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The prevalence of pediatric antimicrobial stewardship programs (ASPs) is increasing in acute care facilities across the United States. 
Over the past several years, the evidence base used to inform effective stewardship practices has expanded, and regulatory interest in 
stewardship programs has increased. Here, we review approaches for established, hospital-based pediatric ASPs to adapt and report 
standardized metrics, broaden their reach to specialized populations, expand to undertake novel stewardship initiatives, and imple-
ment rapid diagnostics to continue their evolution in improving antimicrobial use and patient outcomes.
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The prevalence of antimicrobial stewardship programs (ASPs) 
that target the pediatric population is increasing across the 
United States. Although the number of newly developed pro-
grams increases annually, many programs have existed for more 
than 5 years and are prepared to undertake new interventions, 
track and report novel process measures and clinical outcomes, 
implement cutting-edge diagnostic assays, and expand their 
scope to new populations. The Infectious Diseases Society of 
America and Society for Healthcare Epidemiology of America 
stewardship guidelines provide a valuable resource for guid-
ing clinicians interested in developing and implementing ASPs 
[1–3]. Furthermore, regulatory efforts to mandate stewardship 
activities, such as laws in California and Missouri and the ele-
ments of practice required for The Joint Commission accredit-
ation, have increased [4–6]. Although President Obama’s 
executive order in 2014 required the US Department of Health 
and Human Services to propose new regulations for the imple-
mentation of ASPs, work has stalled on making the presence 
of formal ASPs in acute care hospitals a condition of partic-
ipation for Medicare and Medicaid Services [7]. The goal of 
our review was to supplement existing resources by describ-
ing the current state of pediatric antimicrobial stewardship in 

developed countries and provide suggestions on how ASPs can 
continue to evolve and extend their efforts in new directions as 
their programs mature. Expanding stewardship programs into 
developing countries is critically important but is beyond the 
scope of this review [8].

ASP COMPOSITION AND PREVALENCE

The presence of ASPs in pediatric facilities is increasing rap-
idly. As of 2011, a survey of 38 freestanding children’s hospitals 
revealed that 16 (42%) had a formal ASP, whereas an additional 
14 (37%) were actively implementing programs [9]. Among the 
16 hospitals with an ASP, physician full-time equivalent (FTE) 
support for their stewardship role was provided in 14 (median, 
0.25 FTE [range, 0.1–0.5 FTE]), whereas 13 (81%) hospitals had 
a dedicated pharmacist FTE (median, 0.5 FTE [range, 0.1–1.5 
FTE]). Prospective audit and feedback, formulary restriction, 
and clinical guidelines were commonly cited (87%) by these 
programs as strategies used. Although most ASPs follow the 
model of using dedicated clinical pharmacy and infectious dis-
ease (ID) specialists, at least 1 pediatric ASP uses an alternative 
model to operationalize its program and integrates ASP activi-
ties into the daily function of service-based clinical pharmacists 
and of ID physicians during weekends and holidays [10]. Several 
reports that described ASPs in adult institutions also described 
a model of including multiple clinical pharmacists’ participa-
tion in their ASP activities [11, 12]. Furthermore, a pediatric 
model of daily face-to-face “handshake stewardship” has been 
successful in optimizing antimicrobial use and increasing the 
number of ID consultations [13, 14].
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COMMON AND EMERGING METRICS FOR ONGOING 
ASP EVALUATION

Although rigorous evaluation of pediatric ASPs has been lack-
ing, studies have found a significant positive effect of both for-
malized ASPs and other informal antimicrobial stewardship 
initiatives. In their systematic review, Smith et al [15] evaluated 
9 studies that involved formalized pediatric ASPs and 8 stud-
ies that included other antimicrobial stewardship activities 
and found a significant reduction in antibiotic use across cen-
ters. Several of the included studies also identified significant 
cost savings as a result of ASP activities, and others identified 
improved “appropriateness of use” based on clinical guideline 
recommendations as the gold standard [15].

Ensuring sustained effectiveness and viability of estab-
lished ASPs requires formal measurement, which can involve 
process measures (eg, days of antimicrobial therapy, length of 
antimicrobial therapy, cost data), clinical outcomes (eg, rates of 
Clostridium difficile infections [CDIs], length of hospital stay, 
related readmissions), and/or balancing measures (eg, ensur-
ing that use of narrower-spectrum therapies does not result in 
increased treatment-failure rates). ASPs should measure out-
comes across several categories to demonstrate effectiveness 
and identify areas for improvement.

Process measures generally focus on antibiotic-usage data, 
calculated at the patient, unit, or hospital level as either the de-
fined daily dose or days of therapy (DOT). DOT is the measure 
used more commonly in the United States and is recommended 
by the Centers for Disease Control and Prevention (CDC) and 
the Infectious Diseases Society of America. The DOT metric 
represents the overall total number of antibiotics administered 
over a total number of days. For example, a patient who receives 
2 antibiotics for 5 days each will have 10 DOT. A limitation of 
DOT is that it cannot account for spectrum of activity, so the 
use of a narrow-spectrum multidrug regimen will increase the 
DOT metric more than the use of a single very-broad-spectrum 
agent. Similarly, the DOT measure alone cannot capture desired 
therapy changes, such as deescalation from a single broad-spec-
trum agent to a more targeted one, but this limitation can be 
addressed by tracking consumption of specific targeted agents 
[10]. Complementary metrics, such as the antibiotic spectrum 
index, have been developed to measure patterns of antibiotic 
selection and deescalation and address these limitations [16].

A DOT numerator is normalized to the hospital census, gen-
erally by using 1000 patient-days as the denominator; patient-
days are calculated on the basis of the hospital census at a given 
time of day (eg, midnight) [17, 18]. Alternatively, the CDC 
created an electronic tool, called the antibiotic-use option, and 
encourages acute care facilities to report their antibiotic-usage 
data to the National Healthcare Safety Network by using the 
numerator of DOT and the denominator of 1000 days present 
to encourage risk-adjusted interfacility and intrafacility bench-
marking of antibiotic use [19]. The days-present metric is cal-
culated as the number of patients who were present for any 

portion of a day during a calendar month at a specific location. 
For example, if a patient were to be admitted to the pediatric 
intensive care unit (PICU) on Monday afternoon, remain there 
Tuesday and Wednesday, and be transferred to the general pedi-
atric ward Wednesday and discharged home later that day, he 
or she would contribute 3 days toward the PICU days-present 
denominator and 1 day toward the pediatric-ward denomina-
tor. Note the subtle difference between patient days and days 
present; patient days are often 1 less than the hospital length 
of stay (2 days in the example above, because the patient was 
present only at midnight on 2 days), whereas the days-present 
denominator enables capture of the entire time in the hospital 
and time in different locations (3 days present in the PICU plus 
1  day present in the medical ward in the example above). In 
this regard, the days-present measure enables a more nuanced 
assessment and benchmarking of where antibiotic use occurs 
within a hospital.

Length of therapy (LOT), defined as the total number of cal-
endar days on which a patient received antibiotics, can be useful 
also. For example, the DOT/LOT ratio provides a measure of 
the mean number of antibiotics received by each patient per day. 
Evaluating these metrics for a hospital overall, and according 
to clinical unit (eg, medical or PICU), service line (eg, pulmo-
nary or hematology/oncology), antibiotic class (eg, macrolides 
or carbapenems), or route (eg, oral or intravenous), are all in-
formative for a program that seeks to identify areas for further 
work. Last, hospitals can compare themselves to one another; 
ASPs from hospitals that participate in the Pediatric Health 
Information Systems database have collaborated to share anti-
biotic-use data and benchmark against one another [20].

Beyond these utilization metrics, ASPs can consider moni-
toring other process measures, such as time to optimal therapy 
for patients with an invasive infection, percent agreement with 
ASP recommendations, percent of peripherally inserted central 
catheters potentially avoided, and time to conversion from in-
travenous to oral administration of highly bioavailable antibi-
otics. These data, when stratified according to clinical unit or 
service line, can suggest areas for ongoing improvement. ASPs 
should monitor proactively for compensatory changes in anti-
biotic-prescribing behavior on the basis of their activities (ie, 
balancing measures such as an increase in piperacillin-tazobac-
tam use after carbapenem access restriction), and periodically 
reevaluate whether program strategies should be updated (such 
as adding new formulary restrictions).

Although process measures are important for ASPs to mon-
itor, they might not be compelling to prescribing clinicians; 
therefore, some resources should be applied to evaluating clin-
ical outcomes that can be reported to clinicians. Programs can 
track clinical data, including mortality rate, hospital length of 
stay, and readmissions, especially when focused on patients 
confirmed to have an infection (eg, bloodstream infection) 
[21–23]. Programs should especially consider tracking the CDI 
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rate because it is a concretely measurable outcome and is as-
sociated with increased LOS and cost and death among chil-
dren, and ASP efforts have been found to reduce the incidence 
of CDIs [24, 25]. Tracking CDI rates among children is not 
without some difficulty, however, given the various diagnostic 
tests available and the prevalence of C difficile colonization 
among young children [26]. Other potentially relevant clinical 
outcomes include antibiotic appropriateness and incidence of 
antibiotic-resistant pathogens. ASPs might need to commu-
nicate that, even if an improvement in clinical outcome is not 
observed, a lack of worsening clinical outcomes (eg, finding 
that reducing the duration of therapy for patients with commu-
nity-acquired pneumonia from 10 to 5 days does not increase 
hospital readmissions) might be just as meaningful. Also, it 
must be acknowledged that assigning causality to changes in 
clinical outcomes can be challenging, because certain events, 
such as death, are relatively rare in children.

EXTENDING ASP STRATEGIES TO NEW TARGET 
AREAS AND POPULATIONS

Many ASPs have focused on the use of specific targeted anti-
biotics through either preprescription authorization or post-
prescription audit and feedback. Focusing instead on specific 
infectious syndromes might be more meaningful to clinicians, 
because they are invested directly in their patients’ outcomes 
but might be less concerned with specific antibiotic-use metrics. 
For example, the message “we want to improve the diagnosis 
and treatment of children with hospital-acquired pneumonia” 
might foster more clinician engagement than “we want to re-
duce unnecessary vancomycin use.” A number of clinically rel-
evant syndromes should be considered for targeting, including 
community-acquired pneumonia [27, 28], skin and soft-tissue 
infections [29], appendicitis [30, 31], bone and joint infections 
[32], and prevention of surgical-site infection [33].

Established programs should consider expanding their 
efforts to include subpopulations that account for a small per-
centage of the overall population but receive a disproportion-
ately high percentage of antibiotics. Stewardship activities have 
been successful and are warranted in these subpopulations, 
including children with a malignancy, solid organ or hemato-
poietic stem cell transplantation recipients [34, 35], neonates 
[36], children in the emergency department [37, 38], and chil-
dren with a medically complex condition, such as those with 
cystic fibrosis [39] or who are undergoing a surgical procedure 
[40]. A reasonable starting point for any new effort is to develop 
evidence-based local guidelines that include input from a mul-
tidisciplinary team, which is best achieved through in-per-
son meetings. ASP members might find that integrating their 
efforts into existing clinical specialty workgroups and meetings 
is a good entry point. Process and outcome measures should 
be relevant to the specific service(s) targeted; thus, inclusion of 

a physician or pharmacist champion from an individual ser-
vice who will assist in developing relevant stewardship metrics 
is critical [3, 41]. As an example, when developing guidelines 
with a PICU that involve reducing the duration of therapy for 
children with ventilator-associated pneumonia, the ASP might 
believe that the emergence of resistant pathogens is an import-
ant outcome, whereas the PICU faculty might think that reintu-
bation rates are more meaningful.

Other novel populations for ASPs to target are defined not 
by their underlying disease process but by other facets of their 
care. For example, ASPs can focus on children being discharged 
to undergo outpatient parenteral antimicrobial therapy (OPAT). 
Overuse of OPAT exposes patients to complications such as 
catheter-associated infections and thrombosis, and OPAT can 
be avoided in some children in favor of oral therapy for infec-
tions such as osteomyelitis [32, 42, 43]. Similarly, investigating 
and removing unnecessary β-lactam allergy labels represents an 
opportunity for ASPs to direct patients toward first-line, gen-
erally more narrow-spectrum, agents [44, 45]. ASPs can con-
tribute to our understanding of optimal antibiotic dosing and 
pharmacokinetics by periodically updating local standards 
around antibiotic use (eg, considering use of the vancomycin 
area under the curve/minimum inhibitory concentration ratio 
or use of extended-infusion β-lactams) [46, 47]. Electronic 
health record order sets have been modified to decrease the du-
ration of antibiotics for those with some common infections, 
and use of automatic antibiotic order discontinuation after a 
brief period of empiric use seems safe and effective at reducing 
broad-spectrum antibiotic use [23, 48]. Hospitals with a large 
referral base can even consider using their local ASP resources 
to provide stewardship remotely to other community hospitals 
[49]. Last, because more than 80% of all pediatric antibiotic use 
occurs in an ambulatory setting, some ASPs are expanding to 
provide resources and guidance for patients in these settings 
[50–52].

IMPLEMENTATION OF ASP INTERVENTIONS WITH 
RAPID DIAGNOSTICS

The clinical microbiology laboratory’s role in stewardship activ-
ities has been limited to developing guidelines for appropriate 
specimen testing, antibiogram creation, and selective reporting 
(“blinding”) of antibiotic-susceptibility test results. However, 
the recent explosion of new technologies that enable both ear-
lier identification of pathogens and detection of select antibiot-
ic-resistance genes brings the clinical microbiology laboratory 
to the forefront of ASP activities. ASP leaders can work with 
microbiologists to provide clinician education about specific 
diagnostics before implementation. Table 1 summarizes the tar-
gets, turnaround times, and clinical outcomes associated with 
commonly used rapid diagnostic tests in the clinical microbi-
ology laboratory.
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The use of many of these diagnostic tests has been associated 
with decreased time to effective therapy [53–57], shorter hospi-
tal lengths of stay [53, 56–59], reduced hospital costs [53, 54, 56, 
57], and reduced mortality rates [53, 59]. However, to optimize 
clinical outcomes, these novel diagnostics should ideally be 
implemented with clinical decision support that guides result 
interpretation and appropriate antibiotic prescribing [58–62]. 
Such decision support comes in many forms, from electronic 
comments within the microbiology result report to real-time 
auditing and feedback by an ASP.

An important caveat is that rapid molecular diagnostics used 
to detect resistance determinants among Gram-positive organ-
isms can predict methicillin or vancomycin resistance reliably 
and lead to antibiotic escalation and deescalation. In contrast, 
Gram-negative bacteria contain a plethora of resistance mech-
anisms, including β-lactamases, porin mutations, and efflux 
pumps, so currently available molecular platforms that identify 
specific β-lactamases are useful to rule in drug resistance and 
escalate therapy but cannot rule out resistance and are unlikely 
to affect decisions about deescalating antibiotics for these infec-
tions [63]. Last, some diagnostic tests can be overused or used 
incorrectly (such as ordering C difficile testing for an infant), 
so programs should steward microbiologic diagnostic testing, 
because doing so has the potential to decrease unnecessary an-
tibiotic use and improve patient outcomes [64].

Because much of the antibiotic use in hospitalized children 
is empiric, use of rapid diagnostics to identify specific viral 
infections (such as RSV or HSV) can help reduce unnecessary 
antibiotic use [65]. Procalcitonin (PCT) is a diagnostic test 
that is used increasingly as a biomarker to distinguish bacterial 
infections from other infectious and inflammatory conditions. 
Although most studies to date have been in adults, the litera-
ture on the utility of PCT in the evaluation of infants with fever, 
pneumonia, and severe bacterial infections is growing [66–68]. 
Several studies in adults have found that when PCT testing 
is combined with treatment algorithms developed by ASPs, 
patients are exposed to significantly shorter antibiotic courses 
with no increase in adverse clinical outcomes [69, 70]. PCT test-
ing may similarly enhance judicious antibiotic prescribing for 
children and deserves further study.

TRAINING OTHER STAFF IN STEWARDSHIP EFFORTS

The sustainability of stewardship requires its adoption across 
providers and disciplines, beyond ID physicians and clinical 
pharmacists, and requires ongoing education. For 2017, The 
Joint Commission developed a new antimicrobial stewardship 
standard that requires hospitals to educate antibiotic prescribers 
about appropriate antibiotic use, such as through use of existing 
CDC tools or other locally developed materials [6]. Engaging 
other hospital pharmacists who are not members of the ASP is 
a way to extend ASP activities across the hospital. Furthermore, 

nurses are increasingly identified as critical partners in steward-
ship activities [71, 72]. According to the CDC core elements for 
antibiotic stewardship, nurses are encouraged to review medi-
cations as part of their routine duties and can prompt discus-
sions of antibiotic treatment, indication, duration, and patient 
readiness to transition to oral therapy [73, 74]. Hospitalists can 
likewise be vital partners in stewardship efforts, because their 
discipline is expanding rapidly, and they often are involved with 
quality improvement efforts and the efficient use of healthcare 
resources. A  previous multisite hospitalist collaborative suc-
cessfully enhanced antimicrobial documentation, accessibility 
to local guidelines, and implementation of a 72-hour antibi-
otic timeout [75]. The Vermont Oxford Network’s Newborn 
Improvement Collaborative for Quality is an interdisciplinary 
association that has focused on antimicrobial stewardship for 
its 2016 and 2017 organization goals [76]. Integration of formal 
stewardship training activities into medical education, such as 
online curricula and lectures for medical students or rotations in 
stewardship for residents and fellows, is also essential for ensur-
ing adequate preparation for the future generation of antibiotic 
prescribers [77, 78].

FUTURE RESEARCH TARGETS

Over the past several years, an increasing number of acute 
care facilities have implemented pediatric ASPs [79]. With this 
growth comes the opportunity to engage in research that exam-
ines understudied aspects of stewardship, such as the role of be-
havior change in intervention implementation, stewardship in 
novel patient care settings, and using targeted assessments of 
stewardship outcomes to optimize stewardship interventions.

Although the aim of stewardship interventions is to prompt 
behavior changes in antibiotic prescribers [80], most steward-
ship interventions lack an assessment of the behavioral deter-
minants of prescribing practices to produce sustainable change 
[81]. Studies that have examined behavioral determinants have 
identified a “prescribing etiquette” that includes adherence to 
social norms [82] and the influence of the medical hierarchy [81] 
as factors that underlie certain prescribing behaviors. Additional 
studies that identify the beliefs that drive antibiotic-prescribing 
practices and the barriers to practicing stewardship are needed to 
direct the development of sustainable stewardship interventions.

In addition, given the variety of patient care settings and 
the disparities between resources available to clinicians across 
these settings, it is clear that a one-size-fits-all approach cannot 
address the stewardship needs of the larger medical commu-
nity effectively [83]. Much of the pediatric research performed 
to date has assessed stewardship programs in the acute care set-
ting, primarily within freestanding children’s hospitals [84]. The 
need to expand antimicrobial stewardship across the healthcare 
spectrum and the need for further research in pediatric long-
term care facilities has become evident.
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Likewise, community hospitals might not have regular access 
to those specialists who traditionally comprise an ASP, such as 
ID physicians or clinical pharmacists [85]. Although strategies 
about how to tailor the composition of an ASP to community 
hospital settings have been suggested [79, 83], studies that vali-
date the efficacy of these approaches, including the role of tele-
medicine, have been lacking.

In the tertiary care pediatric inpatient setting, more work is 
also needed to understand patterns of antiviral and antifungal 
use and to curb their overuse, given their potential for toxicity 
and high cost [86]. As electronic medical record systems con-
tinue to evolve, the ability to use advanced decision support 
to optimize antibiotic prescribing in real time for individual 
patients will also become increasingly widespread.

If the aim of stewardship is to optimize clinical outcomes 
and minimize unintended consequences of antibiotic use by 
improving antibiotic prescribing, it follows that studies are 
needed to evaluate the effect of stewardship interventions on 
clinical outcomes. However, studies that evaluate ASPs have fo-
cused mostly on process outcomes, such as decreased antibiotic 
use and decreased cost [87]; data on the effect of stewardship 
interventions on clinical outcomes have been generally limited 
to specific disease syndromes [88]. Although economic metrics 
have been helpful in obtaining support from hospital admin-
istrators [89], these metrics fail to provide an adequate assess-
ment of a given intervention’s ability to accomplish the aims of 
stewardship, and formal economic evaluation of costs avoided 
is difficult. Studies that evaluate clinical outcomes (eg, clinical 
cure or failure, resistance rates, rates of CDI, adverse drug reac-
tions or interactions, and length of stay) are needed to aid in 
further determining optimal interventions and to highlight the 
importance of stewardship programs for clinicians.
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