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Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality worldwide. To date, chemotherapy plays an
important role in the treatment of CRC patients. Multidrug resistance (MDR) is one of the major hurdles in chemotherapy for
CRC, and the underlying mechanisms need to be explored. Studies have demonstrated that Wnt/β-catenin signaling plays a
critical role in oncogenesis and tumor development, and its function in inhibiting apoptosis could facilitate tumor
chemoresistance. Recent investigations have also suggested the regulatory effects of the Wnt/β-catenin signaling pathway in
response to chemotherapeutic agents in CRC. Here, we particularly focus on reviewing the evidences suggesting the
mechanisms of Wnt/β-catenin signaling in the chemoresistance modulation of colorectal cancer.

1. Introduction

Colorectal cancer (CRC), one of the most prevalent malig-
nancies, ranked third in cancer incidence in both genders
and remains the second cause of cancer-related deaths in
the world [1]. Currently, chemotherapy and surgery are
two major therapeutic approaches for CRC. Despite remark-
able improvements in therapeutic strategies, the 5-year sur-
vival rate of CRC remains poor. For metastatic or advanced
tumors, surgical resection alone fails to be curative. Systemic
chemotherapy, aiming to prolong life and palliate symp-
toms, could shrink the tumor size before surgery and reduce
recurrence after surgery. Progresses in combination chemo-
therapy such as FOLFOX, XELOX/CAPOX, FOLFIRI, and
therapeutic antibodies against vascular endothelial growth
factor (VEGF) and epidermal growth factor receptor
(EGFR) have been shown to increase survival time. How-
ever, the emergence of multidrug resistance (MDR),
accounting for the poor tumor response to antineoplastic
agents, has greatly limited the efficacy of chemotherapeutic
drugs and finally results in therapy failure in CRC patients

[2–4]. Due to primary or acquired resistance, many patients
either respond poorly to the chemotherapy or respond well
initially but experience later tumor relapse and disease pro-
gression. Thus, it is urgent to understand the mechanisms
responsible for MDR in CRC and develop effective strategies
to overcome chemoresistance.

2. Mechanisms of Chemoresistance in
Colorectal Cancer

Multidrug resistance is a major impediment to successful
treatment of CRC, and overcoming MDR becomes a great
challenge in fighting against CRC [5]. Chemotherapeutic
drugs work through multiple mechanisms, often by target-
ing fast proliferating cells and inhibiting physiological
DNA processes. MDR in CRC appears to be mediated by
a series of mechanisms which could be divided into two
principal types of resistance: “pump” and “nonpump.”
The main mechanism of pump resistance is the increased
ability of tumor cells to efflux drugs, which is induced by
the ATP-binding cassette (ABC) superfamily of membrane
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transporters, including pump P-glycoprotein (P-gp), breast
cancer resistance-associated protein (BCRP), and multidrug
resistance-associated protein (MRP) subfamily. These trans-
porters could pump out chemotherapeutic agents and
reduce the accumulation of intracellular drugs, leading to
an impairment of chemotherapeutic effects [5, 6]. The
“nonpump” resistance mechanism includes apoptosis inhibi-
tion by Bcl-2 or p53, detoxification by GSTP1, cancer stem-
ness cell- (CSC-) mediated multidrug resistance, epithelial–
mesenchymal transition (EMT), altered tumor microenvi-
ronment, and functions of some noncoding RNAs. If CRC
cells could negate the effects of chemotherapeutic agents by
inhibiting apoptosis or promoting their own growth through
the above mechanisms, then, resistance is achieved.

3. Wnt/β-Catenin Signaling and
Chemoresistance in Colorectal Cancer

The most common genetic changes accompanying CRC pro-
gression are mutations that deregulate the Wnt/β-catenin
signaling cascade [7]. Wnt/β-catenin signaling pathway,
essential for maintaining cell homeostasis and embryonic
development, was demonstrated to be associated with tumor
cell proliferation, apoptosis, invasion, stemness, and chemo-
therapy resistance [8] (Figure 1). Previous studies have iden-
tified the Wnt/β-catenin signaling pathway as a key pathway
involved in various processes of CRC [9]. To date, many
studies have demonstrated that loss of membranous β-
catenin is associated with poor prognosis of CRC patients,
and studies were performed to explore the roles and mech-
anisms of Wnt/β-catenin signaling in regulating cell apo-
ptosis, stimulating angiogenesis, and maintaining highly
resistant CSCs [10].

Wnt/β-catenin signaling pathway is found altered in
more than 90% CRC patients, making it a crucial therapeutic
target [11]. β-Catenin is a key regulator of the canonical
Wnt/β-catenin signaling pathway, and elevated concentra-
tion of free β-catenin promotes the binding of the T-cell fac-
tor/lymphoid enhancer factor 1 (TCF/LEF) transcription
factors, which control a cluster of target genes including
MDR1, c-myc, Met, MMP-7, c-Jun, and cyclin D1. In this
pathway, the cysteine-rich and lipid-modified Wnt proteins
could induce the activation of canonical and noncanonical
Wnt signaling pathways after binding to Frizzled (Frz) and
low-density lipoprotein receptor-related 5/6 (LRP5/6). In
physiological conditions lacking the Wnt signal, β-catenin
is degraded by the complex composed of glycogen synthase
kinase 3β (GSK3β), Axin, adenomatous polyposis coli
(APC), and casein kinase 1 (CK1). As a key scaffolding pro-
tein of the destruction complex, Axin becomes degraded
and stops facilitating the destruction of β-catenin after ribo-
sylation by Poly (ADP ribose) polymerases (PARPs).
Followed by proteasomal degradation and ubiquitination,
β-catenin is phosphorylated by GSK3β and CK1. Downregu-
lated cytoplasmic β-catenin recruits the corepressor Groucho
to TCF/LEF, ensuring transcriptional repression and block-
ing the target genes from being activated. Given the tight
association between Wnt/β-catenin signaling and cancer
apoptosis, EMT, stemness, and tumor microenvironment,

the Wnt/β-catenin signaling pathway is thought to be associ-
ated with cancer chemoresistance. We then mainly discuss
the underlying mechanisms by which the Wnt/β-catenin sig-
naling cascade influences the drug resistance of colorectal
cancer in the following sections.

4. Wnt/β-Catenin Signaling and Drug
Availability in Colorectal Cancer Cells

One of the most typical mechanisms of MDR is that ABC
membrane transporters pump various chemotherapeutic
agents out of cells to reduce intracellular drug accumulation
and attenuate drug-induced cytotoxicity [11, 12]. Most of
the ABC transporters contribute directly to chemoresistance,
and attenuating their efflux activity could significantly
reverse the resistance [13]. P-Glycoprotein (P-gp), referred
to as MDR1 (multidrug resistance protein 1) or ABCB1
(ATP-binding cassette subfamily B, member 1), is the most
crucial ABC transporter in human gastrointestinal system
[14, 15]. In the Wnt/β-catenin signaling cascade, nuclear β-
catenin could preferentially recruit CBP to the promoter
region of MDR1 gene, and MDR1 has been proven to be
one of the target genes of TCF/LEF [16, 17]. The MDR1 gene
promoter was found to contain many T-cell factor 4- (TCF4-)
binding sequences, and this gene was demonstrated to be
transcriptionally downregulated after TCF4 inactivation in
CRC, suggesting MDR1 is a direct target of the TCF4/β-
catenin transcriptional complex [18]. Depletion of endoge-
nous β-catenin by RNA interference could significantly
reduce the transcription and expression of the MDR1 gene,
resulting in a reversal of its encoded P-gp efflux and restora-
tion of sensitivity to drug-induced apoptosis. Zhou et al. [19]
showed that miR-506 could enhance the sensitivity of CRC
cells to oxaliplatin via inhibition of theWnt/β-catenin signal-
ing pathway by suppressing MDR1/P-gp expression. More-
over, RARg overexpression was shown to contribute to the
multidrug resistance of CRC cells by upregulating MDR1
through activating the Wnt/β-catenin signaling pathway
[20]. Wang et al. [21] also demonstrated that suppressing
TrpC5 expression could reverse 5-FU resistance in colorectal
cancer by weakening the ABCB1 efflux pump through inhi-
biting the canonical Wnt/β-catenin signaling pathway. The
above studies suggested that the Wnt/β-catenin signaling
cascade contributed to enhanced resistance of various che-
motherapeutic agents in CRC through upregulating MDR1.

5. Wnt/β-Catenin Signaling and Cell
Apoptosis in Drug Resistance of
Colorectal Cancer

Apoptosis, one of the major signs of effective chemotherapy,
is characterized by DNA fragmentation, condensation of the
nucleus, and specific protein degradation. Apoptosis resis-
tance, a hallmark of tumors, acts as a crucial obstacle to anti-
cancer therapy. As a critical mode of cell death induced by
chemotherapy, apoptosis participates in chemotherapy resis-
tance and plays a crucial role in regulating tissue homeosta-
sis. Tolerance to DNA damage could be enhanced in
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chemoresistant cells through elevating the toxicity threshold
by upregulating prosurvival signaling and downregulating
apoptotic signaling pathways. The Wnt/β-catenin signaling
cascade is a prosurvival signaling pathway that has an inti-
mate crosstalk with other prosurvival signaling pathways
such as signal transducer and activator of transcription
(STAT), mitogen-activated protein kinase (MAPK), and
phosphoinositide 3-kinase (PI3K)/Akt signaling pathways.

Wnt/β-catenin signaling pathway has been increasingly
established to be associated with apoptosis. Previous evi-
dence showed that inhibition of Wnt/β-catenin signaling
by the inhibitor XAV939 could significantly increase the
apoptosis induced by 5-FU in colon cancer cells [22]. As
the key molecular of Wnt/β-catenin signaling pathway, β-
catenin could promote the expression of its target gene sur-
vivin, which inhibits apoptosis in colon cancer [23]. Other
components of the Wnt/β-catenin signaling pathway,
including proteins Wnt, GSK3β, and APC, also participate
in the process of apoptosis in CRC. As a member of Wnt
proteins initiating the canonical Wnt signaling pathway,
Wnt1 inhibits apoptosis of colorectal cancer cells through
blocking the caspase-9 activation induced by chemothera-
peutic drugs, and this sensitivity to apoptotic stimuli could
be blocked by inhibiting β-catenin/TCF transcription [24].
As a serine threonine kinase, GSK3β could constitutively
phosphorylate β-catenin and serve as a negative regulator
of the Wnt/β-catenin signaling pathway [25]. Dewi et al.
[26] showed that inhibition of GSK3β could increase the
apoptosis of CRC cells. Adenomatous polyposis coli (APC),
another crucial component of the canonical Wnt signaling
cascade, could downregulate β-catenin. As a tumor suppres-

sor protein, APC could induce cell death of CRC through
apoptosis in CRC [27]. Moreover, downstream target genes
in the Wnt/β-catenin signaling cascade have been reported
to modulate drug resistance through regulating apoptosis.
For instance, MMP-7 could increase the oxaliplatin resis-
tance of colon cancer cells by decreasing the Fas receptor that
promotes cell apoptosis [28]. Lastly, apoptosis-related pro-
teins showed significant roles in regulating chemoresistance.
Yang et al. [29] reported that Vicenin-2 induces apoptosis in
colon cancer by suppressing Bcl-2 and enhancing the expres-
sion of Bax and caspase-3 through Wnt/β-catenin signaling.
Li et al. [30] demonstrated that silencing aquaporin-5 could
enhance the sensitivity of CRC cells to 5-FU by inducing apo-
ptosis through the Wnt/β-catenin signaling pathway. Similar
results were also observed in Chinese medicine including
luteolin and Sanguisorba officinalis which could induce
apoptosis by enhancing the Bax and caspase-3 expression
and suppressing Bcl-2 expression through Wnt/β-catenin
signaling in CRC cell lines [31, 32]. MASTL induces resis-
tance to 5-fluorouracil (5-FU) through regulating antiapop-
totic proteins survivin and Bcl-xL via the Wnt/β-catenin
signaling pathway [33]. Thus, the crucial roles of Wnt/β-
catenin signaling in apoptosis give it a status in the che-
moresistance of CRC, and the underlying mechanisms need
further exploration.

6. Wnt/β-Catenin Signaling and Colorectal
Cancer Stem Cells in Drug Resistance

Cancer stem cells (CSCs) are a small subpopulation of cells
that are endowed with the ability to self-renew, and
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Figure 1: Role of the Wnt/β-catenin signaling pathway in chemoresistance of colorectal cancer.
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differentiate into heterogeneous cell lineages that constitute
the tumor [34, 35]. CSCs participate in tumor initiation and
progression, playing a critical role in tumor proliferation,
relapse, and metastasis [36]. Since CSCs express MDR1
intrinsically and own advantages in enhanced DNA repair
capacity as well as high antiapoptotic signaling activation,
they are also thought to be closely related to tumor chemore-
sistance [37]. It has been reported that drug-resistant tumor
cells display a stem-like signature [38]. Chemotherapeutic
strategies that kill bulks of tumor cells may fail at last, partly
because they fail to eliminate CSCs and then result in the
relapse of tumors [39]. It has been proven that CSCs display
resistance to chemotherapeutic drugs through overexpress-
ing ATP-binding cassette- (ABC-) family transporters, which
act as drug-efflux pumps [40]. In colorectal cancer, several
stem cell markers including Bmi1, Nanog, and CD44 have
been identified, proving the existence of CSCs in CRC [41,
42]. However, the underlying molecular mechanisms how
CSCs contribute to the chemoresistance in colorectal cancer
remain unclear.

It has been proven that Wnt/β-catenin signaling modu-
lates the expression of CSC marker genes and plays a role
in the self-renewal ability and undifferentiated status of CSCs
[43–45]. Accumulating evidences suggest that the Wnt/β-
catenin signaling pathway, which regulates normal stem cell
differentiation and proliferation, is important in maintaining
cancer stem cell properties [46, 47]. Urushibara et al. [48]
demonstrated that the Wnt/β-catenin signaling inhibitor
IC-2 reduced the expression levels of CSC marker proteins
and increased the cytotoxicity of 5-FU in CRC cells. As a neg-
ative feedback regulator of Wnt/β-catenin signaling, Axin2
could control Wnt-induced transcriptional responses. Sup-
pression of Axin2 by miR-103/107 was demonstrated to
enhance CRC chemoresistance by promoting cell stemness
via Wnt/β-catenin signaling [49]. Moreover, accumulation
of nuclear β-catenin enhances both the chemoresistance
and radioresistance of locally advanced rectal cancer through
regulating EMT/CSC properties, and nuclear β-catenin in
pretreatment-biopsied samples is promising in predicting
the efficacy of chemoradiotherapy in rectal cancer patients
[50]. Liu et al. [51] showed that CD146 decreased the drug
resistance of colorectal cancer by functioning as a suppressor
of cancer stemness through inactivating the Wnt/β-catenin
cascade. It was also observed that zerumbone could suppress
the stemness properties of CRC by inhibiting the β-catenin
signaling pathway [52]. These studies all suggested that the
Wnt/β-catenin signaling pathway plays crucial roles in fos-
tering chemoresistance of CRC through stemness.

7. Wnt/β-Catenin Signaling and Colorectal
Cancer Epithelial–Mesenchymal
Transition in Drug Resistance

Recently, accumulating evidence suggests molecular and
phenotypic associations between epithelial–mesenchymal
transition (EMT) phenotype and tumor chemoresistance
[53–55]. EMT is a process that allows epithelial cells to
undergo remarkable morphologic changes to assume a

migratory mesenchymal phenotype characterized by loss of
apical basolateral polarity and cell-cell adhesion [56, 57].
When the process of EMT is triggered, epithelial cells inter-
acting with the basement membrane through the basal sur-
face downregulate the expression of adhesive proteins, such
as E-cadherin and acquire the expression of mesenchymal
markers, such as N-cadherin, MMP-2, MMP-9, Vimentin,
and fibronectin. These alternations, which bring reorganiza-
tion of the actin cytoskeleton and deficiency of cell–cell junc-
tion, are often usurped by tumors to enhance invasion,
mobility, and proliferation [58]. Moreover, studies have
proven that EMT is a crucial way to induce CSC formation
in many tumors, and induction of EMT confers properties
of self-renewing stem cells, suggesting a close relation
between EMT and the acquisition of stem cell characteristics
[36, 58, 59].

Since studies have reported that residual resistant cells
following chemotherapy are associated with an EMT pheno-
type in animal models as well as in clinical settings, EMT has
now emerged as the focus of research into the cause of che-
moresistance in several tumor types [60–63]. The occurrence
of EMT was proven to be closely associated with the activa-
tion of intracellular stem-associated pathways including
Wnt/β-catenin, Notch, TGF-β, and Hedgehog pathways
while the underlying mechanisms have not been clearly
defined [64, 65]. As one of the major signaling pathways
involved in EMT, Wnt/β-catenin signaling converging on
activation of transcription factors such as ZEB and Snail
was triggered to induce the expression of mesenchymal genes
and repress E-cadherin expression [57, 66]. β-Catenin and E-
cadherin form a complex in the area of cell–cell junction,
providing the basis for cell–cell association [67]. Previous
studies have shown that ectopic expression of Snail and E-
cadherin causes EMT in colorectal cancer [68–70]. In CRC,
loss of E-cadherin is concomitant with the deregulation of
the Wnt/β-catenin signaling pathway and has been charac-
terized as a trait of EMT cells [71]. Chen et al. [72] showed
that nuclear translocation of membrane β-catenin and dis-
association of the E-cadherin/β-catenin complex activate
β-catenin–TCF transcription, decrease E-cadherin levels,
and increase Snail expression. CRC metastasis could be also
promoted by inducing EMT through a β-catenin–dependent
pathway [72]. Another study by Qi et al. [73] demonstrated
that Wnt3a overexpression leads to the distribution of cyto-
solic β-catenin, downregulation of epithelial markers, and
overexpression of mesenchymal markers, in both cellular
and animal models of colorectal cancer. Collectively,
Wnt/β-catenin signaling may modulate the chemosensitiv-
ity of CRC through EMT.

8. Wnt/β-Catenin Signaling and Tumor
Microenvironment in Drug Resistance of
Colorectal Cancer

Although the investigation of chemoresistance in CRC has
been focused on mechanisms intrinsic to tumor cells, alter-
native views propose a role for the tumor microenviron-
ment (TME) in promoting chemoresistance. The tumor
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microenvironment, regarded as the tumor bed, contains
components including extracellular matrix (ECM) proteins,
aberrant vasculature, and cancer-associated cells [74]. TME
also contains many paracrine factors and signaling mole-
cules that initiate intracellular signaling within tumor cells
and crosstalk between cancer cells and the surrounding sup-
portive stromal cells.

In stromal cells, it is reported that hepatocyte growth
factor (HGF) secreted by myofibroblasts could activate
nuclear β-catenin activity and thereby affect stemness fea-
tures which are associated with chemoresistance in colorectal
cancer cells [75]. As the main component of the stroma,
cancer-associated fibroblasts (CAFs), different from normal
fibroblasts in the TME, exert inherent support on cancer cells
via secretion of molecular messengers and cell-to-cell contact
[74]. In colorectal cancer, CAFs could promote drug resis-
tance by transferring exosomal H19, which activates the
β-catenin signaling pathway via acting as a competing
endogenous RNA sponge [76]. lncRNA CCAL (colorectal
cancer-associated lncRNA) expressed by CAFs contributes
to oxaliplatin resistance of CRC cells via activating β-catenin
signaling pathway [77]. lncRNA CCAL was also reported to
enhance multidrug resistance by upregulating MDR1/P-gp
expression through activating the Wnt/β-catenin signaling
cascade [18]. In immune cell populations, a study showed
that tumor-induced β-catenin signaling infiltrates immune
effector cells into a tolerant state and inhibits the DC-
dependent cross-sensitization of antitumor CTLs [78]. Active
forms of β-catenin promote resistance to immunotherapy
with anti-PD-1, which impairs T-cell activity and involves

the deficient recruitment of DCs [79]. As a critical feature
in the tumor microenvironment, hypoxia self-perpetuates
mainly through the regulation of the vasculature. Under
hypoxia, the expression levels of miR-103 and miR-107 are
elevated, and miR-103/107-Axin2 axis contributes to che-
moresistance to oxaliplatin and cisplatin through prolonging
Wnt/β-catenin signaling duration in HCT116 cells [49].
Hypoxia has also been shown to activate GLI2 via HIF-1α
and TGF-β2 to promote chemoresistance in colorectal can-
cer. Nevertheless, the underlying mechanism was not related
to the β-catenin signaling pathway [80, 81].

9. Wnt/β-Catenin Signaling and Noncoding
RNAs in Drug Resistance of
Colorectal Cancer

In recent years, an increasing number of studies have indi-
cated that regulation of gene expression by various noncod-
ing RNAs (ncRNAs) such as microRNAs (miRNAs) and
long noncoding RNAs (lncRNAs) were involved in the
acquisition of chemoresistance after treatment [82]. miRNAs
are short, evolutionarily conserved noncoding RNAs that
posttranscriptionally regulate gene expression by binding
the 3′ untranslated regions (3′UTRs) of mRNAs. They have
been increasingly implicated in the regulation of cell stem-
ness and EMT, which contribute to drug resistance in colo-
rectal cancer [83, 84]. Recent studies have shown that some
miRNAs (e.g., miR-409-3p, miR-137, miR-139-5p, miR-
494, and miR-143) reduced CRC chemoresistance, while

Table 1: Summary of non-coding RNAs in modulating chemoresistance through the β-catenin signaling pathway in colorectal cancer.

Noncoding
RNA

Sample Drug Cellular mechanism of action Target Ref.

miR-506 HCT116-OxR cells Oxaliplatin
Increase oxaliplatin-induced cell apoptosis and enhance
oxaliplatin sensitivity by inhibiting MDR1 expression via
downregulation of the Wnt/β-catenin signaling pathway

MDR1 [19]

miR-103/107 HCT116 cell
Oxaliplatin,
cisplatin

Promote CRC stem-like properties and prolong
Wnt/β-catenin signaling duration by targeting Axin2

Axin2 [49]

miR-30-5p
CD133+CRC cells
(Caco2 and HCT15)

5-FU
Inhibit CRC cell stemness and chemoresistance through

USP22/Wnt/β-catenin signaling axis
USP22 [88]

miR-92a HT-29 and HCT116 cells 5-FU
IL-6/STAT3/miR-92a/Wnt/β-catenin signaling pathway
promotes stem-like phenotypes of colorectal cancer cells

KLF4,
GSK3β, and

DKK3
[89]

miR-100/125b
NCI-H508, Caco2,

SW403, SW948, HT-29,
SK-CO-1, etc.

Cetuximab
Repress multiple Wnt negative regulators and increase

Wnt signaling
DKK1 and
DKK3

[90]

lncRNA H19 HCT116 and SW480 cells Oxaliplatin
Promote stemness and activate the β-catenin signaling

pathway via acting as a competing endogenous RNA sponge
for miR-141

miR-141 [76]

lncRNA
CRNDE

HCT116 and SW480 cells 5-FU
lncRNA CRNDE promotes chemoresistance to 5-FU by

inhibiting miR-181a-5p. MiR-181a-5p targets
β-catenin/TCF4 and inhibits Wnt/β-catenin signaling.

miR-181a-5p [91]

lncRNA
CCAL

Lovo and Lovo/5-FU cells 5-FU
Induce multidrug resistance through activating

Wnt/β-catenin signaling by suppressing AP-2α and
further upregulating MDR1/P-gp expression

AP-2α [18]

lncRNA
HOTAIR

Colo205 and SW620 cells
Cisplatin,
paclitaxel

Promote the chemoresistance of CRC cells through targeting
miR-203a-3p-mediated Wnt/β-catenin signaling pathway

miR-203a-3p [92]
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some other miRNAs (e.g., miR-192, miR-587, miR-133a,
miR-215, and miR-492) are associated with increased che-
moresistance in CRC [85]. lncRNAs are mRNA-like tran-
scripts lacking significant open reading frames and have
been shown to regulate cell apoptosis, proliferation as well
as drug functions in multiple tumor types [83]. Recent
advance to date have strongly cemented the fact that
lncRNAs could modulate the chemoresistance of CRC
through miRNAs, and miRNAs could crosstalk with various
key cellular signaling networks including the Wnt/β-catenin
cascade [86, 87]. The association between ncRNAs and che-
moresistance of CRC is increasingly established, and identi-
fication of specific ncRNAs may aid molecular targets for
future relief of chemoresistant CRC. Thus, we listed the roles
of ncRNAs in CRC chemoresistance through the Wnt/β-
catenin signaling pathway in Table 1.

10. Conclusions and Perspectives

Chemoresistance remains a considerable challenge prevent-
ing better cure rates after treatment initiation in CRC nowa-
days. Unraveling the molecular mechanisms driving the
chemoresistance of CRC would be beneficial for identifying
invaluable therapeutic targets for clinical applications. As
mentioned in the present review, chemoresistance related to
β-catenin signaling in CRC has been shown to be associated
with a variety of mechanisms including decreased intracellu-
lar drug accumulation, apoptosis inhibition, presence of
highly resistant CSCs, EMT, tumor microenvironment, and
some ncRNAs. The Wnt/β-catenin signaling pathway could
be further investigated as a promising target in the develop-
ment of new drugs to alleviate chemoresistance. Nowadays,
preclinical studies and clinical trials showing patients’
responses to therapy with inhibitors of Wnt/β-catenin sig-
naling pathway are undergoing. Some experimental evidence
from preclinical studies already suggests a beneficial conse-
quence of β-catenin signaling pathway blockade. For exam-
ple, as a soy-derived isoflavone, which could be used as an
inhibitor of the Wnt pathway by inactivating β-catenin sig-
naling through overexpressing GSK3β and E-cadherin,
Genistein has been reported to play a role in reversing resis-
tance to fluoropyrimidine compounds and platinum [93].
Moreover, whether some mechanisms that exist in CRC che-
moresistance, such as epigenome, autophagy, and metabo-
lism, are also associated with the Wnt/β-catenin signaling
pathway need to be further explored in the future. Finally,
more progresses in molecular biology enabling clinicians to
reverse drug resistance of CRC are eagerly anticipated.
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