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Teaser Zika clinical outcomes might be nefarious impacting newborns for a lifetime. There is
still no drug available to cure Zika. We provide guidance to help understand and advance

the search for a cure.
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Despite the recent outbreak of Zika virus (ZIKV), there are still no approved

treatments, and early-stage compounds are probably many years away

from approval. A comprehensive A–Z review of the recent advances in

ZIKV drug discovery efforts is presented, highlighting drug repositioning

and computationally guided compounds, including discovered viral and

host cell inhibitors. Promising ZIKV molecular targets are also described

and discussed, as well as targets belonging to the host cell, as new

opportunities for ZIKV drug discovery. All this knowledge is not only

crucial to advancing the fight against the Zika virus and other flaviviruses

but also helps us prepare for the next emerging virus outbreak to which we

will have to respond.

Introduction
Zika virus (ZIKV) remains a global health concern. Originally discovered in Africa in 1947 [1],

ZIKV became an epidemic 60 years later, reaching several tropical regions of the Americas, Africa

and Asia. Despite causing mild symptoms such as fever, rashes and conjunctivitis, the major

concern about ZIKV regards the severe neurological disorders, such as microcephaly, craniofacial
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disproportion, spasticity, seizures, irritability and other brainstem

dysfunctions [2,3]. In 2016, infant head computed tomographic

findings, of subjects infected during pregnancy, confirmed the

causal relationship between microcephaly and Zika infection [3]. A

recent study by Yuan and co-workers demonstrated that a single

mutation (S139N) in the pre-membrane (prM) structural protein

increased ZIKV infectivity in neural progenitor cells (NPCs), mak-

ing the virus more virulent [4]. This mutation arose in the French

Polynesia strain, and it has contributed to the increased incidence

of microcephaly and higher mortality in neonates, according to

experimental assays [4]. The disorders attributed to Zika infection

mainly affect infants but can also impact adults. There have been

ZIKV-related cases of Guillain–Barré syndrome [5], myelitis [6],

uveitis [7] and meningoencephalitis [8] reported in adults.
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Scheme of Zika virus (ZIKV) surface, structural and nonstructural proteins. (a) Su
Chimera package [171], http://www.rbvi.ucsf.edu/chimera, based on PDB ID 5IRE), 
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polymerase domains), built using the VMD program [172] (http://www.ks.uiuc.ed
targets, but NS5 methyltransferase is attached to the NS5 polymerase domain to f
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polyprotein, which is processed by host and virus-encoded proteins (5). Followin
induced membranes where viral replication takes place (6). The progeny RNA (+) s
within the endoplasmic reticulum (ER) (7). The resultant immature virions are tran
mature infectious particles (8) that are released by exocytosis (9). In the pink boxes a
lifecycle.
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Currently, neither a specific antiviral drug nor a vaccine is

available for treating or preventing ZIKV infection. However, there

are several promising drug targets encoded by the virus or present

in host cells. There have been several reports on compounds found

to have activity against ZIKV and its proteins. Here, we present a

comprehensive A–Z review of the recent advances in ZIKV drug

design, including viral and host cell inhibitors and several experi-

mental and computational techniques that have been applied in

these studies. This information will contribute to the design of

drugs against ZIKV and related viruses.

Structural features of ZIKV proteins
ZIKV is a spherical, enveloped virus, with an icosahedral-like

symmetry [9] (Fig. 1a). Belonging to the genus Flavivirus of the
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rface-shaded depth cued representation of mature ZIKV (built using UCSF
showing the icosahedral-like symmetry arrangement of surface proteins. (b)
IKV encodes a large polyprotein, which after processing yields three structural
otease and helicase domains; NS4A; NS4B; NS5 methyltransferase and RNA
u/Research/vmd/). NS5 domains are represented separately, as two distinct
orm the full-length NS5. (c) ZIKV infectious life cycle: the virus is attached (1)
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Flaviviridae family [10], ZIKV carries a positive-sense single-strand-

ed RNA genome, encoding a large polyprotein, which after proces-

sing by host and viral proteases yields three structural and seven

nonstructural (NS) proteins (Fig. 1b). Envelope protein (E), mem-

brane protein (M), which is expressed as prM, the precursor to M,

and capsid (C) are the structural proteins, which form the virion.

The NS proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5) are

essential for genomic replication and modulation of host immu-

nity [10] (Fig. 1b). Figure 1c presents an overview of the replication

process of ZIKV in the infected cell, showing the marked steps of

the replication, which can be inhibited by the compounds dis-

cussed below in this review. We also present a special section (see

supplementary material online: viral entry and replication mech-

anisms).

Initially, before the availability of ZIKV structures in early

March 2016, there were several efforts to develop homology

models of the ZIKV proteins based on close homologs such as

dengue virus (DENV; see Glossary) and other flaviviruses [11–13].

Since late March 2016, ZIKV protein structures have been deter-

mined mostly by X-ray crystallography and have been made

available in databases such as the Protein Data Bank (PDB) [14]:

NS1, NS2B–NS3 protease, NS3 helicase, NS5 methyltransferase,

NS5 polymerase, NS5 full-protein and envelope glycoprotein (Ta-

ble 1). Among them, NS2B–NS3 protease, NS3 helicase and NS5

methyltransferase structures are available with ligands, ATP or

RNA; this is very useful for ligand-binding-site identification in

virtual screens versus apo conformations.

These protein structures are fundamental when performing

experimental and computational studies. Figure 2 shows some
TABLE 1

Available ZIKV protein 3D structures in the PDB

ZIKV protein PDB ID

NS1 5X8Y (mutation), 5GS6, 5K6K, 5IY3

NS2B–NS3 protease 5TFN, 5TFO, 5GXJ, 5GPI (with reverse peptide
inhibitor), 5H4I (with a benzimidazole fragment),
5GJ4 (with a peptide), 5T1V (apo form), 5LC0
(with a boronate inhibitor covalently bound),
5YOD (with benzoic acid), 5YOF (with dipeptide
inhibitor), 5H6V (with dipeptide inhibitor)

NS3 helicase 5VI7, 5Y4Z (with AMPPNP), 5JPS, 5MFX (with RNA),
5TXG, 5JWH, 5K8I, 5K8L, 5K8T (with GTP), 5K8U,
5GJC (with ATP), 5JRZ, 5JMT, 5GJB (with ssRNA)

NS5 methyltransferase 5VIM, 5ULP (with SAM analog), 5WXB (with SAH),
5WZ1 (with SAM), 5WZ2 (with SAM and RNA
analog), 5MRK (with sinefungin), 5M5B, 5GOZ
(with GTP and SAH), 5GP1 (with GTP and SAH),
5TFR, 5KQR (with SAM), 5KQS (with SAM and RNA
analog)

NS5 polymerase 5U0C, 5WZ3, 5U04, 5TMH

NS5 full 5U0B, 5TFR

Envelope 5JHM, 5LBV (with an antibody), 5JHL (with an
antibody), 5KVD (with antibody), 5KVE (with
antibody), 5KVF (with antibody), 5KVG (with
antibody), 5GZN (with antibody), 5GZO (with
antibody), 5VIG (with antibody), 5VIC (with
antibody), 5LBS (with antibody)

Capsid 5YGH, 5Z0R, 5Z0V
ZIKV protein 3D structures and their ligand and or substrate

binding pockets. The substrate binding pocket of ZIKV

NS2B/NS3 protease (NS2B residues: S81, D83, K54 and NS3pro

residues: D75, H51, S135, G133, G151, D129, Y161) (Fig. 2a) was

based on the co-crystallized compound 1H-1,3-benzodiazol-1-

ylmethanol [15] and a boronate inhibitor [16], which bind to a

similar pocket. NS3 helicase presents two binding sites, one

encompasses the RNA strand and the other is where the ATP

molecule binds (Fig. 2b) [17]. The full-length NS5 protein contains

two domains, representing distinct targets: the NS5 methyltrans-

ferase and NS5 polymerase [18]. The NS5 polymerase domain has

three adjacent binding sites: the active site, the RNA site and the

NTP channel [18] (Fig. 2c). The NS5 methyltransferase domain has

two substrates: SAM, a co-substrate involved in methyl group

transfer, and GTP, a substrate for RNA synthesis [18]. Consequent-

ly, the accessibility of these two substrates, together with a con-

served catalytic tetrad of Lys61, Asp146, Lys182, Glu218, forms the

active site [18] (Fig. 2d). ZIKV envelope protein is composed of

three distinct domains: the b-barrel-shaped domain (DI), the

finger-like domain (DII) and the immunoglobulin-like domain

(DIII) (Fig. 2e). Domain II is responsible for the dimerization

[19]. A binding site between DI and DIII, enclosing a hydrophobic

cavity around a flexible linker, was computationally predicted

[20]. The protein–protein binding pocket is composed of residues

from DI and DIII (Fig. 2e). The crystallographic structure of the

capsid protein was recently solved [21,22]. It contains four a
helices in each monomer, and it forms a dimer (Fig. 2f). We

predicted the capsid pocket druggability using the PockDrug server

[23], which identified three pockets: pocket 1 (between a2 and a3
helices), pocket 2 (between N-terminal and a1 helix of the mono-

mers) and pocket 3 (between a4 helices of the monomers).

Viral proteins as drug targets
The viral proteins play an important part in virus infection and

replication processes. The E glycoprotein is associated with virus

adsorption, internalization and fusion with the host cell, as well as

with the development of neutralizing humoral immunity. The prM

protein has several roles in the flavivirus lifecycle, such as assisting in

the chaperone-mediated folding of the E protein and preventing

premature fusion during virion egress [24]. The main role of the C

protein is the assembly and packaging of the viral RNA genome to

form the viral nucleocapsid, in addition to acting as elements of viral

particle assembly when associated with other proteins on lipid

droplets and the endoplasmic reticulum (ER) [25].

The function of NS flavivirus proteins is still not completely

understood but can be summarized as follows. NS1 has several

roles, including flaviviral replication and virion maturation [26].

The NS2B subdomain is required for the proper formation of the

substrate recognition site of the NS3 protease [27]. The NS3 heli-

case (NS3h) protein promotes the separation of RNA strands

during viral replication and unwinds the RNA secondary structure

in the 30 nontranslated region [28]. Together with NS2B, NS3

protease is responsible for cleavage and posttranslational modifi-

cation of the viral polyprotein [16,29]. Flavivirus NS4A and NS4B

proteins compose the ER membrane-associated replication com-

plex [30–32]. DENV NS4B has been shown to interact with NS3h

and dissociate it from single-stranded RNA to modulate RNA

synthesis [33]. ZIKV NS4A and NS4B cooperatively suppress the
www.drugdiscoverytoday.com 1835
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FIGURE 2

Ribbon-representation of some of the ZIKV protein 3D structures. (a) NS2B–NS3 protease, highlighting the substrate/ligand-binding pocket occupied by a
boronate inhibitor [16] and the compound 1H-1,3-benzodiazol-1-ylmethanol [15]. (b) NS3 helicase, highlighting the RNA and ATP binding sites [17]. (c) NS5
methyltransferase domain, highlighting the active site, SAM/SAH- and GTP/cap-binding sites. (d) NS5 polymerase domain, emphasizing the active site, NTP and
RNA binding sites. (e) Envelope protein [19] and its b-barrel-shaped domain I (DI), finger-like domain II (DII), immunoglobulin-like domain III (DIII) and a ligand-
binding pocket between DI and DIII [20]. This predicted binding pocket encloses a hydrophobic cavity around the flexible linker joining DI and DIII. (f) Capsid
protein [21,22] and the predicted ligand-binding pockets. All these 3D structures are available in PDB and the figures were built using the VMD program [172]
(http://www.ks.uiuc.edu/Research/vmd/).
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host’s Akt/mammalian target of rapamycin (mTOR) pathway,

inhibiting neurogenesis and inducing autophagy [34]. For these

reasons, NS4B is an important target and its inhibition could

impair viral propagation. Unfortunately, no crystal structures of

ZIKV NS4B are available (as of 25th June 2018). NS5 contains a

methyltransferase domain, which methylates the RNA cap struc-

ture, and an RNA-dependent RNA polymerase domain, which

synthesizes the viral RNA and is thus essential to ZIKV survival

and establishment of the infection in host cells [18].
1836 www.drugdiscoverytoday.com
The innate immune response is the initial line of host defense,

where type I interferon (IFN) production and signaling have a

central role. Regarding this, NS5 proteins have been shown to

inhibit the IFN signaling to evade host antiviral defense [35]. The

NS5 protein uses different mechanisms (depending on the specific

flavivirus) to target this signaling pathway. For Tick-borne enceph-

alitis virus (TBEV) and West Nile virus (WNV), NS5 proteins inhibit

signal transducer and activator of transcription (STAT1) phosphor-

ylation and nuclear translocation [36], this action was related to

http://www.ks.uiuc.edu/Research/vmd/
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the polymerase domain [37]. For Japanese encephalitis virus (JEV),

NS5 blocks tyrosine phosphorylation of tyrosine protein kinase

Tyk2 [38]. For yellow fever virus (YFV), NS5 can bind to STAT2, but

only after IFN treatment, and this prevents STAT2 binding to IFN-

stimulated responsive promoter elements present on IFN target

genes [39].

A recent study showed that ZIKV NS5 expression resulted in

proteasomal degradation of the IFN-regulated transcriptional ac-

tivator STAT2 from humans, but not mice, resembling the DENV

NS5 mode of action [40,41]. Particularly for ZIKV, a docking study

was carried out to predict the protein–protein interactions be-

tween NS5, seven in absentia homolog (SIAH2) protein and STAT2

proteins. The study suggests that: (i) NS5 recruits SIAH2 for the

ubiquitination-dependent degradation of STAT2; and (ii) the NS5

amino acid residues involved in interaction with SIAH2 and/or

STAT2 were found to be conserved across related flaviviruses [42].

Another structural study of ZIKV NS5 indicated that the small-

molecule inhibitor-binding site of DENV3 NS5 is structurally

conserved in ZIKV NS5, indicating a potential mechanism for

functional inhibition of ZIKV NS5 [43]. In principle, small mole-

cules interfering with the function of any ZIKV viral proteins have

potential in restricting virus replication and preventing the prog-

ress of ZIKV-infection-related pathogenesis and diseases. Here, we

summarize several inhibitors targeting viral proteins that have

been identified from high-throughput cell-based screening, in

silico docking or compound library screening. Some of them have

even undergone in vivo testing.

Envelope glycoprotein inhibitors
A polyphenol present in green tea, epigallocatechingallate

(EGCG), has been shown to have antiviral activity for many

viruses, such as HIV, herpes simplex virus (HSV), influenza virus

and hepatitis C virus (HCV) [44]. Recently, Carneiro and co-work-

ers, through in vitro assays (in Vero E6 cells), showed that EGCG

also inhibited the entry of ZIKV into the host cell by at least 1 log

(>90%) at higher concentrations (>100 mM). The authors pro-

posed that the inhibition is probably related to the direct interac-

tion of EGCG with the lipid envelope, leading to a subsequent

destruction of the virus particle [44]. Conversely, EGCG contains

the catechol group, which is a well-known PAIN substructure (pan-

assay interference compound) that promiscuously or nonspecifi-

cally inhibits many different targets [45–47].

A subsequent computational study by Sharma and co-workers,

using induced-fit docking, molecular dynamics (MD) and drug-

like property calculations, revealed that EGCG binds to a hydro-

phobic site located between DI and DIII, close to a flexible linker

(Fig. 1e). Using MD simulations, they showed that EGCG blocks

the major conformational change during the membrane fusion

process [20]. Another natural product, nanchangmycin, from

Streptomyces nanchangensis, proved to be a potent inhibitor of ZIKV

in HTS assays using human cells [48], with an IC50 0.1 mM (Fig. 3a).

To determine whether nanchangmycin was blocking a pre- or

post-entry step in the viral lifecycle, the authors treated cells with

the drug and removed the drug 4 h post-infection (hpi) and

monitored the level of infection (24 h later). Nanchangmycin

inhibited infection, which suggests that it blocks an early step

in the viral lifecycle [48]. Unfortunately, nanchangmycin contains

a reactive Michael acceptor, which is also a well-known PAINS
substructure [49]. Fernando and co-workers, through homology

modeling, docking and MD simulation approaches, predicted two

compounds: ZINC33683341 and ZINC49605556, could inhibit

ZIKV E protein. These two small molecules preferentially bind

to the glycan-binding domain, related to the virulence of the virus.

The antiviral activity of ZINC33683341 was confirmed by cell

culture assay (in Vero cells) [50].

Capsid protein inhibitors
Although the capsid protein has emerged as a promising target for

antiflaviviral agents, few capsid inhibitors have been identified to

date. The compound ST-148 has been shown to interact with the

capsid protein and was identified as a potent inhibitor of all four

serotypes of DENV in vitro and in vivo, reducing viremia and viral

load in vital organs [24]. Characterization of the mode-of-action of

ST-148 showed that it directly targeted the capsid protein and

presented bimodal antiviral activity affecting assembly and/or

release and entry of infectious DENV particles [51]. Another ex-

ample of a flaviviral capsid inhibitor is the biotinylated derivative

of compound SL209, which inhibited HCV infection, blocking the

core dimerization with an IC50 of 2.80 mM [52]. Both studies

support the hypothesis that inhibitors of viral capsid formation

might constitute a new class of antiviral agents, and therefore

could also be applicable to ZIKV.

NS2B–NS3 protease inhibitors
Natural products like polyphenols are known to have antiviral

activityagainst influenza virus,coronavirus(CoV),DENVand others

[53–56]. In this way, many natural products have been tested against

NS2B–NS3 protease, and some of them were able to inhibit ZIKV

protease activity. In one study, 22 compounds were tested at (the

relatively high concentration of) 100 mM, and seven compounds

were able to inhibit >50% of the protease activity [57]. The IC50s of

these compounds were determined and ranged from 22 to 112 mM

[57]. In another study, five flavonoids and one natural phenol were

tested [58]. The flavonoids were myricetin (IC50 = 1.3 mM), querce-

tin (IC50 = 2.4 mM), luteolin (IC50 = 2.7 mM), isorhamnetin

(IC50 = 15.5 mM), apigenin (IC50 = 56.3 mM) and the natural phenol

curcumin (IC50 = 3.5 mM). These polyphenols inhibit the enzyme in

a noncompetitive mode, which means that they could perhaps be

allosteric inhibitors. Docking studies showed that the compounds

are predicted to bind to a pocket on the back of the active site of ZIKV

NS2B–NS3 [58]. However, curcumin, quercetin and other flavonoids

have been shown to be promiscuous inhibitors, for example via

colloidal aggregation [59–61]; curcumin also contains reactive Mi-

chael acceptors and quercetin has a catechol, a well-known PAINS

substructure, which might make these compounds less favorable.

An HTS assay was developed to test compounds that inhibit the

interaction between NS3 and the NS2B N-terminal fragment [62].

Then, a library of FDA-approved drugs and investigational drugs

(2816 drugs) was screened using this assay, and 23 compounds

produced an IC50 below 15 mM, of which 12 were considered

PAINS. The remaining 11 compounds were tested for their prote-

ase inhibition activities, and three could inhibit with IC50 values

ranging from 1.1 to 15.9 mM. The three compounds were tested

against ZIKV, DENV, WNV, JEV and YFV. They presented inhibi-

tory activity close to the nanomolar level, whereas temoporfin

(Fig. 3b) displayed an EC50 (half-maximal effective concentration)
www.drugdiscoverytoday.com 1837
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FIGURE 3

Chemical structures of selected Zika virus (ZIKV) protein inhibitors. (a) Envelope glycoprotein inhibitor: nanchangmycin (IC50 = 0.1 mM) [48]. (b) NS2B–NS3
protease inhibitors: temoporfin (IC50 = 1.1 mM) [62] and NSC157058 (IC50 = 0.82 mM) [66]. (c) NS3 helicase inhibitor: suramin (EC50 = 0.42 mM), which was tested
only in a cell-based assay in ZIKV [75]. (d) NS5 polymerase inhibitors: sofosbuvir (IC50 = 7.3 mM) [105], 2-C-ethynyl-UTP (IC50 = 0.46 mM) [99] and DMB213
(IC50 = 5.2 mM) [105]. (e) NS5 methyltransferase inhibitor: sinefungin (IC50 = 1.18 mM) [90,91].
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for all flaviviruses tested at low nanomolar concentrations. The

therapeutic indices for all three compounds were high, because

their CC50 (concentration that inhibits 50% of mammalian cell

proliferation) was considerably higher than their EC50. The com-
1838 www.drugdiscoverytoday.com
pounds were also able to inhibit ZIKV replication in placental

epithelial and neuronal cells and to inhibit viral polyprotein

cleavage. Temoporfin was tested in a viremia mouse model and

a lethal mouse model and was able to inhibit viremia and protect
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83% of the mice; the mice that survived did not present any signs

of neurological disorder [62]. A similar study was done using

structure-based virtual screening (VS) of 8277 compounds from

the DrugBank database, and the top 100 candidates were identified

[63]. From these, eight clinically approved compounds belonging

to different drug classes were selected for further validation stud-

ies. From the eight selected compounds, five were validated as

NS2B–NS3 protease inhibitors. Then, the compounds novobiocin,

lopinavir, ritonavir and rifampicin which had favorable safety

profiles and could be administrated to pregnant women were

selected for phenotypic screening. Two compounds were able to

inhibit ZIKV replication. Because the compound novobiocin had a

higher selectivity index, it was tested in vivo. Dexamethasone

immunosuppressed mice with disseminated ZIKV infection and

novobiocin treatment had a significantly higher survival rate,

lower mean blood and tissue viral loads, as well as less severe

histopathological changes than untreated controls [63].

A similar strategy is to appropriate other flavivirus active com-

pounds to inhibit ZIKV, because they are closely related in terms of

the sequence and structure of their proteins [64]. Based upon a

literature review, 11 drugs were selected to be tested in ZIKV if they

could match the following criteria: (i) known toxicity profile in

humans and pregnancy; (ii) known broad-spectrum antiviral ac-

tivity; (iii) known antiviral activity against flavivirus or another

RNA virus; (iv) coverage of a broad range of indications and drug

classes. Bromocriptine presented inhibitory activity in a cytopath-

ic-effect inhibition assay, virus-yield-reduction assay and plaque-

yield-reduction assay. The drug was predicted to bind to NS2B–NS3

protease through molecular docking studies and also presented

inhibition of the proteolytic activity of the enzyme [64]. Twenty-

seven HCV NS3–NS4A protease inhibitors were tested in ZIKV

NS2B–NS3; ten presented IC50 values below 50 mM. The best

two inhibitors were tested to determine their inhibition type,

and they presented competitive inhibition profiles, meaning that

they might bind at the active site [65]. Aprotinin, a 58 amino acid

bovine trypsin inhibitor, previously tested against WNV protease,

also inhibits ZIKV protease (IC50 = 70 nM), and molecular model-

ing studies predicted that the inhibitor probably blocks the inter-

actions of NS3 and NS2B [66]. By contrast, in our analysis of crystal

structures of WNV protease with bovine pancreatic trypsin inhibi-

tor (PDB ID 2IJO) [67] and of DENV protease bound to aprotinin

(PDB ID 3U1J) [68], these types of inhibitors bind to and occlude

the substrate site. A focused library of protease inhibitors that bind

to WNV exosites was tested, and �700 structurally similar com-

pounds were screened [66]. The best inhibitors were NSC157058

(IC50 = 0.82 mM) (Fig. 3b), NSC86314 (IC50 = 0.97 mM) and

NSC716903 (IC50 = 1.12 mM). They were also tested against furin,

a human serine protease with a cleavage sequence preference

similar to those of flaviviral proteases, and they showed no effect

at 100 mM. These compounds decreased the viral yield in neuronal

precursor cells. The best inhibitor, NSC157058, was tested using an

in vivo mouse model and decreased the viremia by tenfold; unfor-

tunately, it has a very unfavorable pharmacokinetics profile [66].

Brecher et al. developed an assay to analyze the conformational

changes in DENV NS2B–NS3 protease using luciferase [69]. They

performed a VS assay using an allosteric site conformation that is

present only in the enzyme’s inactive state. Twenty-nine com-

pounds were selected from a VS pipeline to be tested in a protease
inhibition trial, of which three were subsequently selected to be

tested in the allosteric assay. Only NSC135618 was able to inhibit

the protease. The same compound also inhibited viral replication

of DENV, ZIKV, WNV and YFV [69]. Crystal structure elucidations

and MD studies have been undertaken to further understand the

interactions and conformational changes of the protein bound to

its inhibitors. The inhibitor complex seen in the crystal structures

could provide a model for assemblies formed at the site of poly-

protein processing, guiding future drug discovery processes

against ZIKV protease [15,16,70].

NS3 helicase inhibitors
Helicase displays ATPase and RNA triphosphatase (RTPase) activi-

ties. There are few studies regarding NS3h inhibitors, mainly using

VS, but they are not experimentally validated. Although we have

recently had some promising preliminary results in our own

virtual screens against ZIKV NS3h, developing drugs that target

ZIKV NS3h could involve significant hurdles. For instance, the

accessible pocket(s) within the active site of the NS3h–RNA com-

plex is relatively shallow, and previous efforts to discover specific

inhibitors of DENV NS3h have been challenging [71]. A potential

strategy to deal with these issues could involve targeting other sites

of ZIKV NS3h, such as the putative allosteric site that we discov-

ered in our MD simulations [72]. We are currently performing new

VS against snapshots of ZIKV NS3h that we generated with MD to

test this strategy. Other challenges are related to: (i) the develop-

ment of potent inhibitors, as a result of the lack of the specific

amino acid interaction with ATP nucleobase or ribose ring; and (ii)

the discovery of specific inhibitors, because the host helicase is

within the same SF2 superfamily as NS3h [71].

In an ATPase activity analysis of NS3 helicase, the ATPase

inhibitors resveratrol and quercetin were tested at 150 mM; their

inhibitory effects were 51% and 15% ATPase activity inhibition,

respectively [73]. Suramin (Fig. 3c), an antiparasitic drug, was

previously characterized as a DENV NS3 helicase inhibitor with

a noncompetitive mode of action [74], and recently it was shown

to inhibit ZIKV replication with EC50 value of 0.42 mM [75].

Albulescu and co-workers suggested through experimental assays

that suramin affected ZIKV binding and/or entry, virion biogenesis

and attachment to host cells [75]. The authors also suggest that

suramin might inhibit the NS3h activity or might affect packaging

by binding to positively charged residues on the capsid pro-

tein [75].

MD simulations of NS3h where performed to study the proteins

flexibility and conformations preferences [72]. This work showed

that the RNA binding loop is influenced by the presence of the

RNA strand, being more stable and in a closed conformation, when

RNA is bound to the protein [72]. The different conformations

observed during MD showed a distinct region beneath or behind

the ATP site, which could perhaps be an allosteric site, and could

help guide the discovery or design of new inhibitors. These con-

formations and strategies are guiding new VS experiments in the

OpenZika project, which is being performed on IBM’s World

Community Grid (WCG). OpenZika has been virtually screening

millions of compounds against all of the ZIKV protein structures

(and targets from related flaviviruses) using molecular docking (on

WCG) and QSAR modeling filtering (performed in-house) [76].

This project is ongoing and several compounds are currently being
www.drugdiscoverytoday.com 1839
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assayed that were identified in these virtual screens. Other flavi-

viral NS3 helicase inhibitors such as ivermectin [77] and benzox-

azole have activity against YFV NS3h and DENV NS3h, respectively

[78]. Ivermectin was also reported to inhibit DENV NS5 interaction

with its nuclear transporter importin (IMP) a/b in vitro [79,80]. All

these NS3h agents are also interesting compounds to be tested

against ZIKV NS3h.

NS4B inhibitors
The NS4B protein is known to have transmembrane domains and

is placed in the ER [31]. The biological function of this protein is

not fully established, but it is part of the replication complex (RC),

and some studies have demonstrated that NS4B induces the for-

mation of a membrane web that forms a scaffold for the formation

of the RC [81]. NS4B also interacts with other viral proteins, such as

NS1, NS2B, NS3 and NS4A [33,82–84]. For those reasons, NS4B is a

good target to develop inhibitors. Unfortunately, the search for

NS4B inhibitors faces many challenges, such as poor pharmaceu-

tical properties of the inhibitors, difficulties to find pan-flaviviral

inhibitors and also a high risk of developing resistant viruses [85].

There are few studies regarding ZIKV NS4B protein inhibition

thus far. An aminothiazole derivative (NITD-618) was identified as

a specific DENV inhibitor, capable of inhibiting all four serotypes

(but not closely related flaviviruses); it was identified in an HTS of

1.8 million compounds using a DENV replicon containing the

luciferase gene [86]. NITD-618 faced problems with pharmacoki-

netics in in vivo studies because of its high lipophilicity, and

medicinal chemistry attempts to overcome this issue resulted in

loss of antiviral selectivity against DENV [86]. In another screen

using the NIH clinical collection, a naltrindole analog (SDM25N)

was found to inhibit DENV, and specific NS4B point mutations

(F164L and P104L) conferred resistance against the compound,

indicating that NS4B is probably the targeted protein [87]. A

spiropyrazolopyridone compound was found to inhibit DENV

serotypes 2 and 3 but not 1 and 4. This fact is correlated with

the low identity between NS4B of flaviviruses and even between

different serotypes of DENV [88]. The compound was able to

suppress viremia in a mouse model of DENV serotype 2 infection.

Two compounds (CCG-3394 and CCG-4088) were hits from a

screen against YFV NS4B, and mutations on the K128 residue

conferred resistance to YFV against both of these compounds [89].

NS5 methyltransferase inhibitors
Different types of DENV methyltransferase (MTase) inhibitors

were also tested for ZIKV MTase. The classes of inhibitors tested

were S-adenosyl-L-methionine (SAM) analogs, RNA Cap analogs

and compounds targeting an allosteric site of DENV MTase. S-

adenosyl-L-homocysteine (SAH) and the SAM analog sinefungin

(Fig. 3d) presented IC50 values of 0.43 mM and 1.18 mM, respec-

tively. The Cap analogs inhibited the enzyme with IC50 values

ranging from 72 to 491 mM. The allosteric compounds presented

50% inhibition values of 24 to 221 mM [90]. The structure of ZIKV

MTase with the SAM analog sinefungin was recently elucidated,

and the construction of an inhibitor connecting sinefungin with a

Cap analog attached by a linker was proposed, which could

perhaps grant higher affinity to the protein [91]. VS using a

hydrophobic site close to the SAM pocket was performed with

>20 000 compounds [92]. The ten compounds with the best scores
1840 www.drugdiscoverytoday.com
were selected for experimental screening: four were able to inhibit

viral growth in concentrations below 20 mM and the best inhibitor

presented an IC50 value of 4.8 mM [92].

Jain and co-workers developed a SAM analog that encroaches

into the guanosine triphosphate (GTP)/Cap pocket of ZIKV MTase

[93]. They started from the crystallographic structure bound to

SAM and developed the analog, attaching a 4-fluorophenyl group

that gave the compound the capacity to bind to a part of the RNA

tunnel and to occupy the Cap methylation site [93]. Designing

ZIKV-specific MTase inhibitors is a challenge, as is the case for

DENV and other flaviruses, mainly owing to the selectivity of these

compounds to SAM-binding or SAM-utilizing proteins present in

the host cell, because of the similarity to human RNA and DNA

MTases [29]. Moreover, another issue with the design of competi-

tive MTase inhibitors is the high cellular SAM concentration [94].

Still, these issues have been overcome in the field of kinases [95],

indicating that it could also be feasible for MTases [94].

NS5 polymerase inhibitors
NS5 RdRp remains one of the most promising targets, as demon-

strated by the large number of marketed nucleoside inhibitor (NI)

and non-nucleoside inhibitor (NNI) drugs available for the treat-

ment of HIV-1, cytomegalovirus and hepatitis B and C viruses

[96,97]. Nucleoside analogs, such as the prodrug sofosbuvir, have

been used as part of certain combination therapies that can treat

HCV. Some NIs, like 20-C- and 20-O-methyl-substituted nucleo-

sides, 20-C-fluoro-20-C-methyl-substituted nucleosides, 30-O-meth-

yl-substituted nucleosides, 30-deoxynucleosides, derivatives with a

40-C-azido substitution, heterobase-modified nucleosides and

neplanocins, were tested against ZIKV, and the most promising

inhibitors were the 2-C-methylated nucleosides, with IC50 values

<10 mM [98].

A similar observation was found when ribonucleoside triphos-

phate analogs were tested against NS5 polymerase: the 20-C-meth-

yl- and 20-C-ethinyl-substituted ribonucleoside triphosphates were

the best inhibitors. The compounds were tested for their abilities

to be incorporated into the RNA chain and to terminate its

elongation. The analogs showing both abilities were 20-F-2-C-
ME-UTP (IC50 = 90.76 mM), 20-C-ME-UTP (IC50 = 5.78 mM) and

20-C-ethynyl_UTP (IC50 = 0.46 mM) (Fig. 3e) [99]. ATP analogs

were tested in NS5 polymerase in another study, and the com-

pounds that led to the strongest enzyme inhibition were the 20-C-
methylated ATPs [100]. The best inhibitors presented IC50 values

of 5.6 mM and 7.9 mM [100].

An adenosine analog called BCX4430 inhibited ZIKV in cell

culture, as well as in a mouse model [101]. This compound already

presented broad-spectrum activity against a wide range of RNA

viruses: West Nile, tick-borne yellow fever, Marburg and Ebola

[102,103]. Previous studies suggested that BCX4430 acts on NS5

polymerase, promoting chain termination of viral RNA synthesis

[102]. In a recent study, another adenosine analog and a known

flaviviral NS5 polymerase inhibitor was tested on cell-based assays

in ZIKV. The compound 7-deaza-20-C-methyladenosine (7DMA)

inhibited ZIKV proliferation in Vero cells and in an animal model,

it decreased viremia and delayed morbidity and mortality caused

by ZIKV [104]. Although the authors have not tested this com-

pound against the ZIKV protein, it represents a very promising

candidate [104].
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Nucleoside inhibitors against the polymerase have made great

progress; however, the major challenges for the NI-based antiviral

approach include toxicity and the added complication of being a

prodrug (which requires host kinases to convert it to the triphos-

phate form of NI) [94]. Using a drug repurposing strategy, Xu et al.

tested compounds already used for HCV NS5 polymerase: sofos-

buvir (Fig. 3e), a NI, and DMB213 (Fig. 3e), a NNI [105]. Both

compounds inhibited ZIKV NS5 polymerase with IC50 values of

7.3 mM and 5.2 mM, respectively. Mutations that confer resistance

to nucleoside analog inhibitors in HCV also led to resistance to

sofosbuvir in ZIKV, which was not the case for DMB213 [105].

Mumtaz and co-workers tested sofosbuvir against ZIKV using

Vero, A549 and Huh7 cells, measuring the level of the active sofos-

buvir metabolite by mass spectrometry [106]. Sofosbuvir showed a

cell-type-dependent activity, inhibiting ZIKV with an IC50of �4 mM

(but only in Huh7 cells) [106]. This correlated with differences in the

intracellular concentration of the active metabolite of sofosbuvir,

which was higher in Huh7 cells compared with the other cells. These

results highlight the importance of a careful selection of cell system

for repurposing trials of prodrugs to evaluate antiviral activity [106].

A pharmacophore-based strategy was used to search for NS5

inhibitors [12]. The researchers constructed models for NS5 poly-

merase and NS5 methyltransferase using the molecules ribavirin

and BG323. They used the models to conduct VS of the ZINC

database and found 23 candidates for NS5 polymerase and 18

candidates for methyltransferase. These candidates were docked to

their respective targets, and three potential leads were selected for

each protein, based on the docking scores. The compounds with

the best docking scores were ZINC39563464 for NS5 polymerase

and ZINC64717952 for NS5 MTase [12]. These results remain to be

confirmed through validation assays.

Lim et al. performed a fragment-based screening by X-ray crys-

tallography targeting the DENV NS5 polymerase and elucidated an

allosteric binding pocket at the base of the thumb subdomain,

close to the enzyme active site [107]. Promising allosteric inhibi-

tors were developed through structure-guided design, and they

were active in DENV polymerase biochemical and cell-based

assays, inhibiting the enzyme with IC50 values of 1–2 mM [107].

The same strategy could probably be used for ZIKV NS5 allosteric

inhibitor design, because the viral proteins have conserved

sequences and similar structures.

Host proteins as drug targets
ZIKV, as well as other flaviviridae members, has a small genome and

requires the host cell machinery to carry out several core functions

that are essential to viral replication. In addition to the inhibition of

the function of viral proteins, an attractive broad-spectrum strategy

is to target host cell processes, because they are often employed by

multiple viruses and are less prone to the development of drug

resistance [108]. The recently described inhibitors of the most

commonly targeted cellular functions in ZIKV can be found in Table

S1 (see supplementary material online) and are reviewed below.

Moreover, we also present a special section regarding the antiviral

effects of the type I and II interferons in the supplementary material.

Host cell nucleoside biosynthesis inhibitors
Viruses rely on the supply of nucleosides from the host cell to

maintain proper RNA replication. Furthermore, there is evidence
that inhibition of nucleoside biosynthesis triggers the activation of

antiviral interferon-stimulated genes in human cells [109]. Thus,

host enzymes involved in the de novo biosynthesis of nucleosides,

such as inosine monophosphate dehydrogenase (IMPDH) and

dihydroorotate dehydrogenase (DHODH), are interesting targets

for broad-spectrum antiviral therapy. IMPDH catalyzes the oxida-

tive conversion of inosine 50-monophosphate into xanthosine 50-
monophosphate, which is the first committed and rate-limiting

step of the guanine nucleotide biosynthetic pathway [110]. Known

inhibitors of IMPDH include ribavirin, 5-ethynyl-1-beta-D-ribofur-

anosylimidazole-4-carboxamide (EICAR) and mycophenolic

acid (MPA).

Ribavirin, one of the first clinically used broad-spectrum anti-

virals, is commonly employed in combination therapies to treat

HCV and is thought to have multiple mechanisms of action,

including the inhibition of the viral polymerase and host IMPDH

[111]. It was found to inhibit the virus-induced cytopathic effects

(CPE) of several flaviviruses, including ZIKV (EC50 = 142.9 mg/ml)

[112]. A recent study tested the activity of known broad-spectrum

antivirals, including ribavirin, which yielded a poor inhibition of

virus-induced CPE (EC50 > 50 mM for MR766 strain), concluding it

was not a suitable candidate as a ZIKV therapeutic [113]. Other

nucleoside biosynthesis inhibitors were also tested in the same

study, among which were MPA (EC50 = 0.11 mM), brequinar

(EC50 = 0.08 mM) and 6-azauridine (EC50 = 0.98 mM). The latter

two compounds inhibit dihidroorotate dehydrogenase (DHODH)

and orotidylic acid (OMP) decarboxylase, respectively, which are

two enzymes involved in pyrimidine biosynthesis [113]. It is

important to highlight that several nucleotide biosynthesis inhi-

bitors suppress viral growth through innate immunity [109]. In a

study by Lucas-Hourani and co-workers, the authors showed that

pyrimidine deprivation, using brequinar and another compound

DD264, is not directly responsible for the antiviral activity of

pyrimidine biosynthesis inhibitors but it rather involves the in-

duction of a metabolic stress and the subsequent triggering of the

cellular immune response [109]. Barrows and co-workers also

tested MPA, which presented potent anti-ZIKV activity, inhibiting

ZIKV infection in HuH-7, HeLa, JEG3, hNSC and HAEC cells [114].

Their screen also detected other nucleoside biosynthesis inhibi-

tors, such as azathiopurine, mercaptopurine hydrate, mycophe-

nolate mofetil (a prodrug of MPA) and thioguanine.

Another cell-based screen carried out by Pascoalino et al. [115]

identified 6-azauridine (EC50 = 2.3 � 0.1 mM) and another pyrimi-

dine biosynthesis inhibitor: 5-fluorouracil (EC50 = 14.3 � 8.6 mM),

which inhibits thymidylate synthase, the enzyme that catalyzes the

final step of thymidine biosynthesis. 5-Fluorouracil and floxuridine

also showed dose-dependent inhibition of ZIKV replication in a

study by Tiwari et al. [116]. Although the ‘pregnancy categories’

labeling system is being replaced [117,118], it is worth noting that

these compounds were generally classified in pregnancy category D

by the FDA [114], and thus have presented ‘positive evidence of

human fetal risk’. This is not unexpected, because they deplete the

cellular pool of nucleotides, which certainly affects proper develop-

ment of the fetus.

Host cell lipid biosynthesis inhibitors
Flaviviral infection has been associated with alterations in the lipid

homeostasis [119] and membrane structure of infected cells [120].
www.drugdiscoverytoday.com 1841
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DENV infection, for example, is known to induce dramatic relo-

calization of the fatty acid synthase (FAS) to the sites of viral

replication [121,122]. Cholesterol has been identified as an im-

portant modulator of the host response to several flaviviruses, but

the exact mechanism by which this modulation occurs is not yet

fully understood. Nevertheless, inhibition of the cholesterol bio-

synthesis pathway represents an attractive therapeutic approach.

Several enzymes involved in cholesterol biosynthesis such as

mevalonate decarboxylase, 3-hydroxy-3-methylglutaryl-CoA

(HMG-CoA) synthase and squalene synthetase were found to be

important for efficient replication of DENV in A549 and K562 cell

lines [123].

Lovastatin, an HMG-CoA reductase inhibitor, was tested against

ZIKV as part of a cell-based screen of 725 FDA-approved drugs, and

its activity was confirmed through a dose–response assay

(EC50 = 20.7 � 8.6 mM) [115]. Its antiflaviviral activity was previ-

ously reported in HCV [124] and DENV [123]. Moreover, Sarkey

and co-workers demonstrated that lovastatin attenuated nervous

system injury in an animal model and could be used in inflamma-

tory peripheral nerve diseases, including Guillain–Barré syn-

drome, which can be a consequence of ZIKV infection [125].

Nevertheless, although it is considered safe, treatment with lova-

statin showed no evidence of beneficial impact on dengue infec-

tions in a randomized, double-blind, placebo-controlled trial

[126]. Mevastatin also had anti-ZIKV activity at concentrations

of 1–5 mM, but it was not dose-responsive at concentrations above

5 mM [113]. Mevastatin is known to induce apoptosis [127], which

could perhaps explain the lack of antiviral efficacy at higher

concentrations.

Nordihydroguaiaretic acid (NDGA) and its derivative tetra-O-

methyl nordihydroguaiaretic acid (M4N) were tested against ZIKV

and showed inhibition in the low micromolar range (IC50 values of

9.1 and 5.7 mM, respectively) [128]. They are polyphenols, whose

mechanism of action is not fully elucidated (and could involve

promiscuous inhibition; see the aforementioned section on PAINS

in the NS2B–NS3 protease section), but NDGA has been shown to

affect HCV replication through the reduction of the amount of

lipid droplets, thought to be mediated by the sterol regulatory

element-binding protein (SREBP) pathway [129]. Early studies

have established NDGA as a 5-lipoxygenase inhibitor [130], but

it has been shown to bind several other molecular partners, such as

glucose transporter 1 (GLUT1) [131], tyrosine kinases [132,133]

and even transthyretin [134]. The molecular mechanisms and

clinical applications of these compounds have been thoroughly

reviewed by Lü and co-workers [135].

Host kinase inhibitors
Protein kinases catalyze the addition of phosphate groups on

several molecular entities, such as proteins, lipids and carbohy-

drates, thus controlling many cellular processes. Because viral

replication requires the hijacking of several cellular mechanisms,

it is expected to be hindered by the modulation of kinase activity.

Indeed, host cell kinases have been implicated in the replication of

several RNA virus families [136]. Tang and co-workers have carried

out a transcriptome analysis of human neural progenitor cells

(hNPCs) and enrichment analysis of their supplementary data

indicates that several of the upregulated genes are related to

protein kinase activity [137].
1842 www.drugdiscoverytoday.com
Xu et al. performed a two-step drug repurposing screen by

initially measuring the caspase-3 activity and subsequently mea-

suring cell viability with the primary hits. Using this approach,

they were able to detect PHA-690509, an investigational cyclin-

dependent kinase inhibitor (CDKi), which inhibited ZIKV infec-

tion with an EC50 value of 1.72 mM [138]. They then tested an

additional 27 CDKis and identified nine that could inhibit ZIKV

replication. Among them, seliciclib (a purine analog, also called

roscovitine) and RGB-286147 inhibited ZIKV infection at submi-

cromolar concentrations [138]. The authors concluded that these

results suggest that one or more host CDKs might be important for

ZIKV replication, because flaviviruses are not known to encode any

CDK [138].

AXL (from the Greek word anexelekto, or uncontrolled) is a

tyrosine kinase receptor (TKR) thought to mediate viral attach-

ment to the host cells [139,140]. Its function is also responsible for

a downregulation of interferon production [141]. Although this

recognition might be unrelated to its kinase activity, AXL inhibi-

tors were found to inhibit ZIKV infection rates. Rausch et al.

screened a library of �2000 compounds on human osteosarcoma

cells (U2OS) and found 19 ZIKV inhibitors, eight of which had

protein kinases as targets, including five TKRs and, among these,

two AXL inhibitors [48]. The same AXL inhibitors did not exhibit

the same activity on different cell lines (HBMEC and Jeg-3),

indicating that the effect is cell-type specific. The authors also

point out that Jeg-3 cells are highly permissive to ZIKV infection,

despite showing no detectable AXL expression levels, which sug-

gests that this receptor is not essential for infection [48]. This

hypothesis is corroborated by an in vivo study [142].

Intracellular membrane traffic is a mechanism that is also

exploited by viruses and depends heavily on the enzymatic activity

of protein kinases, which regulate the vesicle traffic via the phos-

phorylation of a specific subunit of the associated adaptor proteins

(APs) [143]. Bekerman and co-workers tested the antiviral activity

of erlotinib and sunitinib for several different flaviviruses (and

other genera), including ZIKV (EC50 values of 6.28 and 0.51 mM,

respectively) [143]. They present several lines of evidence that

indicate that the likely targets are AP2-associated kinase (AAK1)

and G-associated kinase (GAK), with other possible candidates

being AXL, KIT proto-oncogene receptor tyrosine kinase (KIT)

and proto-oncogene RET [143].

Monel et al. described in-depth the vacuolization of ZIKV-

infected cells and suggested that they undergo a paraptosis-like

death [144], which is associated with the activity of phophoinosi-

tide 3-kinase (PI3K) [145] and membrane-associated protein kinase

(MAPK) [146]. They therefore tested the activity of several kinase

inhibitors and verified that they could prevent the onset of

vacuoles, particularly the specific class-1 PI3K (ZSTK474) and

AKT (triciribine) inhibitors. However, none of the tested inhibitors

blocked ZIKV infection [144].

Protein metabolism disruptors
Viral replication extensively hijacks the ER functions. ER is intimate-

ly associated with the intracellular membrane network remodeling,

and it is the framework where the viral polyprotein is expressed and

processed. These events generate a considerable amount of stress on

this organelle [147]. Correct expression and processing of nascent

proteins are paramount for efficient viral replication. Several host
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proteins are responsible for the monitoring of proper protein syn-

thesis, folding and degradation. Impairment of these functions

results in reduced viral assembly and budding. Examples are the

ER membrane complex (EMC), a-glucosidase, cyclophilin and pro-

teasome elements. Some inhibitors have been investigated under

this context. EMC, an ensemble of nine components that are

thought to assist protein folding, has been shown to be upregulated

in ZIKV-infected cells. Several proteins of this complex are multi-

pass membrane proteins [148]. Another key player related to protein

metabolism is a-glucosidase, an ER-resident enzyme that catalyzes

the removal of glucose units from N-linked oligosaccharides. This

processing is crucial for the nascent glycoprotein maturation and

subsequent correct folding. Glycoproteins that fail to be processed

are subjected to abnormal accumulation in the ER and ER-associated

degradation (ERAD), in which nascent misfolded proteins are retro-

translocated back to the cytosol, ubiquitinated and degraded by the

proteasome [149]. a-Glucosidase inhibitors exhibit broad antiviral

activity against multiple genera [150,151], but celgosvir (6-O-buta-

noyl castanospermine) showed poor activity against ZIKV in a CPE-

basedassayinVero76 cells infectedwitheither MR766orPRVABC59

strains (EC50 > 50 mM in both cases) [113].

Xin and co-workers have carried out a quantitative proteomic

analysis of C6/36 cells infected with ZIKV and found upregulated

genes from two protein-related pathways: the ubiquitin-protea-

some system (UPS) and the unfolded protein response (UPR) [152].

They subsequently tested the dose-dependent effect of bortezomib

(EC50 = 5.525 nM) and MG132 (EC50 = 1.151 mM), two protea-

some inhibitors, in ZIKV-infected Vero cells. They also found that

bortezomib can reduce viral load and signs of pathology in ZIKV-

infected mice [152]. Bortezomib was also detected in one of the

previous screens, but it showed moderate toxicity in the hNSC cell

line, as expected based on its mechanism and primary use as an

anticancer agent [114].

Cyclophilins are cytoplasmic proteins responsible for the

isomerization of proline peptide bonds from the trans to cis

conformation, thus facilitating protein folding [153]. Their activi-

ties were shown to be essential for HIV and HCV replication.

Cyclosporine A targets cyclophilins and was found to inhibit

HCV [154], WNV, DENV and YFV infections [155]. Barrows

et al. detected cyclosporine as a potential hit but it displayed

controversial results, even enhancing the infection at 1 mM com-

pared with the control [114].

Endocytosis and endosomal fusion blocking agent
Most flaviviruses, including ZIKV, are endocytosed by a clathrin-

mediated mechanism and undergo pH-dependent fusion process-

es, in which the endosomal membrane fuses with the viral enve-

lope through the action of the envelope protein. So that these

steps can occur, the E protein must undergo conformational

changes and expose its fusional loop [156]. Li and co-workers

identified that 25-hydroxycholesterol (25HC) is probably capable

of blocking viral entry by modifying host-cell membrane proper-

ties, with a calculated EC50 of 188 nM. This compound was also

able to (i) reduce viremia in mice and non-human primates and (ii)

protect mouse embryos from microcephaly [157].

The antimalarial drug chloroquine is known to exhibit broad-

spectrum antiviral activity [158]. It is a weak base (pK1 = 8.1,

pK2 = 10.1), and the pH of lysosomes in the presence of chloro-
quine increases from �4 to �6 [159]. This increase is thought to be

responsible for the inhibition of the pH-dependent fusion step of

viral entry. Chloroquine was tested against ZIKV, showing activity

in Vero cells (9.82 � 2.79 mM), human brain microvascular endo-

thelial cells (14.20 � 0.18 mM) and human neural stem cells

(12.36 � 2.76 mM). It reduced the number of infected cells in vitro,

inhibited virus production and cell death promoted by ZIKV

infection and displayed relatively minor cytotoxic effects (CC50

ranging from 94.95 to 134.54 mM). Moreover, chloroquine par-

tially reversed morphological changes induced by ZIKV in mouse

neurospheres [160]. Chloroquine was found to reduce viral burden

in the placenta of ZIKV-infected C57BL/6 pregnant mice [161].

However, it also showed controversial results in another study

[113]. Quinacrine (EC50 = 2.27 � 0.14 mM), mefloquine (EC50

3.95 � 0.21 mM) and GSK369796 (EC50 = 2.57 � 0.09 mM), other

antimalarial drugs with a similar mechanism of action, were also

recently tested against ZIKV [162].

The anticancer drug obatoclax promotes rapid neutralization of

lysosomal pH, showing activity against YFV (EC50 < 0.125 mM),

WNV (EC50 = 0.10 � 0.04 mM) and ZIKV (EC50 = 0.13 � 0.01 mM).

The authors suggest that the anticancer and antiviral activities are

independent and rely on different mechanisms [163]. Obatoclax

was also tested in retinal pigment epithelial (RPE) cells and dis-

played an EC50 value of 0.04 � 0.01 mM in the recovery of

infected-cell viability [164]. In addition, it was also detected in

a drug screen in Jeg-3 cells with an EC50 value of 0.08 mM [48].

Saliphenylhalamide (SaliPhe) is another known viral entry

blocker, which acts through the inhibition of the vacuolar ATPase

[164,165]. It was tested in Vero 76 cells, yielding an EC50 value of

0.62 mM for MR766 strain and 0.49 mM for the PRVABC59 strain.

It was also tested by Kuivanen et al. in RPE cells, yielding an EC50

value of 0.05 � 0.02 mM [164]. Niclosamide blocks the acidifica-

tion of endosomes, albeit using a different mechanism that is not

yet fully elucidated [166,167]. It was detected in a screen against

ZIKV in SNB-19 cells showing an EC50 value of 0.37 mM based on

the measurement of intracellular viral RNA [138]. Niclosamide is

an FDA-approved drug, formerly designated in pregnancy category

B and broadly used in the treatment of intestinal helminthiasis.

Drugs in pregnancy category B have not undergone controlled

studies in pregnant women but they have failed to demonstrate a

risk to the fetus in animal reproduction studies. Inhibitors of

endosomal sorting complexes required for transport (ESCRT) ma-

chinery could be promising targets to ZIKV drug discovery (see

supplementary material online). Moreover, ZIKV inhibitors with

an unclassified or unconfirmed mechanism of action are also

discussed (see supplementary material online).

Available screening assays for anti-ZIKV hit discovery
One of the key steps in the drug discovery pipeline is the develop-

ment of screening assays to assess the antiviral activity of com-

pounds [168]. Viruses depend on cell machinery to replicate, and

for this reason in vitro assays are developed using host cells for

culture and viral replication. ZIKV has recently been shown to

infect different cells in multiple species. These findings show that a

diversity of cell lines can be used to study ZIKV infection, provid-

ing a good framework for the drug discovery process [169]. We also

present and discuss the available screening assays for anti-ZIKV hit

discovery (see supplementary material online).
www.drugdiscoverytoday.com 1843
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Concluding remarks
Although the scientific community has devoted considerable

efforts to the search for a vaccine and antiviral drugs to prevent

and treat ZIKV infection, there are still no approved treatments for

this flavivirus, nor vaccines to prevent it. In a relatively short time

we have gone from having no structures of proteins for this virus to

a wealth of data. Owing to the current state of known anti-ZIKV

compounds, there is probably some way to go until clinical trials of

the discovered candidates are undertaken, especially when con-

sidering that some patients, including immunosuppressed and

pregnant women, will have underlying medical conditions. In

this regard, one strategy to overcome the risk of teratogenesis is

the development of new drugs to treat Zika based on two-stage

Phase II clinical trials: first-stage focusing on testing the efficacy in

nonpregnant patients and the second-stage focusing on pregnant

women. These will possibly reduce the overall costs of trials,

facilitating their logistical set up and enhancing the safety level

for the patients [170].

Many of the compounds are clearly unsuitable for these

patients. Moreover, one of the frequent issues we see with many

of the published screens is that they used unrealistic concentra-

tions (e.g., 100 mM) or compounds (e.g., cytotoxic anticancer

compounds) that could never be used in pregnant women. Much

of the work described herein would have benefited from having

experienced medicinal chemists involved to advise on the utility

of compounds selected. This would also help to avoid compounds

like PAINS [47], which were reported as hits from several screens.

Ultimately, the recent advances in the discovery of anti-ZIKV

agents, ZIKV protein structures and host target protein structures,

and our understanding of the disease itself, are not only crucial to
1844 www.drugdiscoverytoday.com
advancing the fight against ZIKV but they can also be useful for

the next emerging virus outbreak to which we will have to

respond. We should also heed the lessons learned from ZIKV

drug discovery so we can be more successful and avoid dead-ends

in future.
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