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Human rhinovirus (HRV) replication triggers exacerbation of asthma and causes most acute respiratory illness-
es (ARIs), which may manifest as influenza-like illness. The recent assignment of 60 previously unknown HRV
types to a third HRV species, Human rhinovirus C, raised questions about the prevalence of these picornavirus
types in the community, the extent of HRV diversity at a single site, and whether the HRVs have an equally
diverse clinical impact on their hosts. We quantified HRV diversity, and there was no clinical impact attribut-
able to HRV species and genotypes among a community population of preschool-aged children with ARI who
provided respiratory samples during 2003. All HRV species were represented among 138 children with ARI,
and 74 distinct HRV types were cocirculating. Fever accompanied 32.8% of HRV-positive ARI cases. HRVs
were less likely than DNA viruses to be codetected with another virus, suggesting virus interference at the com-
munity level, demonstrated by the inverse correlation between influenza virus detection and HRV detection.
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Human rhinovirus (HRV) infections trigger exacerba-
tions of asthma and chronic obstructive pulmonary
disease and the majority of acute respiratory illnesses
(ARIs), some of which meet criteria for influenza-like
illness. These upper and lower respiratory tract illness-
es are associated with considerable direct healthcare
costs and indirect costs due to time lost from and
reduced performance of regular duties [1].

There are 100 known HRV serotypes, with 15–30
circulating simultaneously at a given site [2–7]. Recent-
ly, 60 distinct, molecularly defined HRV genotypes
were formally assigned to a third species, Human rhi-
novirus C (HRV-C) [8, 9]. The contribution of HRV
species and individual types to the annual burden of
circulating HRV is poorly defined. There are 2 appar-
ently distinct phylogenetic clades of HRV-C when
typed using the 5′ untranslated region (5′UTR) and
adjoining encoding region [10]. It is hypothesized that
these clades evolved with or without genetic recombi-
nation with Human rhinovirus A (HRV-A) types [10].
Nevertheless, each available majority sequence of an
HRV-C type has to date represented a genetically
unique, phylogenetically distinct, and globally distribu-
ted virus detected in patients with ARIs.

There are specific seasonal and annual variations in
respiratory virus circulation and interactions [11–13].
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In a retrospective pediatric hospital-based study, HRVs were
found to be statistically least likely of 17 examined viruses to
be codetected with another virus during 2003 [14]. This aspect
of virus-to-virus interaction is described as virus interference
and is hypothesized to be the result of the host’s response to
one virus diminishing the likelihood of infection by another
virus [15, 16]. For HRVs, virus-to-virus interaction was once
exploited as an in vitro diagnostic tool, whereby successful ex-
perimental HRV infection of organ cultures was indicated by
blockading the replication of another, superinfecting respirato-
ry virus [17].

We sought to quantify the genetic diversity, epidemiology,
and impact of HRV and enterovirus species, conjointly re-
ferred to hereafter as picornaviruses, circulating among a com-
munity cohort of preschool-aged children who provided
respiratory samples over a 1-year period. We also sought to
build on our hospital-based virus-to-virus interaction analyses
[14] by seeking preliminary observational evidence of virus in-
terference within the community.

METHODS

Community-Based Cohort Study
After receipt of informed consent from the parent or guardian
of a potential study subject, we enrolled 234 healthy children
<5 years of age into a community-based dynamic cohort study
conducted over 12 months in Melbourne, Australia [1]. The
study commenced in January 2003, and enrollment was pro-
gressive and continued until November 2003, with children
observed until January 2004. Parents monitored a set of symp-
toms in the study child each day, and when the definition of
ARI was met we asked parents to collect a combined nose-
throat swab specimen [18]. The specimen was couriered to the
Victorian Infectious Diseases Reference Laboratory, where it
underwent conventional polymerase chain reaction (PCR)
testing, with reverse-transcription PCR performed for RNA
viruses, including influenza A and B viruses, respiratory syn-
cytial virus, parainfluenza viruses, HRVs, and enteroviruses
[19]. PCR was conducted for adenoviruses [19]. Illnesses were
classified as ARIs uncomplicated or complicated by fever and/
or otitis media.

At the completion of data collection, we transported all
available specimens (original nose-throat swab specimens and
complementary DNA) on dry ice to the Queensland Paediatric
Infectious Diseases (Qpid) Laboratory, where they were tested
for metapneumovirus and coronavirus NL63 (hereafter, “coro-
navirus”), using real-time PCR [19].

Template Preparation and Conventional PCR
HRV templates for PCR amplification at the Qpid Laboratory
were complementary DNA, created at the Victorian Infectious
Diseases Reference Laboratory during the original studies [19],

or fresh RNA extracted by means of the Corbett X-tractor
Gene system (Corbett Research, Australia) from the original
nose-throat swab specimen. All extracts were amplified using a
broadly reactive screening assay that targets the 5′UTR [20],
yielding amplicons (length, approximately 380 base pairs)
for sequencing by the PRISM BigDye sequencing kit
v3.1 (Applied Biosystems). Sequences generated by this study
and submitted to GenBank included accession numbers
JN861783-92 and JQ406000-184.

HRV Species Designations
Sequence analysis was conducted in Geneious Pro [21]. The
picornavirus species was determined by best match, using the
following algorithm: when a basic local alignment search tool
(BLAST) comparison returned matches with ≥95% sequence
identity in the 5′UTR, with characterized members assigned
to a given species, our sequence was assigned to that species.
For viruses not classified at this stage, we used definitive
5′UTR-derived data from Lee et al [22] as a guide to classify
any query sequence that shared >96% nucleotide identity in the
5′UTR with a BLAST match as a variant of that HRV type.

Statistical Analysis
Counts and proportions were recorded for descriptive analy-
ses. Similar to methods we described previously [14], univari-
ate analysis involving the χ2 test or the Fisher exact test, using
2 × 2 contingency tables, was used to evaluate the relationships
between picornavirus type, season, and demographic variables,
such as age and sex, as well as to study virus codetection with
another virus. A P value of <.05 was considered to indicate a
statistically significant association.

RESULTS

Community-Based Cohort Study
We observed 56 397 child-days in just over 12 study months.
There were 730 ARIs identified; in 563 cases (74%), at least 1
parent-collected combined nose-throat swab specimen was re-
turned [18]. For 269 ARIs (274 specimens; 47.8% of specimens),
HRV or enterovirus was identified by conventional PCR at
Victorian Infectious Diseases Reference Laboratory [19].

Screening, Sequencing, and Genotype Assignment
Of 274 specimens previously positive for a picornavirus and
shipped to Qpid Laboratory, 238 (86.9%) yielded a genotyp-
able sequence (Figure 1), 14 (5.1%) yielded uninterpretable se-
quences, and 22 (8.0%) yielded sequences that were not
amplifiable [20]. The picornavirus-positive specimens originat-
ed from 138 children (mean age, 25.7 months), including 48
from infants (age, 1–12 months), 107 from toddlers (age, 12–
24 months), and 119 from older children (age, 2–5 years). A
mean of 1.8 picornaviruses (range, 0–6) were detected per
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child. Sixty picornavirus-positive children (43.5%) had ≥2 pi-
cornaviruses detected during study participation, and 32 had
≥3 (Table 1 and Figure 2). No child was positive for the same
HRV type during different ARI episodes, although the same
species might have been detected. Of the genotyped viruses,
99 (41.5%) were HRV-A, 13 (5.5%) were Human rhinovirus B
(HRV-B), 113 (47.5%) were HRV-C, and 13 (5.5%) were en-
teroviruses (Figure 1).

Clinical and Demographic Features and Picornavirus Type
Picornavirus species distributions were not associated with sex
(Table 1). There was a decreased likelihood of identifying any
of the picornavirus species in infants and an increased risk of
identifying HRV-B, HRV-C, and enteroviruses in older chil-
dren (P < .05 for these associations). The proportion of ARI

episodes in which HRV-B and HRV-C were detected was
lowest during summer, while the proportion of ARI episodes
in which HRV-A was detected was lowest in both summer
and winter (Figure 3). Detection of each HRV species declined
dramatically when detection of respiratory syncytial virus and
metapneumovirus increased and detection of influenza A
virus peaked (in August [19]). HRV-A and HRV-C could be
detected in subsequent ARI specimens from the same child,
but HRV-B positivity did not recur for any child. Peak picor-
navirus activity occurred in May and October, approximately
2 weeks after school terms commenced. Activity of the species
were observed to peak distinctly (species exchange) during the
course of the year.

HRV-positive ARI cases were accompanied by fever in 84 in-
stances (14.9% of all ARIs; 30.7% of HRV detections; Table 2),
whereas the majority of cases (9 [69.2%] of 13) in which entero-
virus types (including coxsackievirus A1, A2, A4, and B5; echo-
virus 3, 11, 18, 21, and 27; and poliovirus 1) were identified had
fever reported. Only 5 cases of wheeze were reported: 2 were
associated with HRV-C, 1 was associated with enterovirus, and
2 were associated with untypable picornaviruses. Otitis media
without fever accompanied ARI in 4 picornavirus-positive in-
stances (0.7%), and fever and otitis media co-occurred with ARI
in 14 instances (2.5%). HRV-A, HRV-B, and HRV-C were de-
tected in similar proportions of ARI cases with complications
(42.0%, 46.2%, and 36.8% respectively) and those without com-
plications (58.0%, 53.8%, and 63.2% respectively).

Virus Codetection
Of 395 samples with any virus present, 47 (11.9%) included a
second virus, whereas 3 (0.8%) were positive for 3 viruses.
Among 252 picornavirus-positive specimens, 39 (15.5%) were
PCR positive for another virus; 213 (84.5%) were not detected
with another virus. Only respiratory syncytial virus was code-
tected with another virus on fewer occasions (9.8% of respira-
tory syncytial virus detections). Despite this, among children
with ≥1 HRV detection during enrollment (28 children had 2
PVs; 17 had 3 PVs; 10 had 4 PVs, 3 had 5 PVs and 2 had 6
PVs), there was a consistent pattern of a reduced likelihood of
codetection with a number of other viruses. For example, an
HRV detection was associated with a reduced likelihood of co-
detecting any of 5 viruses or virus groups (adenovirus, parain-
fluenza virus, respiratory syncytial virus, influenza A virus,
metapneumovirus, or coronavirus), as reflected by an odds
ratio of <1 (Table 2). Among picornaviruses, enterovirus was
most frequently associated with codetection (31% of enterovi-
rus detections), and HRV-B was least frequently associated
with codetection (8% of HRV-B detections). There was an
average of 50 days between consecutive ARIs in study children.
After each HRV, influenza A virus, respiratory syncytial virus,
or adenovirus detection, there was a mean interval of 46, 51,
60, and 45 days, respectively, before the next ARI episode.

Figure 1. Evolutionary relationships among characterized and cohort
human rhinovirus (HRV) sequences assigned to the genus Enterovirus.
The evolutionary history was inferred using the neighbor-joining method
in MEGA5 [37, 38]. The optimal tree is shown drawn to scale, with
branch lengths in the same units as those of the evolutionary distances
(base substitutions per site; maximum composite likelihood method [39])
The analysis involved 401 nucleotide sequences, including completely
sequenced referenced types [40]. Sequences from this study (open
diamonds) were included with previously characterized Human rhinovirus
A (filled circles), Human rhinovirus B (filled triangles), Human rhinovirus
C (filled diamonds), and enterovirus (open circles) types.

Human Rhinovirus Diversity in an Australian Community • JID 2013:207 (1 May) • 1435



Most picornaviruses were detected in toddlers (61 [44.2%]
of picornavirus-positive children) and children aged 2–5 years
(58 [42.0%]). Picornavirus was most often codetected in
infants and toddlers (15 [12.3%] in each age group). Respira-
tory syncytial virus was involved in the fewest codetections (4
[10.3%] of respiratory syncytial virus–positive children), while
adenovirus (25 [55.6%] of adenovirus-positive children) and
coronavirus (10 [52.6%] of coronavirus-positive children) were
involved in the most. The appearance and disappearance of
influenza A virus detection coincided with the disappearance
and appearance of picornaviruses, respectively.

DISCUSSION

Our analysis of ARIs among children in the community iden-
tified 74 named or uncharacterized rhinovirus types among
138 children followed during this 12-month study. Three-to-
five times more distinct HRV types were identified in our
single-year cohort than would have been expected from the
literature. Recently, van der Zalm et al identified 27 different
subtypes among a cohort of 18 children sampled fortnightly
during a six-month period [7]. Because a lower sequence
threshold was used to identify those viruses, it is likely that
the true number of HRV types was underestimated as com-
pared to the higher threshold (96% vs 90%) we applied, which
we considered essential when using the highly conserved 5′

UTR region. Recent cohort studies that also used the 5′UTR
for HRV typing identified 56 [23] distinct HRV types, includ-
ing 32 new types [23], whereas other cohort studies have not
conducted detailed typing analyses [24, 25]. Cohorts with
longer follow-up [26] or more-frequent sampling than ours
[27] unsurprisingly find greater numbers of HRV types since
they span multiple seasons or have a better likelihood of sam-
pling so-called “asymptomatic” infections. Frequently, sampling
in longitudinal cohort studies improves our understanding of
the role of respiratory viruses in illness because it allows tem-
poral association with signs and symptoms.

Despite the dominance of HRV-C types here and their re-
ported links with asthma elsewhere [28], few new cases of
wheezing were reported in our cohort, most likely because of
exclusion of children with chronic pulmonary disorders (in-
cluding diagnosed asthma or frequent use of asthma medica-
tion). A frequently sampled, well-controlled longitudinal
cohort of children with asthma will be required to answer
whether there is a species-specific HRV impact in an asthmat-
ic population. All HRV species were represented among ARI
cases with fever, providing further evidence of the confound-
ing capacity of HRV infections during an influenza epidemic
or pandemic unless specific diagnostics are included.

Most respiratory viruses were detected in toddlers and chil-
dren, from whom the majority of specimens were obtained. In
our study, the respiratory syncytial virus and metapneumovirus

Table 1. Characteristics of Picornavirus (PV)–Positive Specimens

Characteristic HRV-A HRV-B HRV-C Enterovirus Untypable Overall (n = 563)

Male sex, (%) 48 (48.5) 9 (69.2) 58 (51.4) 53.8 35.7 48.0

Viral detections, no. 99 13 113 13 … 395
Age, months, average 23.5 30.8 25.4 31.7 27.1 19.9

Peak seasona Autumn Autumn Winter Winter Autumn, Spring Winter

Peak monthsb May, Octc Apr, May Jun, Jul, Oct Mar, Jun, Jul May, Oct, Nov Jun, Aug
Peak codetection month Jul, Sep, Dec Jun Jun Jun, Jul, Oct … …

Wheeze 0 0 2 (0.4) 1 (0.2) 3 (0.5) 54 (9.6)

ARI, no fever, no OM 57 (10.1) 7 (1.2) 73 (12.9) 4 (0.7) 9 (1.6) 277 (49.2)
ARI with fever 32 (5.7) 4 (0.7) 34 (6.0) 9 (1.6) 3 (0.5) 220 (39.1)

ARI with OM, no fever 1 (0.2) 1 (0.2) 2 (0.4) 0 2 (0.4) 46 (8.2)

ARI with fever and OM 9 (1.6) 1 (0.2) 4 (0.7) 0 0 20 (3.6)
Children with 2 PVs 28 (4.9)

Children with 3 PVs 17 (3.0)

Children with 4 PVs 10 (1.8)
Children with 5 PVs 3 (0.5)

Children with 6 PVs 2 (0.3)

Data are no. (%), unless otherwise indicated.

Abbreviations: ARI, acute respiratory illness; HRV-A, Human rhinovirus A; HRV-B, Human rhinovirus B; HRV-C, Human rhinovirus C; OM, otitis media; …, Not
applicable.
a No significant associations between species and any season were identified (P < .05). Winter months are June, July, and August. Autumn months are March,
April, and May. Spring months are September, October, and November.
b Each HRV species exhibited a bimodal distribution.
c Similar totals (±1) were identified in each month.
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Figure 2. Timeline of all the viruses identified in 60 children (29.6% of all human rhinovirus [HRV]–positive children) who had ≥2 picornaviruses
detected during their enrollment. All respiratory syncytial virus (R) and influenza A virus (Fa) detections were contained within periods encapsulated
using dashed boxes. Abbreviations: A, adenovirus; black hexagons, untypable picornavirus; blue hexagons, Human rhinovirus C; green hexagons, entero-
virus; M, metapneumovirus; N, coronavirus NL63; P, parainfluenzavirus; red hexagons, Human rhinovirus A; yellow hexagons, Human rhinovirus B.

Human Rhinovirus Diversity in an Australian Community • JID 2013:207 (1 May) • 1437



season preceded the influenza A virus season. It was also note-
worthy that HRV prevalence declined sharply as respiratory
syncytial virus, metapneumovirus, and, particularly, influenza
A virus cases peaked. This mirrored the findings from our hos-
pital studies, conducted on specimens from Brisbane, Queens-
land, Australia, that were also collected during 2003 [14].

We observed that viruses with an RNA genome, in particu-
lar the HRVs, were less frequently involved in codetections
than those with a DNA genome in this community cohort
from Victoria. These numbers might have been different if
other virus, such as bocavirus, parainfluenza virus-4, and in-
fluenza C virus, had been included, but our previous findings
suggest the adjustment would not have changed the signifi-
cance of the virus-to-virus interaction [14]. Our observation
most likely reflects the capacity of RNA viruses to efficiently
trigger the early innate interferon response through interac-
tions with a range of pattern-recognition receptors, including
Toll-like receptors 3 and 8, MDA5, and RIG-I. Whether DNA
viruses are better adapted to interfere with a host interferon
response or are better at exploiting the opportunities provided
by RNA viruses remains to be defined.

It has been previously suggested that the 5′UTR is unsuit-
able for HRV genotyping because in silico signs suggest that
the region has, at some point, been a site for recombination
between some HRV types [29]. However, we have not found,
nor has there been published evidence for, false genotyping (a
5′UTR erroneously representing a polyprotein sequence from
a different virus) of the ≥100 HRV-A, HRV-B, and HRV-C
genomes fully sequenced to date. Even when an HRV-C type
falls into the HRV-A clade phylogenetically, to date it exists
within a distinct space in that clade. Carefully chosen se-
quence identity thresholds and experience can successfully
produce robust genotyping results, as has been shown here

and elsewhere in the literature [23, 26, 27, 30–32]. In this
study, we found that each 5′UTR sequence was a unique iden-
tifier of HRV type. Others suggest the HRVs are under posi-
tive selective pressure to remain conserved [33]. While this
may not remain evident as more completed HRV genomes
become available, no proof exists to support a theory that the
5′UTR is an unsatisfactory target for genotyping, and it con-
tinues to be used successfully elsewhere [34]. Nevertheless,
phylogeny based on the 5′UTR region, whether partial or
complete, does not accurately discriminate all members of the
HRV-A species from those currently considered to be HRV-C
but harboring elements of an HRV-A UTR [10]. This is
similar to the phylogenetic patterns of enterovirus types
derived from use of the 5′UTR, in which the 4 known species
are represented by only 2 clades. A longer target encompass-
ing a 5′UTR-VP2 stretch improves phylogenetic tree construc-
tion, and these sequences are becoming well represented in
the GenBank sequence database [35]. However, until the HRV
virome is completely characterized, it is also premature to
assume that the 5′UTR-VP2 region’s apparent congruity with
the rest of an HRV’s polyprotein sequence will be maintained
by the genomes of future distinct HRV strains. A VP1 target is
less sensitive when used directly on clinical specimens [22]
and is likely to underrepresent enterovirus diversity [36].

In summary, our screening and 5′UTR-based genotyping
study identified extensive HRV genetic diversity as compared
to data generated from culture-based diagnostics. There were
no associations between sex or clinical outcome and HRV
species, but HRVs were less often present in codetections than
would have been expected by chance. In particular, the influ-
enza A virus season preceded a precipitous decline in HRV
detections. Whether a reduction in HRVs allows an increase
in other viruses during the winter months is unknown, and

Figure 3. Proportion of total picornavirus identifications that were Human rhinovirus A (HRV-A; white bars), Human rhinovirus B (HRV-B; grey bars),
Human rhinovirus C (stripes), and enterovirus (black bars), by month, during 2003–2004. Abbreviations: ARI, acute respiratory infection; Au, autumn
(Mar–May); Su, summer (Dec–Feb); Sp, spring (Sep–Nov); W, winter (Jul–Aug). HRV-C was more common in winter than HRV-A (P = .624).
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Table 2. Measures of Association Between Virus Pairs in Which Codetections Occurred

Variable PV AdV PIV RSV IFAV MPV CoV

Total detections, no. 252 45 33 37 25 33 19

Single detections,a no. 213 20 23 37 21 22 9

Codetections,b no. 39 25 10 4 4 11 10
OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

PV … 1.077
(.568–2.039)

.8790 0.443
(.195–.983)

.0370 0.027
(.001–.184)

<.0001 0.150
(.035–.532)

<.0001 0.324
(.133–.761)

.0050 0.712
(.249–1.979)

.6400

AdV … … 0.731
(.117–3.291)

>.999 .272
(.14–1.907)

.237 0
(0–2.247)

.249 1.645
(.466–5.239)

.324 0
(0–3.033)

.388

PIV … … … 0
(0–1.838)

.159 0.659
(.032–4.818)

>.999 0.486
(.024–3.497)

.712 0
(0–4.281)

.619

RSV … … … … 0
(0–2.493)

0.245 0.383
(.019–2.724)

.500 0.7
(.034–5.176)

>.999

IFAV … … … … … 0
(1–6.167)

1.000 1.204
(.058–9.164)

.584

MPV … … … … … … 1.947
(.296–9.386)

.307

Data were determined by 2 × 2 contingency tables with the Fisher exact test. Statistically significant associations (P < .05) between virus pairs are shown in bold.

Abbreviations: AdV, adenovirus; CI, confidence interval; CoV, coronavirus NL63; IFAV, influenza A virus; MPV, metapneumovirus; OR, odds ratio; PIV, parainfluenza virus; RSV, respiratory syncytial virus.
a Sample contained only 1 virus
b Sample contained ≥2 viruses.
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studies to define the immunobiological mechanisms behind
these observations are required.
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