Skip to main content
. 2020 Mar 19;2020:3024578. doi: 10.1155/2020/3024578

Table 2.

Simple and multiple logistic regression analysis of factors associated with intention to screen for cervical cancer, Debre Berhan town, Ethiopia, 2017.

Variables Intention COR (95% CI) AOR (95% CI)
Yes, N (%) No, N (%)
Age group
30 to 34 81 (18.6) 85 (23.5) 1 1
35 to 39 154 (35.3) 146 (40.4) 0.903 (0.618, 1.32) 1.329 (0.787, 2.244)
40 to 44 132 (30.3) 89 (24.7) 0.643 (0.428, 0.964) 0.943 (0.534, 1.664)
45 to 49 69 (15.8) 41 (11.4) 0.566 (0.346, 0.926) 0.697 (0.35, 1.387)
Religion
Orthodox 371 (85.1) 326 (90.3) 1 1
Protestant 42 (9.6) 24 (6.6) 0.65 (0.385, 1.097) 0.81 (0.39, 1.684)
Others 23 (8.3) 11 (3.0) 0.544 (0.261, 1.134,) 0.691 (0.256, 1.866)
Educational level
No formal education 120 (27.5) 54 (15.0) 1 1
Primary school 131 (30.0) 102 (28.3) 1.73 (1.145, 2.614) 1.113 (0.639, 1.939)
Secondary and above 185 (42.4) 205 (56.8) 2.462 (1.688, 3.593) 0.931 (0.518, 1.676)
Occupational level
Housewife 273 (62.6) 189 (52.4) 1 1
Government employee 66 (15.1) 85 (23.5) 1.86 (1.283, 2.696) 1.223 (0.664, 2.252)
Farmer 60 (13.8) 49 (13.6) 1.18 (0.775, 1.796) 0.969 (0.529, 1.774)
Private employee 37 (8.5) 38 (10.5) 1.483 (0.91, 2.42) 0.979 (0.484, 1.98)
Number of children
No 61 (14.0) 47 (13.0) 1 1
1 to 4 353 (81.0) 306 (84.8) 1.125 (0.747, 1.695) 0.735 (0.412, 1.311)
5 and above 22 (5.0) 8 (2.2) 0.472 (0.193, 1.154) 0.403 (0.117, 1.384)
Knowledge
Poor 405 (92.9) 275 (76.2) 1 1
Moderate 26 (6.0) 65 (18.0) 3.682 (2.278, 5.949) 1.534 (0.817, 2.881)
Good 5 (1.1) 21 (5.8) 6.185 (2.305, 16.601) 2.077 (0.651, 6.63)
Attitude
Negative 342 (78.4) 70 (19.4) 1 1
Positive 94 (21.6) 291 (80.6) 15.125 (10.694, 21.392) 6.164 (4.048, 9.387)∗∗
Subjective norms
Negative 331 (75.9) 70 (19.4) 1 1
Positive 94 (21.6) 291 (80.6) 4.005 (2.96, 5.418) 2.001 (1.342, 2.982)∗∗
PBC
Low 311 (71.3) 52 (14.4) 1 1
High 125 (28.7) 309 (85.6) 14.784 (10.318, 21.185) 7.105 (4.671, 10.807)∗∗

Significantly associated with simple logistic regression analysis. ∗∗Significantly associated with multiple logistic regression analysis.