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Agnostic metagenomic next-generation sequencing (mNGS) has emerged as a promising single, universal pathogen detection
method for infectious disease diagnostics. This methodology allows for identification and genomic characterization of bacteria,
fungi, parasites, and viruses without the need for a priori knowledge of a specific pathogen directly from clinical specimens. Although
there are increasing reports of mNGS successes, several hurdles need to be addressed, such as differentiation of colonization from
infection, extraneous sources of nucleic acid, method standardization, and data storage, protection, analysis, and interpretation. As

more commercial and clinical microbiology laboratories develop mNGS assays, it is important for treating practitioners to under-
stand both the power and limitations of this method as a diagnostic tool for infectious diseases.
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Infectious diseases remain leading causes of morbidity and
mortality among all patient populations worldwide [1]. The
spread of multidrug-resistant pathogens such as Candida auris
and carbapenemase-producing gram-negative organisms and
the reemergence of Ebola and Zika viruses highlight the ongo-
ing challenges with diagnosis and management of patients with
infectious diseases. Accurate diagnosis can be challenging due to
a wide variety of pathogens causing clinically indistinguishable
diseases. Current methods, such as culture, nucleic acid ampli-
fication tests, and serologic assays, generally require the use of a
battery of tests to attempt to establish a diagnosis. Often times
these methods still rely on a growth amplification step of viable
microorganisms in culture for identification and antimicrobial
susceptibility testing that take a minimum of 48 hours for com-
monly encountered pathogens and longer for more fastidious
organisms (up to weeks for more insidious pathogens such as
fungi and mycobacteria). Novel technologies such as syndromic
multiplex polymerase chain reaction (PCR) panels, 16S riboso-
mal DNA (16S rDNA) Sanger sequencing, and matrix-assisted
laser desorption/ionization-time-of-flight mass spectrometry
(MALDI-TOF MS) have decreased turnaround times and sub-
sequently beneficially impacted patient care [2]. Despite these
advances, the etiology of infectious diseases remains unknown
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in up to 60% of cases depending on the clinical syndrome
[3,4]. Missed diagnoses due to the limitations of current micro-
biologic methodologies drive the use of empiric broad-spectrum
antibiotics preventing the use of targeted, curative therapies.

Recent advances and lower costs of next-generation sequencing
(NGS) technologies, more rapid, user- friendly data analysis tools,
and the creation of accurate, comprehensive databases has allowed
for NGS applications to cross the divide from microbial research
to diagnostic microbiology [4]. One such application, unbiased
metagenomic next-generation sequencing (mNGS), has the cap-
ability to overcome limitations of current diagnostic tests allowing
for hypothesis-free, culture-independent, pathogen detection dir-
ectly from clinical specimens. This method allows for universal
pathogen detection regardless of the type of microbe (viruses,
bacteria, fungi, and parasites) and can even be applied for novel
organism discovery, potentially enabling replacement of many tar-
geted pathogen tests with a single mNGS assay (Figure 1). As the
availability of mNGS clinical diagnostic tests increases, it is impor-
tant for treating practitioners to understand both its strengths and
limitations as a tool for infectious disease diagnostics.

WHAT IS iNGS?

Next-generation sequencing technologies allow for sequenc-
ing of multiple individual DNA molecules in parallel regard-
less of composition, generating millions to billions of reads per
instrument run. Reads are the basic element produced by DNA
sequencing that are composed of a series of sequential bases
(adenine, guanine, thymine, and cytosine) making up the DNA
fragment, which can vary in size from small reads (75-600 bp)
to long reads (1000-10000s bp) depending on the sequenc-
ing technology. NGS overcomes many of the limitations of
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Figure 1. Summary of the traditional timeline and workflow in diagnostic medical microbiology laboratories and the future state with the incorporation of metagenomic

next-generation sequencing (mNGS) methodologies. Current organism detection techniques (orange), identification (yellow), antimicrobial susceptibility testing (green), and
strain typing (purple) can take up to a week or longer from specimen collection (blue) to strain typing results. mNGS has the capability of greatly reducing turnaround times
and providing all the data summarized in current methods in a single modality (red) and could potentially provide all of these within 24—48 hours of specimen receipt. To date,
the available evidence is poor to use antibiotic resistance gene detection to predict phenotypic antimicrobial susceptibility testing profiles for clinical care [16]. Abbreviations:
AFB, acid-fast bacilli; cDNA, complementary DNA; CSF, cerebrospinal fluid; KOH, potassium hydroxide; MALDI-TOF MS, matrix-assisted laser desorption/ionization—time-
of-flight mass spectrometry; MLST, multilocus sequence typing; mNGS, metagenomic next-generation sequencing; PCR, polymerase chain reaction; PFGE, pulsed-field gel

electrophoresis; 16S rDNA, 16S ribosomal DNA.

traditional Sanger sequencing, which requires targeted sequenc-
ing (preamplification of a known target, such as 16S rDNA) of
a uniform or low-diversity sample (the sample ideally is com-
posed of a single organism or a maximum of 3 organisms).

The most common applications of NGS in diagnostic microbi-
ology laboratories (Figure 2) include (1) whole-genome sequenc-
ing (sequencing and assembly of the genome of a pathogen of
interest [eg, evaluating genetic relatedness during outbreak inves-
tigations, identification of new species]) [5-7]; (2) targeted NGS
with different methods for enrichment including amplification
or probe hybridization (ie, 16S rDNA bacterial profiling or PCR
amplification of other specified targets followed by NGS) [7, 8];
or (3) mNGS (defined in more detail below) [9]. We refer the
reader to other publications on this topic that summarize com-
mon terms and approaches used in DNA sequence analysis [10],
the different NGS technologies [11-13], and the various NGS
methods, bioinformatics tools [14] and clinical applications [10,
15]. This review will focus on mNGS for infectious disease diag-
nostic pathogen detection. Other applications of mNGS testing
directly from specimens that are also not covered in this review

include antimicrobial resistance gene and virulence gene detec-
tion, strain typing, and host immune response profiling [16].

mNGS, also known as unbiased or agnostic NGS or clinical
metagenomics, is a method where all the nucleic acid (DNA and/
or RNA) of a specimen is sequenced in parallel. This results in iso-
lation and amplification of both host and pathogen nucleic acid
sequenced from the specimen (Figure 2). Additional sources of
nucleic acid that may be concurrently sequenced include nucleic
acid introduced at the time of collection, within collection tubes,
from the environment, and in sequencing reagents. Due to these
complexities and potential breadth of detection, interpretation
of mNGS results directly from clinical specimens can be difficult
and requires careful interpretation and consideration.

HOST NUCLEIC ACID AMPLIFICATION: A BURDEN
OR AN ADVANTAGE?

As the majority of a specimen is of human origin and the
human genome is much larger than that of microorganisms

(1000 times larger than bacterial genomes), the results from
mNGS from clinical specimens typically generate >99% host
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Figure 2. An overview of the different applications of next-generation sequencing analysis. A, Whole-genome sequencing of a pure organism from cultured growth. B,
Targeted amplification of 16S rDNA from a clinical specimen for bacterial profiling. C, Metagenomic next-generation sequencing from clinical specimens. The nucleic acid
composition of the specimens includes host (black), microbiome and pathogen detection (blue, green, and red), and last, the introduction of contaminating nucleic acid
(orange). Analysis of reads generally involves removing host DNA from microbial DNA. The host DNA reads can be used to study the host immune response. The microbial
reads are analyzed to identify the composition and abundance of reads of organisms present. The study of RNA can allow for transcriptome-based analysis to identify
organisms that are transcriptionally active. Abbreviations: cDNA, complementary DNA; NGS, next-generation sequencing; NA, nucleic acid; 16S rDNA, 16S ribosomal DNA.

reads [17]. Successful clinical applications of mNGS have
demonstrated that 0.00001%-0.7% of total reads (10 to tens of
thousands of pathogen reads out of a total of millions of reads)
have been used to make successful diagnoses (Table 1, mNGS
results column). Pathogen reads make up a minute fraction
of the sequencing results. Host nucleic acid can be depleted
[18] or, if pathogen reads are enriched, more microorganism
reads can be generated to more confidently provide a diagno-
sis and allow for increased analytical sensitivity (limit of detec-
tion). Additionally, if a robust immune response is generated in
response to the pathogen, the specimen will contain a high con-
centration of leukocytes, further contributing to host nucleic
acid in the sample and further limiting pathogen detection.
Thus, the higher the sequencing depth (the higher number of
reads generated/specimen) of the method, the higher the like-
lihood that the pathogen will be sequenced and detected (more
reads equals higher sensitivity). For a conceptual illustration of
how cellularity and overall nucleic acid affect analytic sensitiv-
ity, see Figure 1 in Schlaberg et al [4]. One potential advantage
of sequencing amplified host nucleic acid is the opportunity to
evaluate the host immunologic response associated with the
presence and type of infection. This can include the presence
of gene biomarkers associated with an antiviral or antibacter-
ial response (specific expression of cytokines, chemokines,

interferons, etc), genes involved in signaling pathways, and
adaptive immunity. These biomarkers can provide insight into
the pathogenesis of the microorganisms detected [19].

HOWTO DISCRIMINATE BETWEEN COLONIZATION
AND INFECTION?

Detection of microorganisms in clinical samples by mNGS can
reflect normal microbiota, transient colonizers, sample contam-
ination, and/or infection. Initial applications of mNGS focused
on detection of pathogens in normally sterile specimens, such
as cerebrospinal fluid (CSF) and brain biopsies, simplifying the
assignment of clinical significance for detected organisms [17,
20-23]. That being said, even body sites that are considered
normally “sterile” may contain a microbiome, which can be
defined and detected by deep sequencing [24]. Reports in the
literature are now showing applications from other specimen
types where normal microbiota can further complicate interpre-
tation of results, such as respiratory specimens [19, 25]. These
methods will likely require further studies to determine the best
approach to distinguish colonization from infection. Currently,
mNGS is only able to quantify pathogen reads as a percentage of
the total number of sequence reads. Clinical microbiology labo-
ratories have developed procedures throughout the years to dis-
tinguish true pathogens from colonizers in cultures, and similar
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approaches are being developed for mNGS. A recent example
is the use of “spike-in”-based calibration to determine total
microbial load as a proxy to convert percentage reads in relation
to quantitating bacterial burden in colony-forming units (CFU)
per milliliter [26]. Another approach to distinguish coloniza-
tion from infection is to monitor and assess the host immune
response. Langelier et al found that expression of a multigene
immune response composite metric was significantly increased
in hematopoietic cellular transplant patients with confirmed
respiratory pathogens relative to those without a defined path-
ogen. These results suggest that, even in patients who have
significant immunosuppression, the immune response may be
used as a biomarker of active infection when utilizing host reads
from mNGS analysis of respiratory specimens [19].

OTHER EXTRANEOUS SOURCES OF NUCLEIC ACID:
PROVIDING FURTHER COMPLEXITY TO RESULT
INTERPRETATION

The capability of unbiased sequencing directly from patient
specimens is what makes mNGS an ideal, hypothesis-free diag-
nostic tool for infectious diseases. However, it also brings chal-
lenges as nucleic acid contamination occurs at several steps in
the process from specimen acquisition to specimen processing
and the environment, making interpretation of results chal-
lenging. Samples should be collected with much caution; for
example, lumbar punctures to obtain CSF specimens can be
contaminated by normal skin microbiota during the procedure.
Similarly, surgical specimens may be contaminated during
handling of the biopsy [17]. In addition, specimen collection
containers are ideally verified to be DNA/RNA free as they too
may serve as a source of contaminating nucleic acid. The devel-
opment and strict adherence of specimen collection guidelines
are crucial for reducing risk of contamination introduced at the
time of specimen collection [9].

Furthermore, many researchers have shown that most rea-
gents utilized for mNGS also introduce extraneous, unwanted
sources of DNA during the sequencing process; this phenom-
enon is referred to as the “kit-ome” [9]. A study by Salter et al
demonstrated that extraneous DNA is ubiquitous in commonly
used DNA extraction reagents and other laboratory reagents
used for NGS. The contamination can critically impact results
obtained from samples, especially those containing low micro-
bial biomass [27, 28]. This becomes particularly relevant when
there is a lack of an obvious pathogen (eg, Mycobacterium
tuberculosis or JC virus where they are not found as contami-
nants in reagents or part of normal microbiota) especially for
mNGS analysis of CSF specimens where common reagent con-
taminants can include members of the Enterobacteriaceae or
Cutibacterium acnes (previously known as Propionibacterium
acnes), making clinical relevance difficult to discern. Thus, it
is imperative that a no-template control (a sample [ie, water
or extraction buffer] that is run through the entire mNGS

procedure) be included in mNGS analyses to determine the
nucleic acid background of the reagents used for sequencing.
The no-template control can be used when interpreting results
to help filter out contaminating background reads. In fact, the
no template control has been utilized as part of a cutoff to deter-
mine the relevance of mNGS findings from patient specimens.
A recent report used a cutoff of 210 ratio of the reads per mil-
lion sample divided by the reads per million of the no-template
control from any given taxon (species, genus, or family) [21].
Another approach is to align the reads to the genome of the
pathogen to see if the reads span different areas of the genome.
If the reads are localized to a restricted area of the genome, the
reads are more likely to represent a contaminant, whereas if the
reads span the genome, the organism is more likely to represent
a true organism detection [29].

MNGS METHODS AND VALIDATION INTHE CLINICAL
MICROBIOLOGY LABORATORY

Currently, there is no standardized protocol for mNGS. Thus,
it is very important for the physician interpreting results to
have a good understanding of the scope of the methods being
applied as these impact the ability of the assay to detect certain
pathogen types and affects interpretation of results. Methods
of mNGS can include a DNA- and/or RNA-based approach.
If a DNA-based approach is solely applied, pathogen types,
except RNA viruses, will be detected. An RNA-based approach
is required for detection of RNA viruses and further provides
transcriptome-based analysis of other pathogen types and even
the host immune response. A DNA approach will indicate what
organism(s) are present, but an RNA approach can further
reveal what organism(s) are transcriptionally active.

Another major factor that will impact results is the type
of extraction method utilized in the laboratory. Nucleic acid
recovery may not be equal for all pathogen types [30]. For
example, mycobacteria require significant cell wall disrup-
tion to efficiently lyse the organisms for nucleic acid release.
Different extraction methods may also be required for different
specimen types [4]. Efficient extraction methods are a critical
step to achieve truly unbiased sequencing of a sample.

In addition, the limit of detection is important to determine,
as a negative mNGS result may simply reflect the high leuko-
cyte count of a sample or low sequencing depth of a specimen
rather than the absence of a pathogen. The reported limit of
detection of mNGS from synthetic CSF matrix varies by organ-
ism type from a low of 0.01 CFU/mL for Cryptococcus neofor-
mans, approximately 9 CFU/mL for Klebsiella pneumoniae and
Streptococcus agalactiae, 9.4 copies/mL for cytomegalovirus, 55
organisms/mL for Toxoplasma gondii, and 100 copies/mL of
human immunodeficiency virus (HIV) type 1, to a high of 130
CFU/mL of Aspergillus niger for detection [4]. This compares
to 10" CFU/mL for detection of pathogens by special stains
directly from a specimen (ie, Gram stain), 10~ CFU/mL for
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growth in culture, and 10-100 CFU/mL for nucleic acid amp-
lification-based methods [31]. It also varies by specimen type,
as the limit of detection of mNGS for hepatitis C virus and HIV
from plasma has been reported as high as 1 x 10* copies/mL,
as determined by quantitative PCR [32]. Use of an internal
control is extremely important to identify analytic failures and
specimens with unusual cellularity that may result in reduced
analytical sensitivity. While a negative mNGS result does not
completely rule out an infectious process, adequate recovery of
the internal control can indicate the level of sensitivity achieved
by the assay for that particular sample [4]. Results will still need
to be interpreted within a clinical context.

Last, validation of mNGS by individual laboratories at the
moment can be time consuming and extremely costly, as sig-
nificant optimization is required for development, and de novo
establishment of performance characteristics is required as there
are no currently available US Food and Drug Administration
(FDA)-cleared methods, instruments, and/or databases [4].
For example, validation of a single specimen type such as CSF
will easily require an investment of more than US$100000
simply for supply costs, not including technologist time and
instrumentation fees. Thus, many hospitals may choose to send
testing out to larger reference or commercial laboratories that
have the resources to optimize and validate mNGS. Regardless
of where testing is being performed, physicians need to have a
strong understanding of the methods to appropriately interpret
the results.

DATA STORAGE, ANALYSIS, AND DATABASES

A major bottleneck of mNGS for infectious disease diagnos-
tics is the ability to decipher the data into clinically relevant
information to positively impact patient care. The large sums
of data generated by mNGS are burdensome in terms of stor-
age and analysis. mNGS data include host reads, which intro-
duces privacy concerns and requires HIPAA (Health Insurance
Portability and Accountability Act)-compliant storage tools
[33]. Host reads may be removed during data analysis steps, but
can also be helpful to confirm a patient’s identity to assist in
ruling out mislabeling or contamination issues [34].

Rapid bioinformatics tools are required to allow for data ana-
lysis to obtain clinically actionable results in a meaningful time-
frame. A diversity of data analysis tools exist, most of which first
filter out host reads and then taxonomically classify the micro-
bial reads to the most accurate taxonomic level (ie, species/
subspecies level if possible, otherwise a genus-, family-, order-,
class-, phylum-, or kingdom-level identification is provided)
[4]. Two bioinformatics pipelines have been applied success-
fully in most clinical studies, the “sequence-based ultrarapid
pathogen identification” (SURPI or SURPI+) pipeline and the
Kraken pipeline [4, 17, 19-23, 29, 35]. Both of these pipelines
rapidly align the sequencing reads to the National Center for

Biotechnology Information (NCBI) nucleotide reference data-
base and use taxonomic classification for more accurate read
assignments [36, 37]. Bioinformatics programs also need to be
straightforward with user-friendly interfaces for incorporation
into clinical microbiology laboratories. Currently, most of these
analytic tools require a significant degree of bioinformatics
expertise that is typically not available in clinical laboratories
[38]. Some suggest that many different algorithms using a vari-
ety of approaches, such as the use of k-mer, marker, and align-
ments, are required to analyze the data to ensure the highest
sensitivity and specificity for taxonomic classification [9, 39].
Last, curated databases are required as several draft genomes
or partial sequences available on NCBI contain erroneous infor-
mation and can result in false-positive results. False-positive
results using noncurated databases can result from low-complex-
ity sequences matching low-quality reads from the sample (ie,
computational noise), misannotated species, or contaminants
from database entries that also contain reads to human DNA,
sequencing adaptors, or vectors. False negatives may occur due
to incomplete or lack of taxonomic representation in the data-
bases. Due to these issues, there have been significant efforts put
in place to create accurate, regulatory-grade databases, such as
the FDA ARGOS database, that can be applied clinically [40].

TIMETO RESULTS

Currently, the turnaround time for mNGS has been reported
to be anywhere from approximately 6 hours to 7 days (aver-
age of 48 hours) from specimen receipt depending on the
sequencing technology, methods, and bioinformatics programs
exploited [9, 22, 25, 41, 42]. In general, mNGS methodologies
are labor intensive and require several steps from nucleic acid
extraction, library preparation, and sequencing to data analysis.
Depending on the sequencing chemistry (read lengths, paired-
end vs single-end sequencing, depth of sequencing, or sequenc-
ing platforms), it can take up to 48 hours (average of ~ 24 hours)
to generate the sequence data alone. Once the sequencing data
are generated, rapid bioinformatic pipelines may yield results
in as little as 1 hour with significant computational power to
support the analysis [17]. mNGS reports can contain >2000
lines in length summarizing the reads from the sample (see
Supplementary Data). Figure 3 demonstrates an example of
a simplified mNGS Kraken report along with interpretation
using a Web-based application tool for visualization of results
incorporating heat maps to highlight predominant pathogens
and alignment tools useful for result interpretation [29].

PRECISION MEDICINETEAM FOR INTERPRETATION
OF RESULTS

Perhaps the greatest challenge for the practicing infectious
disease clinician is interpretation of the results generated by
the sequencing laboratory. Due to the complexity of results
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Figure 3. Example of results output and bioinformatics analysis tools for metagenomic next-generation sequencing data. A, A simplified Kraken report showing the number
and percentage of sequence reads and their alignment identification using Kraken for a cerebrospinal fluid (CSF) specimen from a patient diagnosed with JC virus encephalitis
[17]. The overall Kraken report summarizing the data from the CSF specimen is >2000 line listings long (see Supplementary Data). Of note, Escherichia coli, Pseudomonas
putida group, and Propionibacterium acnes (now Cutibacterium acnes) were considered reagent contaminants in this case as they were observed in the no-template control.
B-D, Analysis modes of the Web-based Pavian program, a straightforward interface to analyze and compare complex metagenomics datasets. B, The number of sequence
reads matching each taxa of interest are shown for the sample. Of note, almost all the virus reads align to JC polyomavirus. C, A heat map approach showing the percentage
of microbially matched reads across multiple samples allowing for sample comparison. D, An interactive alignment tool showing the fold coverage of the reads over the

whole JC virus genome [29].

generated from mNGS, some institutions have implemented
precision medicine teams. These teams consist of representa-
tives from medical microbiology, computational biology, infec-
tious diseases, and other clinician groups who can discuss the
results and provide interpretation of the mNGS results prior to
reporting. This approach ensures that the most clinically rel-
evant data are reported. Additionally, in the authors’ experi-
ence, development of such a team was useful in determining
direction of assay development and lobbying the institution for
resources. Another approach, which is strongly advised, is to
have an experienced laboratory director manually review the
results prior to release [21].

SUCCESSFUL APPLICATIONS OF uNGS

mNGS directly from clinical specimens came to the forefront
when the Chiu laboratory from the University of California,
San Francisco (UCSF) applied the methodology to achieve
diagnoses in a case of neuroleptospirosis and a case of neu-
roinvasive astrovirus [22, 35]. In both cases, standard micro-
bial diagnostic techniques were applied, but no pathogens
were identified. Unbiased mNGS was applied and success-
fully identified the infectious agents in these cases. These
cases are examples of the power of NGS as a diagnostic tool.

Initial applications of mNGS for diagnostics focused on cen-
tral nervous system infections, mostly chronic infections, and
have successfully diagnosed rare [22], novel [43], and atypical
infectious etiologies [23] of encephalitis. One particular case
of chronic Cache Valley virus encephalitis in an Australian
patient highlights the ability of mNGS to identify pathogens
not previously associated with a clinical phenotype [23].
A single report of the accuracy of mNGS compared to stand-
ard methods of 84 previously positive CSF specimens and 21
negative specimens observed a diagnostic sensitivity of 84.3%
and specificity of 93.7% following discordant analysis [4].
Some recent articles describe the utility of the assay for detec-
tion of respiratory pathogens directly from bronchoalveolar
lavage specimens from human stem cell transplant and lung
transplant recipients [19, 25].

Table 1 summarizes the successful applications of mNGS in
the literature to date (July 2017). All these studies have been
performed using short read data (second-generation Illumina
sequencing), with 2 exceptions. Recently, publications by
Pendleton et al and Greninger et al demonstrated the utility
of mNGS using the affordable, portable MinION sequencer
(third-generation sequencing) that generates long reads with
sequencing analysis that can occur in real time [25, 41]. The
mNGS analysis of specimens by Pendleton et al resulted in a
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more rapid turnaround time of the pathogens causing lower
respiratory tract infections than standard culture methods
[25]. For the most part, the successful application of mNGS has
occurred for diagnoses of severe, insidious infections or has
been performed in retrospective studies compared to standard-
of-care results. Ideally, this technology would be applied in real
time as an adjunct to current SoC testing.

USE OF vNGS FOR CLINICAL CARE: WHERE ARE WE
NOW?

mNGS is currently being offered as a billable laboratory-de-
veloped test by both clinical and commercial laboratories. The
question is, when should this rather expensive test be consid-
ered for clinical care? Based on the available literature, mNGS
could be considered when SoC testing is unrevealing and can be
used as a last resort effort to try to discern an infectious process.
Alternatively, it may be considered for critically ill or severely
immunocompromised patients where achieving a timely diag-
nosis is imperative for improved outcomes. Importantly, mNGS
does not replace current SoC methods, but should rather be used
as an adjunct to these methods. At this point in time, this ques-
tion is still actively under investigation and further evidence is
required to establish the use of mNGS in routine clinical care.

CONCLUSIONS

mNGS has emerged as a promising single, universal pathogen
methodology for infectious disease diagnostics. In addition,
mNGS will further be developed in years to come to evaluate
antimicrobial resistance genes, strain typing, pathogen evolu-
tion, immune response to offending pathogens, and detection
of virulence genes. As mNGS methods are still being developed
and NGS technologies are rapidly evolving, there are still chal-
lenges ahead in terms of data interpretation and patient privacy.
Infectious disease clinicians and other treating physicians can
actively participate in the quality management of NGS diagnos-
tic applications by appreciating the complexities and nuances
of the methodologies being applied and ensuring that steps, as
discussed in this and other reviews, are implemented to gener-
ate meaningful results beneficial to patient care.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online.
Consisting of data provided by the authors to benefit the reader, the posted
materials are not copyedited and are the sole responsibility of the authors,
so questions or comments should be addressed to the corresponding author.
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