cluster size was smaller (m < 8).
In contrast, patterns of bias in the standard errors of the
other two regression coefficients matched those of the
standard error of the treatment group mean (see Supple-
mental Figure 4), but the magnitudes of the bias in the
standard errors of the coefficients were much greater.

Coverage rates for 95% confidence intervals for S
under a correctly specified imputation model are shown
in Tables 3 and 4. As before, the patterns of under- and
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overcoverage correspond with the relative percent error in
the MI standard error in each scenario.

Given the poor performance of the PMM procedures
in estimating B2, we did not further investigate covari-
ate effect estimation under a misspecified imputation
model.

Model 2: estimation of treatment group mean with
misspecified mean model

In estimating the treatment group mean and its vari-
ance, the PMM procedures showed small improvements
over parametric methods under MCAR when the imputa-
tion model was correctly specified. When the imputation
model covariate effects were misspecified (missing the

squared term in the model), we saw greater disparities
among methods.

Figure 4 shows the bias in the estimates of the treat-
ment group mean after multiple imputation with a mis-
specified imputation model. When the data were MCAR,
most methods produced little or no bias in the estimates
of the treatment group mean, and parametric methods
performed better than PMM methods. Under MAR, all
methods underestimated the treatment group mean, and
this bias was worse under strong MAR. However, the
PMM procedures greatly outperformed the parametric
procedures under MAR, cutting the bias by more than half
in most cases.
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Table 1 Empirical coverage of 95% confidence intervals for the treatment group mean after multiple imputation by PMM
ICC Cluster size Clusters PMM PMM PMM PMM PMM PMM
p m k FE dist RE draw avg IGN
0.03 4 100 99.0 98.2 98.7 95.1 954 95.5
8 10 99.5 98.1 98.1 97.5 9.7 97.1
20 98.4 96.6 96.8 94.9 94.9 95.2
40 98.9 97.8 97.5 95.6 95.3 954
40 10 98.9 98.4 98.9 96.1 94.9 94.4
20 98.3 98.0 98.1 94.5 923 91.7
40 98.0 98.0 98.2 94.0 92.1 91.0
400 4 97.5 97.3 98.1 96.2 95.5 89.9
0.08 4 100 98.7 98.6 98.2 94.9 94.8 95.0
8 10 98.9 975 98.0 96.7 95.0 96.0
20 97.9 97.1 96.9 93.9 923 93.6
40 98.9 98.7 98.2 95.0 93.7 94.2
40 10 97.9 97.7 98.7 953 93.9 90.2
20 97.6 97.4 97.6 93.8 92.8 86.9
40 97.5 97.3 97.8 94.2 92.5 88.0
400 4 9.7 96.6 97.6 96.2 96.2 86.1

Bolded values indicate coverage rates below 95%.
Italicized values indicate coverage rates above 95%.

Missing data were generated completely at random (MCAR) with a response rate of 60%, and data were imputed using an imputation model that correctly specified the

covariate effects.

Table 2 Empirical coverage of 95% confidence intervals for the
treatment group mean after parametric multiple imputation

ICC Cluster size Clusters NORM NORM NORM
p m k FE RE IGN
003 4 100 994 96.2 953
8 10 99.6 98.0 974
20 99.2 96.3 95.6
40 99.6 9.7 96.0
40 10 99.2 97.7 94.6
20 98.5 95.8 91.8
40 984 95.1 91.6
400 4 97.8 97.5 90.6
0.08 4 100 99.3 95.6 94.8
8 10 99.4 974 96.0
20 98.8 95.5 93.7
40 99.3 96.1 94.7
40 10 98.3 96.2 90.9
20 97.6 949 86.9
40 97.3 95.2 88.3
400 4 96.8 96.5 86.7

Bolded values indicate coverage rates below 95%.

Italicized values indicate coverage rates above 95%.

Missing data were generated completely at random (MCAR) with a response rate of
60%, and data were imputed using an imputation model that correctly specified the
covariate effects.

Performance of these methods appeared to flip when
estimating the empirical variance of the treatment group
mean. Under MCAR, the PMM methods were noticeably
more efficient than the parametric imputation methods
in most cases, but the parametric methods were consid-
erably more efficient under MAR, especially under strong
MAR (Supplemental Figure 6).

The relative percent error in the MI standard error is
shown in Fig. 5. Under MCAR, the parametric proce-
dures showed greater bias in estimation of the empirical
standard error than the PMM procedures. As before, the
empirical standard error was generally underestimated for
imputation methods that ignored clustering and overesti-
mated for imputation methods that used fixed effects for
clusters. Bias in estimation of the empirical standard error
was generally worse under weak MAR compared to strong
MAR.

Due to the severe underestimation of the treatment
group means in most cases, we did not consider coverage
of the corresponding 95% confidence intervals.

Data example: work family and health study

We illustrate our proposed imputation methods using
data from a Fortune 500 company that participated in the
Work, Family, and Health Study (WFHS; [21]), a mul-
tisite cluster-randomized trial designed to evaluate the
impact of a workplace intervention on employees’ con-
flict spillover from work to family or family to work,
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risk of cardiovascular disease, sleep patterns, and psy-
chological distress. The WFHS included 56 groups of
employees ranging in size from 3 to 42 employees per
group (median group size of 12 and mean of about 14),
where all employees in a group reported to the same

leadership. Twenty-seven study groups were assigned to
the workplace intervention, while the remaining 29 groups
continued business as usual.

We reanalyzed data from a study reporting results
after six months of followup, focusing on the measure of
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control over work hours (CWH) since it had the great-
est difference between treatment groups (employees in
the intervention reported more control over their work
hours) [23]. The study began with 799 participants who

completed the baseline CWH survey, but only 694 pro-
vided data for the 6-month followup, meaning 13% of the
participants were excluded from the available case anal-
ysis reported in [23]. The authors modeled baseline and
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Table 3 Empirical coverage of 95% confidence intervals for 8, after multiple imputation by PMM

ICC Cluster size Clusters PMM PMM PMM PMM PMM PMM
0 m k FE dist RE draw avg IGN
0.03 4 100 91.5 94.4 94.0 95.1 94.5 94.7
8 10 94.5 94.1 94.9 95.1 93.5 94.7
20 92.6 93.8 93.7 939 93.2 94.2
40 93.1 93.8 94.7 94.8 94.0 95.1
40 10 97.3 96.1 97.0 97.0 94.3 97.3
20 95.8 937 94.6 95.1 91.7 95.1
40 954 94.8 94.8 94.6 92.1 953
400 4 100 100 100 100 99.7 100
0.08 100 91.8 94.2 93.2 954 938 94.8
10 94.0 943 945 95.0 92.5 94.8
20 924 93.3 943 94.5 91.9 94.0
40 93.3 92.7 938 95 92.2 95.0
40 10 97.3 96.5 97 96.8 93.0 97.3
20 955 945 955 94.8 90.4 95.2
40 95.2 95.1 949 94.8 91.2 95.6
400 4 100 100 100 100 100 100

Bolded values indicate coverage rates below 95%.

Italicized values indicate coverage rates above 95%.

Missing data were generated completely at random (MCAR) with a response rate of 60%, and data
were imputed using an imputation model that correctly specified the covariate effects.

Table 4 Empirical coverage of 95% confidence intervals for 8,
after parametric multiple imputation

ICC Clustersize Clusters  NORM ~ NORM  NORM
o m k FE RE IGN
003 4 100 953 96.4 96.1
8 10 97.7 97.7 97.1
20 95.8 97.0 97.0
40 96.5 96.2 96.4
40 10 98.7 98.4 98.4
20 96.4 96.5 96.8
40 95.7 95.8 959
400 4 100 100 100
008 4 100 95.2 9.5 96.2
8 10 97.6 97.6 96.9
20 959 96.9 96.9
40 96.2 959 96.5
40 10 98.6 983 984
20 96.4 96.6 96.7
40 95.8 95.6 96.1
400 4 100 100 100

Bolded values indicate coverage rates below 95%.

Italicized values indicate coverage rates above 95%.

Missing data were generated completely at random (MCAR) with a
response rate of 60%, and data were imputed using an imputation

model that correctly specified the covariate effects.

follow-up data with random effects models using ran-
dom cluster- and subject-specific intercepts as well as
random slopes for the time effect [4, 23]. In addition to
time (baseline, follow-up), the intervention indicator, and
their interaction, the model also included two factors used
as part of the randomization scheme: core job function
(software developers vs. not) and cluster size. To simplify
the analysis and align it with our simulation study, we
fit a random effects model predicting CWH at 6 months
post-intervention with random cluster-specific intercepts.
Baseline CWH, treatment group, core job function, and
cluster size were included as covariate effects.

Using the ANOVA method on the available cases,
the estimate of the ICC for CWH at 6 months was
p = 0.14. Given this moderate-to-large ICC and the
moderate cluster sizes, we expect the newly proposed
PMM procedures—and the PMM-draw procedure in
particular—to produce fairly consistent estimates across
analyses, and these variance estimates should be closer
to the truth than those produced from the established
imputation procedures.

We first fit our model with an available case analysis
to coincide with the approach described in [23]. Though
not directly comparable due to the difference in models,
results from the available case analysis under our fitted
model were similar to the results from the model fit in
the original analysis in terms of direction and significance
of effects [23]. Specifically, neither core job function nor
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cluster size were significant at the 0.05 level, but there
was a significant effect of the workplace intervention (8 =
0.19, p =< 0.001; Table 5).

We compared these results to analyses after multiple
imputation of the data using the nine MI methods con-

sidered in our simulation study. Twenty imputations were
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used for each method. The imputation models included
all covariate effects that were used in the analysis model,
five additional covariates that were associated with CWH

(job authority, time adequacy, work-to-family conflict
spillover, supervisor supportive behaviors, and burnout),
and two variables associated with the likelihood of missing
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Study (WFHS) data
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Table 7 Results after misspecified multiple imputation of the
CWH outcome in the WFHS

Effect Estimate  SE df t value P-value  Method Intervention effect Pooled SE P-value
Intercept 1.2708 0.1166 300.27 10.8946 <0.001 PMM-IGN 0.1760 0.0524 <0.001
Intervention 0.1932 0.0492 43.83 3.9255 <0.001 PMM-RE 0.1834 0.0619 0.0032
Baseline CWH 0.6581 0.0283 655.70 23.2595 <0.001 PMM-avg 0.1767 0.0533 0.001
Core function 0.0265 0.0491 39.99 0.5395 0.5926 PMM-draw 0.1855 0.0570 0.0012
Cluster size -0.0001 0.0020 35.85 -0.0391 0.969 PMM-dist 0.1856 0.0613 0.0026
PMM-FE 0.1852 0.0640 0.0039
NORM-IGN 0.1795 0.0523 <0.001
CWH at six months (job demands and psychological dis-  NORM-RE 0.1825 0.0598 0.0024
tress). Consistent with the results of our simulation study,  \orw-re 01906 00626 00024
estimates of the intervention effect were similar for all
imputation methods (range: 0.188 — 0.206; Table 6). As
expected based on our analytical results, the standard
Discussion

errors after multiple imputation were smallest in methods
that ignored clustering and largest in fixed effects meth-
ods. The standard errors were also comparable among
the three newly proposed procedures, with estimates of
0.048, 0.049, and 0.050 for the PMM-avg, PMM-draw, and
PMM-dist procedure, respectively. Importantly, our con-
clusion about the intervention effect remained the same
across all imputation methods: the WFHS intervention
significantly increased perceived control over work hours,
with a p-value < .001 (Table 6).

As a further check of robustness, we analyzed the data
again with only the intervention indicator as a covari-
ate effect in the imputation models (see Table 7). In this
case, the estimates of the intervention effect all decreased
while the standard errors after multiple imputation all
increased. The standard errors after multiple imputation
remained smallest in methods that ignored clustering and
largest in methods that used fixed effects for clusters, and
there were smaller disparities between the three newly
proposed procedures relative to the established methods.
Again, these results are consistent with the biases we saw
in the second part of our simulation study.

Table 6 Results after correctly-specified multiple imputation of
the CWH outcome in the WFHS

Method Intervention effect Pooled SE P-value
PMM-IGN 0.1962 0.0473 <0.001
PMM-RE 0.1883 0.0526 <0.001
PMM-avg 0.1990 0.0475 <0.001
PMM-draw 0.2012 0.0490 <0.001
PMM-dist 0.1920 0.0504 <0.001
PMM-FE 0.2058 0.0553 <0.001
NORM-IGN 0.1907 0.0456 <0.001
NORM-RE 02011 0.0507 <0.001
NORM-FE 0.2041 0.0580 <0.001

Our goal was to develop a new PMM procedure that
could handle missing data from a two-level cluster-
randomized trial and would be robust to misspecifica-
tion of the imputation model. We showed that, relative
to the PMM-RE procedure and most other imputation
methods that have been used for multilevel multiple
imputation, our three newly proposed procedures gen-
erally improved estimation of the variance of the treat-
ment group mean when the data were missing com-
pletely at random. Parametric procedures actually pro-
duced better estimates of the variance of the treatment
group mean when the data were missing at random and
the imputation model was misspecified, but did so at
the cost of greater bias in estimation of the treatment
group mean relative to the predictive mean matching
procedures.

Among the newly proposed PMM procedures, we are
particularly fond of the PMM-draw method. It outper-
formed all other methods when the imputation model
was correctly specified, producing unbiased estimates of
the treatment group mean and its variance and main-
taining nominal coverage of 95% confidence intervals of
the treatment group mean. Keeping in mind the bias-
variance tradeoff issues mentioned earlier, the three newly
proposed procedures outperformed all other procedures
when the imputation model was misspecified. Although
the three procedures performed similarly in this setting,
the PMM-draw procedure is still recommended over the
other two since it can be readily implemented in avail-
able software and, like traditional PMM procedures, only
imputes plausible values.

Performance of the PMM procedures in estimating
regression coefficients in the linear model varied widely
depending on the coefficient and the rate of missing
data. Although the bias in the estimates of the inter-
cept and continuous covariate effect was minimal for
the PMM procedures, we would recommend using the
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parametric NORM-RE procedure in particular when esti-
mating regression coefficients from a linear model.

This work was limited to estimation of treatment
group means and linear regression coefficients when only
the outcome was missing and all covariates were fully
observed. Future work should investigate these proce-
dures when covariates are not fully observed or when
multiple variables are subject to missing data. It is also
important to evaluate these procedures in other set-
tings, such as estimation of logistic regression coefficients.
Another limitation of this work is the focus on Nor-
mally distributed errors when the Normality assumption
is often violated in real applications. He and Raghu-
nathan [24] investigated the performance of multiple
imputation procedures that assumed Normality in the
presence of skewed data, including parametric imputa-
tion and predictive mean matching procedures. They
showed that the MI procedures performed well when
estimating the mean but could perform poorly when
estimating regression coefficients if the underlying dis-
tribution was strongly skewed. We expect similar results
to hold in the context of cluster randomized trials
and with our newly proposed PMM procedures, but
future work should investigate these procedures in this
setting.

Conclusion

While our new methods offer an improvement over estab-
lished methods in estimating the variance, there is still
some bias in the variance estimation when data are
missing at random and the predictive mean model is mis-
specified. When estimating the weights for these meth-
ods, we used naive estimates of the bias in the variance
that assumed there were no covariates in the data set
and that the data were missing completely at random.
Additionally, our weights were derived assuming a bal-
anced design (equal number of clusters in each treatment
group, and equal number of subjects in each cluster).
If an improved estimator can be derived to allow for
more relaxed assumptions, we may see further improve-
ment in multiply imputed parameter estimates from these
methods.
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Additional file 1: The appendix contains the derivation of the formula for
the bias in the variance of the treatment group mean after multiple
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