Skip to main content
. 2020 Mar 16;16(3):e1007665. doi: 10.1371/journal.pcbi.1007665

Table 2. Table showing run times and memory usage for CAMPP applied to datasets of different sizes.

As the weighted gene co-expression network analysis (WGCNA) and estimation of optimal number of clusters for k-means are by far the slowest and most memory consuming processes, we have provided estimates with and without these two analyses. The [.] denotes that a given analysis was not performed on a dataset.

Type of Data Biological Type Number of Samples Number of Variables WGCNA Variables K-means Interaction Networks Run Time in Minutes Memory Usage in GB
Dataset 1 Mass Spectrometry N-glycans 80 165 All Yes . 0,3 0,6
Dataset 2 Array mRNA 80 15000 . . . 0,8 0,8
Dataset 2 Array mRNA 80 15000 Differentially Expressed Yes . 3,3 1,4
Dataset 2 Array mRNA 80 15000 All . . 12 7,8
Dataset 2 Array mRNA 80 15000 All Yes . 15,5 7,8
Dataset 3 Array + Array microRNA + mRNA 80 15754 . . Yes 4 1,6
Dataset 3 Array + Array microRNA + mRNA 80 15754 Differentially Expressed Yes Yes 5,6 1,6
Dataset 3 Array + Array microRNA + mRNA 80 15754 All . Yes 16 7,8
Dataset 4 Array mRNA 80 29274 . . . 1,2 0,9
Dataset 4 Array mRNA 80 29274 Differentially Expressed Yes . 3,8 1,9
Dataset 5 Sequencing mRNA 416 55150 . . . 3 1,5
Dataset 5 Sequencing mRNA 416 55150 Differentially Expressed . . 3,5 1,4
Dataset 5 Sequencing mRNA 416 55150 Differentially Expressed Yes . 12,8 2,3