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Immunomodulators as an antimicrobial tool
Liise-anne Pirofski1,2 and Arturo Casadevall1,2
The spectrum of infectious diseases has shifted in the past 50

years to include those caused by microbes that cause disease

predominantly in immunocompromised individuals. This

phenomenon has underscored the dependence of microbial

virulence on the immune status of the host. The limited efficacy

of the available antimicrobial armamentarium in

immunocompromised individuals, combined with increasing

resistance to these agents, has led to an urgent need for new

therapies for infectious diseases. Immunomodulation

represents a novel approach to antimicrobial therapy that

depends on bolstering host immunity, rather than direct

antimicrobial activity. Immunomodulators can be divided into

those that are specific to pathogens (pathogen-specific) and

those that are not specific to pathogens (non-specific).

However, to date only a few immunomodulators have been

evaluated for their efficacy as antimicrobial tools.
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Introduction: immunomodulation in the
context of the Damage-response framework
Immunomodulators are usually products of the immune

system [1��]. As such, it is useful to consider immunomo-

dulation approaches to infectious diseases in the context of

microbial pathogenesis. In contrast to microbe-centric

views, in which microbial pathogenesis and virulence are

considered to reflect singular microbial functions, the

Damage-response framework provides a flexible construct

that accounts for the contribution of the host, as well as the

microbe, to these entities [2]. The Damage-response

framework considers host damage to be the common

denominator in microbial pathogenesis. Based on this

tenet, host damage can be plotted against the host immune

response as a U-shaped curve, whereby the maximal host
www.sciencedirect.com
damage resulting from a given host–microbe interaction

occurs both when the immune response is weak and when

it is overly strong (Figures 1 and 2). The inherent flexibility

afforded by this curve lies in its ability to account for the

fact that certain microbes only cause disease in certain

hosts, a phenomenon that cannot be explained by views of

microbial pathogenesis that consider virulence to be a

singular microbial trait [2].

A logical corollary of the Damage-response framework is

that infectious diseases only occur in susceptible hosts.

Host immune mechanisms protect against infectious dis-

eases by preventing or reducing the damage that can

result from host–microbe interaction. The relationship

between host immunity and microbial pathogenesis is

clearly exemplified in immunocompromised hosts, by

diseases that are caused by commensal microbes, such

as Candida albicans and Staphylococcus epidermidis, and

fungi, such as Cryptococcus neoformans and Pneumocystis
jurevecci, and the success of immune reconstitution in

preventing HIV-associated diseases caused by these

microbes. The phenomenon of immune reconstitution

disease that follows antiretroviral therapy with highly

active anti-retroviral therapy, or HAART, in patients with

AIDS (acquired immunodeficiency syndrome) illustrates

how rebounding immunity can produce disease (dis-

cussed in [3]). Because the success of antimicrobial ther-

apy is a function of its ability to ameliorate disease, and

disease is a manifestation of host damage, the Damage-

response framework provides a useful construct to con-

sider approaches to treating infectious diseases that

reduce host damage resulting from the host–microbe

interaction.

The crisis in antimicrobial therapy, which has stemmed

from antibiotic overuse, misuse and the limited number

of new antimicrobial drugs on the near horizon is well

documented [4��]. However, another area that limits the

utility of antimicrobial drug-based therapy is that anti-

microbial agents are frequently ineffective in individuals

with impaired immunity, often despite being highly

active in vitro or in individuals with intact immunity.

This underscores the crucial relationship between host

immunity and microbial virulence and provides a power-

ful rationale for approaches to antimicrobial therapy that

regulate the immune response to reduce, ameliorate or

prevent host damage.

Immunomodulators as antimicrobial tools
Approaches to immunomodulation can be divided into

those that are specific to pathogens (pathogen-specific)

and those that are not (non-specific). Pathogen-specific
Current Opinion in Microbiology 2006, 9:489–495
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Figure 1

The possible effects of IFN–g therapy in two patients with cryptococcosis in the context of the Damage-response framework. Patient 1 is an individual

with AIDS-related cryptococcosis, where susceptibility to infection is associated with a profound defect in Th1-type immunity as a result of CD4 T-cell

deficiency. In this patient, the administration of IFN–g is pro-inflammatory and the increased inflammatory response might facilitate control of the

infection, thus reducing damage and symptoms of disease. By contrast, Patient 2 is an individual with cryptococcal disease following immune

reconstitution with HAART. In this patient, administration of IFN–g might be detrimental, as cryptococcal disease is caused by an exuberant

inflammatory response. Hence, the outcome of IFN–g therapy depends on the immune status of the host.
immunomodulators include antibody reagents and

vaccines. With the exception of the rabies and varicella-

zoster vaccines, currently licensed vaccines are adminis-

tered to prevent acute infectious diseases rather than for

therapy and are not discussed further here. Non-specific

immunomodulators include cytokines, antimicrobial

peptides, certain antimicrobial drugs and microbes such

as probiotics. At present, clinical experience with non-

specific immunomodulators as antimicrobial tools has

been predominantly limited to cytokines.

Pathogen-specific immunomodulators:
antibody-based agents
There are powerful historical precedents for the use of

antibody-based therapies to treat infectious diseases

(reviewed in [5]). The first era of antimicrobial therapy,
Figure 2
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early in the 20th century, was based on serum therapy

with antibody preparations. Hence, the inaugural anti-

microbial agents were immunomodulators [6]. First gen-

eration antibody reagents were abandoned because of

their toxicity, which was a result of their impurity and

derivation from non-human species, and the arrival of

antimicrobial drugs that acted directly on the microbe.

Nonetheless, there was evidence for synergism between

antibiotics and serum therapies [7]. Serum therapy was

validated in animal models before being administered to

humans [7]; however, the mechanism by which it ame-

liorated infectious diseases or enhanced the efficacy of

antimicrobial drugs was largely unknown. For most of the

20th century, the mechanisms of antibody action that

were thought to influence antibody efficacy included

their ability to neutralize, promote opsonization and
ts with different immune status. Patient 1 has an infectious disease that

istoplasmosis or aspergillosis following stem cell transplantation. In this

ry immunomodulator could facilitate microbial clearance, thus reducing

sease that reflects the outcome of an overly exuberant immune response,

his individual, an anti-inflammatory immunomodulator could dampen the

ease. Notably, the immune response of this individual could have already

nomodulator that would be beneficial is probably to be influenced by the
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phagocytosis or antibody-dependent cell-mediated

cytotoxicity (ADCC) and/or to activate complement

[8]. However, a significantly more robust menu of poten-

tial mechanisms of antibody action, which includes direct

antimicrobial action, immunomodulation and generation

of oxidative species, has emerged over the past decade

[8]. For example, the efficacy of a pneumococcal capsular

polysaccharide-specific antibody was associated with

modulation of the cellular response to pneumococcus

in the lungs of mice with pulmonary infection [9�]. This

finding suggested that the well-documented ability of

serum therapy to ameliorate fever and other clinical

symptoms of pneumococcal pneumonia [10] could have

reflected a downregulation of the host inflammatory

response (or damage control). Perhaps the observation

that pneumococcal pneumonia was only responsive to

serum therapy with the homologous capsular polysacchar-

ides-specific antiserum in the first three days of symptoms

indicated that its capacity to mediate immunomodulation

was limited to the early stages of disease. Antibodies to

other microbes, including C. neoformans and Histoplasma
capsulatum are able to modulate the cellular immune

response to pulmonary infection (see [11�]). Studies of

antibody action have shown that the older dichotomous

view that antibody immunity was only effective against

extracellular pathogens, whereas cellular immunity was

responsible for immunity against intracellular pathogens

has been deconstructed by evidence that antibody

reagents can be effective against classical intracellular

pathogens, such as Mycobacterium tuberculosis, C. neofor-
mans, H. capsulatum and scores of viruses [11�].

Monoclonal antibody-based agents
Currently, there is only one antibody reagent licensed for

use against an infectious disease in the United States —

Palivizumab. Licensed in 1998, Palivizumab is a neutra-

lizing, humanized monoclonal antibody (mAb) to protein

F on respiratory syncytial virus (RSV) that reduced hos-

pitalization for RSV in premature and other high-risk

infants when given as prophylaxis [12]. Because the

antiviral activity of Palivizumab was associated with a

reduction in inflammatory mediator release in a murine

model of RSV [13�], its mechanism of action probably

involves immunomodulation. Despite ongoing controver-

sies about the cost and target population of Palivizumab,

its success in reducing the risk of RSV in high-risk infants

promoted the development of second generation reagents

and vaccine candidates [14].

Recently, Mycograb, a human recombinant antibody

fragment was shown to significantly improve the response

to amphotericin B in patients with invasive candidiasis

[15��]. Patients who received Mycograb and amphotericin

B showed a higher rate of complete overall response on

day 10 of therapy, a significantly better mycological

response and less Candida-attributable mortality than

patients who received amphotericin B and a placebo.
www.sciencedirect.com
Mycograb was safe and well-tolerated; however, episodes

of hypertension occurred more frequently in patients who

received Mycograb than those who received a placebo.

Mycograb is a recombinant antibody fragment lacking an

Fc region, and is produced from a human anti-Hsp90

(heat-shock protein 90) cDNA library with an epitope

that inhibits fungal Hsp90, NILKVIRKNIVKK [16]. The

development of this antibody was driven by the observa-

tion that recovery from invasive candidiasis was asso-

ciated with the appearance of antibodies to a 47 kDa

determinant [17] that was found to be a fungal homolog

of human Hsp90. Mycograb was tested in patients in

comparison to standard therapy. As such, the question of

whether or not its efficacy in vivo depends on synergy

with antifungal drugs is unanswered. Nonetheless, the in
vitro activity of Mycograb (with amphotericin B and other

antifungal agents) against resistant Candida and other

fungal species [18,19] suggests it could hold promise as

a broadly active antifungal agent.

The first mAb used to treat a fungal disease in humans

was the mouse mAb 18B7, which binds to the crypto-

coccal capsular polysaccharide glucuronoxylomannan

[20��,21]. Extensive preclinical testing revealed that

18B7 augmented host defense mechanisms against C.

neoformans, in vitro and in vivo (reviewed in [22]). In

the clinical trial, administration of a single 1 mg kg�1

dose of 18B7 to HIV-infected patients treated for cryp-

tococcal meningitis was well-tolerated and was associated

with a reduction in serum glucuronoxylomannan levels

[20��]. The tolerability and promising effect of this

reagent in HIV-infected patients bolsters the prospect

that immunotherapeutic interventions have the potential

to augment host immune mechanisms in the treatment of

infectious diseases in immunocompromised individuals.

Now, mAbs have been developed against a myriad of

microbes responsible for emerging infectious diseases

and/or those that cause disease in the setting of immune

impairment. A human mAb to Bacillus anthracis toxin has

recently successfully completed Phase I trials and stands

as a potentially useful therapeutic in the event of an

anthrax biological attack [23�]. Several human mAbs to

the SARS (severe acute respiratory syndrome) corona-

virus have been developed that might be useful if the

disease reappears [24�]. Remarkably, these mAbs were

developed to the point that clinical use was possible in

less than five years. Human mAbs were highly effective

against experimental shiga-toxin producing Escherichia
coli in piglets [25]. Studies in experimental models have

revealed that the efficacy of certain mAbs depends on

intact cellular immunity (see [11,26]). As such, the use of

mAbs in immunocompromised patients could depend on

whether its efficacy requires the immune function (a

subset or element of) that is lacking in the relevant

patient(s). mAbs have the advantage of homogeneity

and high specific activity. Although there is concern that
Current Opinion in Microbiology 2006, 9:489–495
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mAbs could have limited usefulness for microbes that

demonstrate high antigenic variation and mutability,

combinations of mAbs have shown promise in overcom-

ing this limitation [27��].

Polyclonal antibody-based agents
Another type of antibody-based therapy for infectious

diseases consists of polyclonal immunoglobulin-based

agents, including intravenous immunoglobulin (IVIG)

and specific immune globulins (sIgs, sometimes called

hyperimmune globulin). Treatment and prevention of

rabies depends entirely on the combination of two immu-

nomodulators: rabies vaccine and rabies immune globulin

[28]. The sIgs are the mainstay of managing exposures to

viral agents in susceptible individuals who are not candi-

dates for live vaccines, such as pregnant women and

patients with impaired immunity [29]. A polyclonal pre-

paration derived from individuals with high serum anti-

body titers to staphylococcal fibrinogen-binding proteins,

serine aspartate dipeptide repeat G and clumping factor A

is under clinical development [30�]. An evaluation of this

preparation in very low-weight infants revealed a trend

toward fewer staphylococcal and candidal infections [31].

The ability of preformed antibodies to provide immediate

defense against infectious diseases in susceptible indivi-

duals provides a potent justification for the use of anti-

bodies, for example, in the setting of an act of bioterrorism

or of epidemic diseases [32].

The use of IVIG in infectious diseases remains contro-

versial. IVIG has also been shown to be useful for the

treatment of Kawasaki Disease, cytomegalovirus pneu-

monitis in organ transplant recipients [33�] and parvovirus

in patients with HIV infection [34]. IVIG is also useful in

patients with toxic shock syndrome [35], West Nile virus

infection [36] and sepsis [37], and is also invaluable in the

management of patients with hypogammaglobulinemia

who are at increased risk for infectious diseases, such as

enteroviral meningitis [33�].

Non-specific immunomodulators: cytokines
as antimicrobial tools
Cytokine-based therapies contrast with antibody reagents

in that they are not pathogen-specific. The rationale for

the use of cytokines as adjunctive immunomodulators for

infectious diseases is based on the concept that replace-

ment or augmentation of natural mediators of host

defense should enhance the antimicrobial effect of host

immune mechanisms and/or antimicrobial agents.

Despite the logical basis for this concept, the potential

antimicrobial power of these agents has been difficult to

harness clinically. Currently, there are only a few exam-

ples of the use of adjunctive cytokines against infectious

diseases. Notable exceptions are the use of recombinant

a-interferons and nucleoside analogs for hepatitis B virus

(HBV) and pegylated interferons and ribavirin for hepa-

titis C virus (HCV) [38]. The efficacy of interferons
Current Opinion in Microbiology 2006, 9:489–495
against HCV has been attributed to the induction of

Th1 immunity [39]. A side effect of interferon-based

therapies that limits their use in certain patients is

depression [40�].

The effecacy of adjunctive interferon-gamma 1b

(IFN–g1b) with amphotericin B was studied in a

Phase II, double-blind placebo-controlled trial for

AIDS-associated cryptococcal meningitis [41��]. There

was a trend towards mycological response and clinical

improvement among interferon recipients, with 26%

showing improvement, compared to 8% of placebo-con-

trolled subjects. Although this difference did not reach

statistical significance, the trend towards a beneficial

effect of adjunctive interferon is encouraging, calling

for further, larger scale studies and studies to identify

those patients in whom adjunctive immunotherapy could

be beneficial. The rationale for interferon therapy for

cryptococcosis has a strong basis in preclinical studies in

mice [42] and a human study showing an association

between cerebrospinal fluid levels of IFN–g and treat-

ment in HIV-infected patients with cryptococcal menin-

gitis [43�]. In light of the established benefit of interferon

therapy for the prevention of bacterial diseases in patients

with chronic granulomatous disease [44], adjunctive inter-

feron could hold promise as an adjunctive agent for HIV-

associated cryptococcal meningitis. However, the absence

of surrogate markers that can predict the patients who

would benefit from interferon therapy underscores the

potential pitfalls in study-design and patient selection

for clinical trials. This is particularly problematic for cryp-

tococcal meningitis, a disease that can occur in the case of

weak or reconstituted immunity in patients with HIV

infection [3]. The failure to demonstrate the effect of a

pro-inflammatory immunomodulator could reflect the

induction of an excessive inflammatory response that pro-

motes disease. Figure 1 provides a schematic interpretation

of the use of IFN–g therapy in the context of the Damage-

response framework. Depending on the immunological

status of the affected patient, adjunctive IFN–g therapy

could be beneficial or detrimental.

Preclinical data, demonstrating the importance of Th1

helper T-cell responses in protection against fungi, in

experimental models has led to the proposal that adjunc-

tive cytokines be used with antifungal agents for invasive

fungal infections [45]. The rationale for the use of colony

stimulating factors (CSFs), derived from granulocytes

(G-CSF) or macrophages (GM-CSF), is in part based

on their ability to alleviate neutropenia [45]. Data on

the clinical use of adjunctive CSFs for fungal diseases is

limited to small studies or case reports (see [45] for

review). Nonetheless, administration of GM-CSF with

antifungal agents in patients with invasive fungal infec-

tions was associated with decreased patient mortality or

better response rates compared to a placebo [46] or

antifungal therapy alone [47]. In view of the small number
www.sciencedirect.com
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of affected patients and medical and ethical considera-

tions in the design of randomized, double-blind placebo-

controlled studies, it is possible that safe, well-tolerated

candidate immunomodulators that are beneficial in pre-

clinical studies will find their way into the antimicrobial

armamentarium through compassionate use protocols and

salvage therapy [48��].

Anti-inflammatory immunomodulators
The rationale for the use of adjunctive pro-inflammatory

cytokines and certain antibodies for treating infectious

diseases is to enhance the host response. However, a

relatively underappreciated principle of microbial patho-

genesis is that the damage resulting from host–microbe

interaction can be the result of an overly exuberant host

response [2]. Hence, there is a rationale for use of ther-

apeutic interventions that dampen or reduce, as well as

those that enhance or augment, the inflammatory

response. It has been proposed that the beneficial effect

of IVIG against inflammatory diseases involves engage-

ment of the inhibitory Fc receptor, which downregulates

the inflammatory response [49]. Probiotics, which are live

bacteria derived from the human gastrointestinal tract,

have been used as therapy for inflammatory bowel dis-

eases, including antibiotic-associated diarrhea [50]. Pro-

biotics remain outside the established antimicrobial

armamentarium and are fraught with the potential for

harm in immunocompromised hosts [51]. Nonetheless, it

is logical to postulate that replacement and/or enhanced

activity of the human microbiota could be beneficial for

treatment of infectious diseases that reflect a failure of

mucosal surfaces or of the innate mechanisms they bolster

to protect against microbe-mediated damage (see [1��]).

Corticosteroids are important anti-inflammatory agents.

Despite decades of controversy, corticosteroids have been

validated as an important adjunct to antimicrobial therapy

for bacterial meningitis [52�], HIV-associated Pneumocystis
pneumonia [53] and tuberculosis meningitis [54�].
However, their mechanism of efficacy in these diseases

might not be a direct anti-inflammatory effect [55].

Intriguingly, agents which have been proposed to have

anti-inflammatory effects are macrolide antibiotics [56�].
The ability of macrolides to suppress the release of

inflammatory mediators from phagocytes in vitro has been

recognized for some time, but the clinical relevance of

this phenomenon remains uncertain. Nonetheless, it has

been hypothesized that the benefit of low-dose macrolide

therapy in chronic pulmonary diseases, could be as a

result of macrolide-induced reductions in levels of inflam-

matory cytokines, neutrophil recruitment and biofilm

formation, which have been observed in animal models

and/or in vitro [57]. In contrast to macrolides, amphoter-

icin B [58] and penicillin [59] induce the release of

inflammatory mediators in vitro through Toll-like recep-

tor 2 (TLR2)-mediated stimulation. The inflammatory

properties of these drugs raise the question of whether
www.sciencedirect.com
their immunomodulatory properties have an independent

contribution to their therapeutic efficacy.

Conclusions: the future of adjunctive
immunomodulators as antimicrobial tools
The future use of adjunctive immunomodulators for

infectious diseases requires a better understanding of

microbial pathogenesis and the relative need for immune

activation versus immune modulation in the context of

the immune response of the affected individual. In light

of the fact that certain infectious diseases reflect an

insufficient response, whereas others reflect an overly

exuberant response, different types of interventions are

likely to be required, depending on the immune status of

the patient (Figure 2). The Damage-response framework

can be a useful tool when considering the type of inter-

vention that might be successful, but such predictions

require experimental validation to be translated to the

bedside and clinic.
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