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Rocio virus (ROCV) is a highly neuropathogenic mosquito-transmitted flavivirus responsible for an unprecedented outbreak of 
human encephalitis during 1975–1976 in Sao Paulo State, Brazil. Previous studies have shown an increased number of inflammatory 
macrophages in the central nervous system (CNS) of ROCV-infected mice, implying a role for macrophages in the pathogenesis of 
ROCV. Here, we show that ROCV infection results in increased expression of CCL2 in the blood and in infiltration of macrophages 
into the brain. Moreover, we show, using CCR2 knockout mice, that CCR2 expression is essential for macrophage infiltration in the 
brain during ROCV infection and that the lack of CCR2 results in increased disease severity and mortality. Thus, our findings show 
the protective role of CCR2-mediated infiltration of macrophages in the brain during ROCV infection.
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In 1975, an unprecedented outbreak of encephalitis occurred 
in the Ribeira Valley of Sao Paulo State in Brazil, affecting 
>900 people across 20 municipalities, with a case-fatality rate 
of 13% (approximately 117 deaths) [1, 2]. Clinical symptoms 
included fever, vomiting, malaise, severe headache, and pho-
tophobia, and signs of encephalitis, including meningeal ir-
ritation, consciousness alterations, and motor impairment, 
appeared later [3]. Most importantly, around 20% of the 
survivors (approximately 156 people) from the outbreak de-
veloped permanent neurological disorders, such as motor 
impairment and cerebral dysfunctions, affecting speech and 
visual capabilities [2, 3].

The causative agent was determined to be Rocio virus 
(ROCV), a member of the Flavivirus genus, which consists of 
other encephalitic viruses, such as West Nile virus (WNV), 
Japanese encephalitis virus (JEV), and St. Louis encephalitis 
virus, within the Flaviviridae family [4–6].

Interestingly, no further human outbreaks of ROCV have 
been described since the 1975–1976 outbreak. However, nu-
merous serological surveys indicated the possibility of ROCV 
circulation among asymptomatic humans and native animals 
in different regions of Brazil [7–11]. The absence of further 
ROCV outbreaks in humans points to the possibility of cross-
protective immunity elicited by prior infections with other cir-
culating flaviviruses within the Brazilian population. Indeed, 
we have recently shown in a mouse model that a single pre-
exposure to Ilheus virus resulted in complete protection from 
lethal ROCV challenge [12]. Despite its potential for further ge-
ographical spread, little is known about ROCV pathogenesis. 
In a mouse model of ROCV infection, a high virus titer was 
detected in the brain, and an elevated number of inflammatory 
macrophages was found in the central nervous system (CNS) 
[13, 14], implying a role for macrophages during infection. 
However, further details on the role of these cells in the patho-
genesis of ROCV have not been reported.
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The CNS contains resident innate immune sentinels such as 
microglia that are among the first responders to infection, but 
peripheral leukocytes, including monocytes, and T cells, are nev-
ertheless recruited to aid in local inflammatory responses. These 
cells are reported to play a role in neurotropic viral infections, in-
cluding those due to WNV, coronavirus (mouse hepatitis virus), 
and herpes simplex virus type 1 [13–17]. In addition, migration 
of monocytes to the brain is heavily dependent on the interac-
tion between CCL2 and its receptor, CCR2 [18–20]. As such, we 
hypothesized that CCL2 and CCR2 may play a role in the migra-
tion of monocytes to the brain during ROCV infection.

Here, we showed that ROCV infection induces the produc-
tion of CCL2 in the blood and brain, resulting in increased 
infiltration of macrophages and CD8+ T lymphocytes into the 
brain. We also showed, using CCR2 knockout (ie, Ccr2−/−) mice, 
that CCR2 is required for efficient infiltration of macrophages 
into the CNS, which is associated with a reduction in disease 
severity and mortality.

METHODS

Virus and Cells

ROCV (SPH 34675 strain) was passaged on Aedes albopictus 
(C6/36) cells and titrated by a plaque assay on BHK-21 cells as 
previously described [21].

Mice Infection

Wild-type (WT) and Ccr2−/− C57BL/6 female mice (age, 6 
weeks) were obtained from the Central Animal Facility at the 
University of Sao Paulo, Ribeirao Preto. All animal experiments 
were performed according to the guidelines of the Brazilian 
College of Animal Experimentation. The Ethics Committee on 
Animal Experimentation of the Medical School of Ribeirao Preto, 
University of Sao Paulo, approved this study (permits 022/2015-1 
and 006/2017-1). All in vitro and in vivo experiments were 
performed in a biosafety level 3 facility at the Medical School of 
Ribeirao Preto, University of Sao Paulo. The C57BL/6 mice were 
infected intraperitoneally with 2.8  ×  106 or 2.8  ×  102 plaque-
forming unit (PFU)/mouse of ROCV. Signs of encephalitis were 
monitored and scored from 0 to 5 as previously described [12, 22].

Blood Specimen and Organ Collection

Blood specimens were obtained from the retro-orbital region 
and collected in a tube containing 3.8% sodium citrate buffer 
[23]. Mice were perfused intracardially with 20  mL of 0.9% 
NaCl solution to remove blood from the tissues. Subsequently, 
the following organs were collected in preweighted tubes: 
spleen, kidney, liver, brain, lung, heart, spinal cord, and the fol-
lowing regions of the CNS: olfactory bulb, cerebellum, brain 
stem, hypothalamus, white matter, hippocampus, and cortex. 
Additionally, the bone marrow from the left femur was removed 
using 1 mL of saline solution. The organs were homogenized 
using a tissue homogenizer (UltraStirrer, Biosystems, PR, 

Brazil) and clarified by centrifugation at 8000 × g for 5 minutes. 
Supernatants were collected and stored at −80°C. Viral loads in 
serum and tissue samples were determined by a plaque assay 
on BHK-21 cells. The limit of detection of the plaque assay 
was 50 PFU/mL (for serum and bone marrow specimens) and 
66 PFU/g for all tissue specimens. For hematological param-
eter assessments, platelets, red blood cells, and leukocytes were 
counted and fully described in the Supplementary Methods.

Leukocyte Isolation From CNS Specimens and Flow Cytometry

Leukocytes in the brain were isolated as previously described 
[14, 24]. Leukocyte purification and quantification of cytokines 
and chemokines are briefly described in the Supplementary 
Methods.

Statistical Analysis

All data were analyzed using Prism software (GraphPad 
Software). Kaplan-Meier survival curves were analyzed by the 
log-rank test, and clinical scores were analyzed by the Student t 
test. For viral burden analysis, data were transformed to log10 
titers and analyzed by the Mann-Whitney test or 1-way analysis 
of variance followed by the Dunnett multiple comparisons test.

RESULTS

Characterization of ROCV Dissemination in the Mouse Model

Recently, we showed that C57BL/6 mice are more susceptible 
than BALB/c mice to ROCV infection, suggesting a more suit-
able mouse model for viral encephalitis [12]. However, no 
detailed studies have been performed to characterize ROCV 
infection in vivo. To address this, C57BL/6 mice were infected 
intraperitoneally with 2.8 × 106 PFU/mouse of ROCV, which in-
duced significant morbidity, weight loss, and mortality 6–12 days 
after infection [11]. Consistently, we observed similar results in 
the present study (Figure 1A). Next, we determined the dissem-
ination of ROCV in the C57BL/6. ROCV was detected in serum 
samples on the first and second days after infection, while no 
infectious virus was detected in serum specimens from 3 days 
after infection onward (Figure 1B). A significant higher level of 
infectious virus particles was detected in spleens as compared 
to bone marrow specimens 3 days after infection (Figure 1B). 
No infectious virus particles were detected in kidneys, lungs, 
hearts, and livers (data not shown) throughout the infection, 
suggesting that ROCV does not have tropism and/or the ability 
to replicate in these tissues. Strikingly, virus particles in brains 
and spinal cords were readily detected and persisted throughout 
the infection (Figure 1B). Infectious ROCV titers in brains were 
significantly higher than those in spinal cords 3–7 days after in-
fection but not 9 days after infection (Figure 1B). These results 
indicate that ROCV is able to access the brain earlier than it 
accesses the spinal cord. To further define the regions within the 
brain that are permissive to and capable of supporting ROCV 
multiplication, the virus load was quantified in the following 
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major regions of the brain 3, 5, 7, and 9  days after infection: 
the olfactory bulb, cerebellum, brain stem, hypothalamus, white 
matter, hippocampus, and cortex. As illustrated in Figure 1C, 
3 days after infection, ROCV was detected in all regions except 
for the hypothalamus and hippocampus. However, 5, 7, and 

9  days after infection, ROCV was found in all brain regions, 
with variation in the viral load among different regions. The 
highest virus titers were detected in the cortex, hippocampus, 
and white matter 7 days after infection, suggesting they are pref-
erential replication sites in the brain.
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Figure 1. Viral burden of Rocio virus (ROCV) replication in C57BL/6 mice. Six-week-old female C57BL/6 mice were inoculated intraperitoneally with 2.8 × 106 plaque-
forming units (PFU) of Rocio virus (ROCV; 20 mice/group). A, Survival rates (left), the percentage of the total clinical score (middle), and the percentage change in body weight 
(right) were determined up to 21 days after infection. B, Viral load in serum (left) and organ (right) specimens. C, Viral load in the major brain regions. Virus titers were deter-
mined by the plaque assay on BHK-21 cells and are presented as PFU per gram of tissue (for all tissue specimens) or PFU per milliliter (for serum or bone marrow specimens). 
#Statistically significant difference as compared to the olfactory bulb (P < .01) and cerebellum (P < .01). ##Statistically significant difference as compared to the olfactory bulb 
(P < .0001), cerebellum (P < .001), and brain stem (P < .05). ###Statistically significant difference as compared to the olfactory bulb (P < .0001), cerebellum (P < .0001), brain 
stem (P < .001), and hypothalamus (P < .01). None of the differences among the cortex, hippocampus, and white matter were statistically significant. In panels B and C, the 
horizontal dotted lines correspond to the limit of detection (LOD) of the plaque assay. *P < .05, **P < .01, ***P < .001, and ****P < .0001, by the Student t test (A), the Mann-
Whitney test (B), or 1-way analysis of variance with the Dunnett multiple comparisons test (C).
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ROCV Infection Induces Monocytosis, Leukopenia and Lymphopenia in the 

Peripheral Blood

Previously, it was reported that levels of multiple leukocytes, 
such as CD8+ T lymphocytes, macrophages, neutrophils, and 
CD45R+ B lymphocytes, were elevated in response to ROCV 
infection in the CNS of BALB/c mice [13, 14]. However, no 
leukocyte population was assessed in blood specimens in an 
animal model. Here, we found that ROCV infection caused leu-
kopenia 3–9 days after infection (Figure 2A). Furthermore, de-
tailed analysis revealed an increased percentage of monocytes 
(Figure 2B) and a reduction in the percentage of lymphocytes 
(Figure 2C), suggesting a role for monocytes during ROCV 
infection in C57BL/6 mice. Additionally, levels of hematocrit, 
platelets, and erythrocytes between the ROCV-infected and 
naive mice were assessed and shown to be consistently similar 
in both groups (Supplementary Figure 1A–C). Last, no signif-
icant differences in hepatic tissue damage between naive and 
ROCV-infected mice was observed by measuring the levels of 
alanine transaminase and aspartate transaminase in the animal 
sera (Supplementary Figure 1D and 1E).

ROCV Infection Induces Infiltration of Macrophages and CD8+ T Cells Into 

the CNS

Next, we sought to identify the types of leukocytes in the CNS 
during ROCV infection. Leukocytes isolated from brains of 
infected and uninfected animals were phenotyped by flow 
cytometry (Figure 3). Leukocyte counts were significantly 
increased in brains from ROCV-infected animals as compared 
to brains from uninfected animals (Figure 3). Consistent with 
this finding, histopathologic analysis of ROCV-infected brains 
showed infiltration of mononuclear leukocytes into the perivas-
cular space, as well as the neuropil (Supplementary Figure 2A 
and 2B). In association with leukocyte infiltration, there were 
occasionally multifocal areas of neuropilar rarefaction sug-
gestive of edema (Supplementary Figure 2C). To distinguish 

between infiltrated macrophages and resident microglia, CD45 
was used as a differentiating marker. We observed an increased 
percentage of macrophages (CD11bhigh CD45high cells) in brains 
from infected mice as compared to those from uninfected mice 
(Figure 3B). The level of neutrophils (Ly6G+CD45+ cells) was 
analyzed by flow cytometry (Figure 3C) and by myeloperoxidase 
activity assays (Figure 3C), and there was no difference between 
infected and uninfected animals. Intriguingly, we found that 
the percentages of CD4+CD8− and CD4+CD8+ T cells were sig-
nificantly lower, whereas the percentage of CD4−CD8+ T cells 
was significantly higher in brains from infected animals as 
compared to those from uninfected animals (Figure 3D). Taken 
together, these data suggest that macrophages and cytotoxic T 
cells may play important roles in ROCV-induced encephalitis.

ROCV Infection Promotes CCL2 Production Systemically and in the Brain

As we observed a significant increase in the number of 
monocytes and macrophages in brains from ROCV-infected 
mice, we hypothesized that inflammatory chemokines and/
or cytokines could play an important role for recruitment of 
these cells into the brain. CCL2 has been reported to be cru-
cial for the migration of monocytes across the blood-brain 
barrier during WNV infection [25, 26]. Therefore, to eval-
uate the role of CCL2 in response to ROCV infection, levels 
of CCL2, tumor necrosis factor α (TNF-α), and interleukin 1β 
(IL-1β) were quantified in blood specimens, livers, and brains 
from infected mice. We found that CCL2 levels were signif-
icantly increased in serum specimens from infected animals 
1–7 days after infection as compared to those from uninfected 
animals (Figure 4A). Interestingly, a progressive increase in 
CCL2 levels 5, 7 and 9  days after infection (Figure 4B) was 
also observed in brains from infected mice as compared to 
those from uninfected mice. Expression of TNF-α in brains 
from infected mice was increased only at 3 days after infection 
(Figure 4C). No differences were observed between infected 
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and uninfected mice in the level of IL-1β in brains (Figure 4D); 
levels of CCL2, TNF-α, and IL-1β in livers (Supplementary 
Figure 3A–C); and levels of CCL2, TNF-α, and IL-1β in lungs 

(Supplementary Figure 3D–F). These data suggest that the re-
cruitment of macrophages into the brain could be driven by 
upregulation of CCL2.
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CCR2 Is Required for Efficient Infiltration of Macrophages Into the CNS to 

Control Disease Severity Caused by ROCV Infection

Given the well-documented role of CCL2 and its corresponding 
receptor, CCR2, in recruitment of macrophages in response to 
infections [18, 19, 25], we next investigated the role of CCR2 
in the ROCV-induced encephalitis. By contrasting WT and 
Ccr2−/− C57BL/6 mice, we showed that Ccr2−/− mice displayed 
an increased disease severity (Figure 5A) and enhanced mor-
tality rate (Figure 5A), compared with WT mice. These effects 
appeared not to be associated with the increased viral load, as 
both WT and Ccr2−/− mice showed similar virus titers in CNS 
specimens (Figure 5B), serum specimens (Figure 5B), and 
spleen specimens (Figure 5B). No virus was detected in livers, 
kidneys, lungs, bone marrow specimens, and hearts from either 
WT or Ccr2−/− mice (data not shown), indicating that CCR2 
deficiency did not alter viral tropism. Further analysis using 
macrophages derived from bone marrow specimens from WT 
and Ccr2−/− C57BL/6 mice demonstrated that CCR2 did not 
promote nor inhibit ROCV infection (Figure 5C). These data 
provide evidence that the lack of CCR2 does not result in an 
increased viral burden, indicating that CCR2 must protect by 
some mechanism other than directly limiting viral replication. 
To reinforce our findings, we investigated the role of CCR2 in 

the infiltration of macrophages during ROCV infection. We 
observed that the percentage of infiltrated macrophages in 
brains from infected Ccr2−/− C57BL/6 mice was significantly 
lower than in brains from WT mice (Figure 5D), suggesting 
that a decreased percentage of macrophages infiltrated across 
the blood-brain barrier, which correlates with the increased 
morbidity and mortality seen during ROCV infection.

DISCUSSION

In this study, we characterized ROCV infection, a potentially 
emerging mosquito-transmitted flavivirus, using an immuno-
competent C57BL/6 mouse model. The increased expansion of 
arthropod vectors raises the possibility of ROCV spreading to 
new geographic areas. Several serological surveys indicated the 
possibility of ROCV circulation among asymptomatic humans, 
horses, and wild animals in different regions of Brazil [7–11]. 
The pathogenesis of ROCV still remains poorly understood, and 
a suitable animal model mimicking human disease for ROCV 
has not been well described and characterized. In this study, to 
characterize in vivo ROCV infection, we used a C57BL/6 mouse 
model, which we have previously demonstrated as being more 
susceptible to ROCV infection than BALB/c mice [12]. Our 
results showed that the CNS regions (the spinal cord and brain) 
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are preferential targets of ROCV, further confirming the neu-
rotropic phenotype of ROCV [2, 3, 13, 27]. Interestingly, the 
highest viral loads were found in the cortex and hippocampus of 
the CNS, in agreement with histopathologic analysis performed 
during autopsies of humans infected with ROCV, which showed 
damage of the same regions in the CNS [27]. Thus, these data 
could explain the high mortality rate and irreversible damage 
observed in ROCV-infected individuals [3, 27]. However, it is 
still unclear how the virus is able to invade the CNS. Although 
our recent study has shown that the prM-E proteins of ROCV 
are responsible for neuroinvasion of ROCV and mortality in 
C57BL/6 mice [21], the exact residues in these proteins and 
the mechanisms responsible for neuropathogenesis of ROCV 
infection are still unknown. It is worth noting that ROCV 
was readily detected in olfactory bulbs 3  days after infection, 
suggesting that this may be a possible route for ROCV invasion 
into the CNS.

Given that ROCV can be detected in both blood specimens 
and CNS specimens, we proceeded to characterize the hema-
tological profiles. Our data demonstrated that blood leukocyte 
counts were reduced during the course of infection, which is 
in agreement with observations in ROCV-infected patients [3]. 
Humans infected with WNV and JEV also showed a decreased 
number of leukocytes and lymphocytes [28–30]. In contrast to 
levels in blood, CD45+ cells, which represent total leukocytes 
[31, 32], were detected at high levels in brains from ROCV-
infected mice, suggesting that ROCV infection results in signif-
icant infiltration of immune cells into the brain. Interestingly, 
further detailed analysis showed an increase in the percentage 
of monocytes and CD11bhighCD45high macrophages in blood 
specimens and brains from ROCV-infected mice, respectively. 
The trafficking of inflammatory monocytes has been linked to 
the expression of CCR2 and production of CCL2 [18], which 
was also observed previously with WNV infection [15, 25]. 
Here, we detected an elevated CCL2 level in serum specimens 
1 day after infection, while no significant increase in the CCL2 
level was detected in the brain during this period. This implies 
that the high level of CCL2 in the blood may correspond to 
monocytosis. It is well known that increased CCL2 levels in the 
blood promote the egress of monocytes from the bone marrow 
to interact with the corresponding CCR2 receptor expressed on 
the surface of monocytes [25, 33–35].

Not surprisingly, an increased percentage of CD8+ T cells 
was detected in brains from ROCV-infected C57BL/6 mice. 
This is consistent with other ROCV studies involving BALB/c 
mice [13, 14], as well as with findings reported for WNV [25, 
26], suggesting a role of CD8+ T cells during ROCV infection. 
Somewhat surprisingly, we observed no neutrophil infiltra-
tion in brains from ROCV-infected C57BL/6 mice. However, 
neutrophil infiltration into the brain was reported for ROCV-
infected BALB/c mice [13]. This suggests that different genetic 
backgrounds may influence neutrophil infiltration into the 

brain in response to ROCV infection, resulting in a different 
neuropathogenesis during ROCV infection. Similarly, an ab-
sence of neutrophils was observed in brains during autopsies 
of the majority of humans during the ROCV outbreak [27]. 
Interestingly, the role of infiltrated neutrophils in the CNS is 
well described in viral-induced encephalitis [36, 37], as it was 
found to determine permissiveness to WNV infection, thereby 
acting as a Trojan horse for delivering the virus to the CNS 
[38]. It is likely that ROCV may exploit other cell types to in-
vade the CNS, but further investigations are required to test this 
hypothesis.

We also found a significant reduction in the percentage of 
microglia cells (CD11b+CD45−) in the brain. We believe that 
depletion of the microglia cells in ROCV-infected mice could 
be attributed to deterioration of the neuronal tissues as a con-
sequence of proinflammatory cytokines (TNF-α and CCL-2) 
produced by glial cells and infiltrated leukocytes. Thus, our 
findings support observations described by Barros et  al, who 
showed that ROCV infection induced neuronal degeneration 
and apoptosis induced by inflammatory cytokines from glial and 
macrophage cells [13]. Interestingly, our mouse model showed 
no difference in IL-1β levels between ROCV-infected and un-
infected mice in any tissue, while increased levels of IL-1β were 
observed in BALB/c mice [13]. It is worth noting that WNV 
and JEV infections induce significant levels of IL-1β in the CNS 
[39, 40]. Hence, our data suggest that different innate immunity 
processes may be induced by these closely related viruses.

Because we found that CCL2 levels were significantly 
increased during ROCV infection, we further investigated the 
role of this mediator in Ccr2−/− mice. We found that the increased 
disease severity and mortality in Ccr2−/− mice was associated 
with a reduction in the number of infiltrated macrophages and 
that this did not correlate with the observed viral load in the 
brain. An associated impairment in macrophage migration into 
the brain from the bloodstream in Ccr2−/− mice supports the 
notion that migration of macrophages into an infected brain is 
dependent on CCR2. It is possible that infiltrated macrophages 
in the brain may contribute to an antiviral effect by producing 
inflammatory cytokines such as TNF-α. This has previously 
been shown to increase disease severity and mortality in JEV 
and TBEV infections, using a Tnfa−/− mouse model, without 
influencing the viral load in the brain [41, 42]. In addition, it 
is also possible that other CCR2-expressing cells, such as CD8+ 
T lymphocytes, that we showed to have infiltrated the brains of 
ROCV-infected WT mice may play an active role in antiviral 
activity during ROCV infection. Together, this may explain the 
protective role of infiltrated macrophages in combination with 
other immune cells, such as T lymphocytes, against ROCV in 
the CNS without directly influencing the viral load.

Additionally, Ccr2−/− mice have been reported to exacerbate 
the outcome of disease promoted by other virus infections [26, 
43–45]. Interestingly, CCL7, which also binds CCR2, has been 
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reported to be involved in efficient recruitment of CD8+ T cells 
into the CNS that are required for effective viral clearance and 
survival [25]. Further studies evaluating the adoptive transfer of 
CCR2-sufficient cells into ROCV-infected Ccr2−/− mice should 
yield important insight regarding how macrophages/T cells in-
fluence ROCV antiviral responses.

In conclusion, we showed that ROCV preferentially 
replicates in the CNS, particularly in the cortex and hippo-
campus. Additionally, ROCV promotes increased numbers of 
monocytes in the periphery and infiltrated macrophages in the 
CNS. The lack of CCL2 receptor resulted in decreased infiltra-
tion of macrophages into the CNS and increased disease se-
verity and mortality in ROCV-induced encephalitis, suggesting 
a protective role of infiltrated macrophages in the pathogenesis 
of ROCV infection.
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