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ABSTRACT

Motivation: Many secretory proteins are synthesized as inactive

precursors that must undergo post-translational proteolysis in order

to mature and become active. In the current study, we address

the challenge of sequence-based discovery of proteolytic sites in

secreted proteins using machine learning.

Results: The results revealed that only half of the extracellular pro-

teolytic sites are currently annotated, leaving over 3600 unannotated

ones. Furthermore, we have found that only 6% of the unannotated

sites are similar to known proteolytic sites, whereas the remaining

94% do not share significant similarity with any annotated proteolytic

site. The computational challenges in these two cases are very

different. While the precision in detecting the former group is close to

perfect, only a mere 22% of the latter group were detected with a

precision of 80%. The applicability of the classifier is demonstrated

through members of the FGF family, in which we verified the

conservation of physiologically-relevant proteolytic sites in homol-

ogous proteins.

Contact: kliger@compugen.co.il; yossef.kliger@gmail.com

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Many secretory proteins and peptides are initially synthesized
as larger precursors, usually in the form of pre-pro-proteins.

Such precursor proteins undergo post-translational proteolysis:

the N-terminal pre-region, known as signal peptide, is cleaved

by a well-characterized signal peptidase [reviewed in (Paetzel

et al., 2002)], while various proteases liberate the active proteins

from the pro-proteins. The following examples demonstrate the

importance of the latter process and its regulation: (i) The

envelope (Env) glycoprotein of HIV-1 is synthesized as a

precursor polypeptide. In the trans-Golgi network, Env is

cleaved by the cellular protease furin into two functional
subunits. Cleavage of Env occurs at a conserved sequence.

Mutagenesis of this sequence produces non-infectious HIV-1

particles containing unprocessed Env (Earl et al., 1991;

Kowalski et al., 1987; McCune et al., 1988). This finding

establishes the importance of furin-mediated processing for

virus-infectivity. Accordingly, inhibitors of the host protease

furin impede HIV-1 replication by interfering with the

proteolytic processing of Env, suggesting they are useful for

combating HIV-1 (Bahbouhi et al., 2002; Hallenberger et al.,

1992; Kibler et al., 2004). Furthermore, inhibiting the produc-

tion of peptides involved in various diseases by blocking the

activity of the proteolytic enzymes is a promising approach

(Basak, 2005; Bergeron et al., 2005; de Haan et al., 2004). (ii)

The release of peptide hormones is subject to a complex and

finely tuned regulation system. Post-translational proteolysis

plays a key role by specifically converting the pro-hormone

precursor into biologically active products. Examples of

peptide hormones, whose proteolytic processing regulates

their activities, are: insulin, somatostatin, parathyroid hor-

mone, glucagon and GLP-1. Many of these are used as

therapeutic peptides for treating various disorders.

The importance of identifying mature proteins fuels both

experimental and computational approaches aimed at discover-

ing and predicting proteolytic sites. Experimental attempts to

unveil the human plasma proteome using proteomics methods

fail to detect most cytokines and protein hormones, presumably

due to their low abundance [summarized in (Anderson et al.,

2004)]. Currently, most computational approaches are pro-

tease-oriented and rely on proteolytic site data of specific

enzymes (Blom et al., 1996; Cai et al., 1998; Kiemer et al., 2004;

Yang and Berry, 2004). However, while proteolytic sites in a

protein can be experimentally identified, for example, by

N-terminal sequencing of the processed protein fragments, it

is much harder to find out the catalyzing protease involved.

Hence, only a limited number of experimentally verified

proteolytic sites can be associated with a specific proteolytic

enzyme, and therefore the data available as training sets for

these methods is relatively limited.
Many of the proteolytic sites whose catalyzing enzymes are

known are processed by members of one family of serine

proteases, called pro-hormone convertases (PCs) (Seidah et al.,

1998). All known proteolytic sites of mammalian PCs have an

arginine or a lysine at the first position N-terminal to the

proteolytic sites. Furthermore, no other enzyme that catalyzes

the processing of proteins in the secretory pathway is known to
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cleave immediately after these basic amino acid residues. It is
therefore reasonable to assume that proteolysis after a basic

residue is catalyzed by a member of the PC family. This allows
data extraction of sequences of proteins, which are processed

by a PC member, from databases of precursor proteins and

proteolytic sites. Such extracted data, together with the
evolutionary relatedness between the members of the PC

family, suggests that it might be possible to construct a classifier

that will discriminate between PC proteolytic sites, regardless of
the specific PC member, and other sites. Such an approach was

taken by Blom and colleagues (Duckert et al., 2004), who

extracted PC proteolytic sites based on Swiss-Prot (version 40)
annotation. Herein, we describe an improved data extraction

process, which considered more proteolytic sites. The extracted

data was used for training classifiers, which are based on two
different classification algorithms—Random Forest and

Support Vector Machines. The best classifier was used to
provide a comprehensive list of predicted proteolytic sites in the

mammalian secretome. Several interesting predictions of pro-

teolytic sites are discussed.

2 METHODS

2.1 Data preparation

All eukaryotic proteins were downloaded from the Swiss-Prot knowl-

edgebase version 47.4 (Boeckmann et al., 2003). Proteins whose first

residue is not methionine were discarded, as they might not contain the

full-length sequence of the precursor protein. The same holds for Swiss-

Prot entries that include the phrase ‘PROTEIN SEQUENCE’, but do

not include ‘NUCLEOTIDE SEQUENCE’ in their RP annotation lines,

as these entries might contain sequences of processed proteins, rather

than the full-length precursor proteins. Data of proteolytic sites were

extracted from the post-translational modifications annotation lines

(FT) of the Swiss-Prot knowledgebase (Farriol-Mathis et al., 2004).

2.2 Classifiers

Two types of classifiers were tested: Random Forest (RF) (Breiman,

2001) and Support Vector Machines (SVM) (Vapnik and Cortes, 1995).

For the SVM classifier, we used Joachims’ SVMlight package

(Joachims, 1999).

2.3 Signal peptide prediction

Predicting whether a protein has an N-terminal signal sequence, was

performed using the SignalP 3.0 prediction tool (Bendtsen et al., 2004).

2.4 Multiple sequence alignment

Multiple sequence alignments were computed with ProbCons (Do et al.,

2005) and were edited using Jalview (Clamp et al., 2004).

3 RESULTS

3.1 Proteolytic site data extraction

Since the aim of the classifier was to model proteolytic
processes taking place in the secretory pathway, only secreted

proteins and extracellular parts of membranal proteins

(secretome) were considered. Thus, only proteins annotated
as containing a signal peptide or a transmembrane domain in

the feature table (FT) lines of the Swiss-Prot annotation record,

or annotated as being secreted or extracellular in the comment
(CC) lines of the Swiss-Prot annotation record were selected.
In the case of integral membrane proteins, cytoplasmic

domains were not considered. The membrane topology informa-
tion, i.e. the location of the membrane-spanning regions and
their orientation, was extracted from the topology annotation

lines of the Swiss-Prot entry (FT TOPO_DOM and FT
TRANSMEM). When these lines do not span the full length
of the protein, we completed the full topology of the protein
according to the annotated signal peptide, transmembrane

domains, extracellular domains and cytoplasmic domains. This
process was performed twice: once by starting from the most
N-terminal topology annotation, and once by starting from the

most C-terminal topology annotation. Whenever discrepancies
between the two completion processes were found, the Swiss-
Prot entry was discarded. Such discrepancies point to mistakes

in the topology annotation of multi-span proteins. Ideally, the
extracted proteolytic sites should be divided into sites that
are catalyzed by enzymes working in the secretory pathway, the

extracellular matrix, the cytoplasm, the digestive system or in
extracellular fluids.When available, annotation of the identity of
the proteolytic enzyme was extracted from the FT annotation

lines (following the phrase ‘Removed by’ in the description of
PROPEPs lines, or following ‘by’ in the description of
‘SITE. . .CLEAVAGE’ lines). As the aim of this study is to

model the processes that take place in the secretory pathways,
proteolysis processed by enzymes that are known to act outside
the secretory pathway were discarded. The list of enzymes

known to act outside the secretory pathway that appear in the
annotation of Swiss-Prot entries of the proteins they cleave
includes: adam17, aggrecanase, alpha-secretase, beta-secretase,

caspase-6, cathepsin G, arginine-specific endoprotease, C3
convertase, chymosin, collagenase, dipeptidase, dipeptidylpep-
tidase, DPP4, easter, elastase, kallikrein and kallikrein-like

serine protease,MMPs (2, 3, and 9), coagulation factors (I, VIIa,
IXa, Xa and XIa), plasmin, procollagen C-endopeptidase, pro-
collagen N-endopeptidase, rennin, thrombin, trypsin and u-PA.

Blom and colleagues (Duckert et al., 2004) extracted PC
proteolytic sites based on Swiss-Prot annotation. They screened
for precursor proteins that are annotated to have a signal

peptide, followed by a PROPEP that ends with an arginine or a
lysine, and then followed by a PEPTIDE or a CHAIN. They
were then able to construct an artificial neural network-based

classifier for predicting proteolytic sites catalyzed by members
of the pro-hormone convertase family of proteases (Duckert
et al., 2004). However, this procedure is too strict for part of the

proteolytic sites. For example, human insulin (Swiss-Prot ID:
INS_HUMAN) is composed of a signal peptide, followed by a
PEPTIDE, a PROPEP and then another PEPTIDE. These two

well-characterized proteolytic sites were ignored by the
conservative extraction, because insulin has no PROPEP
immediately after the signal peptide. Therefore, due to the

scarcity of data, we used a less strict data extraction procedure
as described below.
This study focuses on proteolytic sites of enzymes that cut

immediately after lysines or arginines. Such enzymes are often
classified as members of the pro-hormone convertase family.
Therefore, only sites with a lysine or arginine at the first position

N-terminal to the proteolytic site were considered. We extracted
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all 30-mers of the secretome, arranged symmetrically around a

potential proteolytic site after a basic residue, and designated

them as follows: (i) Experimentally-validated proteolytic sites,

which are annotated by a Swiss-Prot FT annotation line

according to the word template ‘SITE. . .CLEAVAGE’, were

marked VALIDATED. (ii) Experimentally-validated proteo-

lytic sites, whose existence is indicated by the annotation of the

two protein segments right before and immediately after the

proteolytic site, were also marked VALIDATED. The annota-

tion for protein segments is in the form of Swiss-Prot FT anno-

tation lines having the word template ‘PEPTIDE (or

PROPEPTIDE or CHAIN) [first residue] [last residue]’, and

the two segments of the protein should be consecutive, i.e. the

first residue of the second segment immediately follows the last

residue of the first segment. We do allow for a short linker

section in between the two segments, provided that it is likely to

be removed by exopeptidase E after the processing of the protein

precursor by a pro-hormone convertase (Day et al., 1998; Friis-

Hansen et al., 2001). We consider linker sections consisting of K,

R, KK, KR, RK, RR, or successive Ks and/or Rs followed by

a classical furin proteolytic site (RXKR or RXRR, where X is

any natural amino acid) as likely to be cut by exopeptidase E.

We also allow for a glycine to immediately upstream of the

basic residue/s at the C-terminus of the first PEPTIDE,

PROPEPTIDE or CHAIN, as it is likely that these peptides

are substrates for C-terminal alpha-amidating enzymes that

convert the peptides to the corresponding desglycine peptide

amide, where glycine is the amide donor (Bradbury et al., 1982).

The ambiguous sites (after each of the residues located

in-between the two annotation lines) are marked AMBG.

(iii) When only one PEPTIDE, PROPEPTIDE or CHAIN

annotation line suggests the existence of a proteolytic site, our

confidence in the proteolysis site is reduced and the site is

marked POTENTIAL. (iv)When comments like ‘PROBABLE’,

‘BY SIMILARITY’ or ‘POTENTIAL’ (Farriol-Mathis et al.,

2004; Junker et al., 1999) appear in the description of the FT

lines in the cases described in (i) and (ii), the proteolytic site is

designated as POTENTIAL. (v) When the distance between two

proteolytic sites does not exceed four residues, the reliability

of both sites is reduced. Such proteolytic sites are marked

POTENTIAL unless there is strong support for their reliability.

Strong support for one or both of the two proteolytic sites

is considered if a proteolytic site is marked VALIDATED

according to the criterion in (i). Strong support for one or both

of the two proteolytic sites is also considered if a proteolytic site

is marked POTENTIAL according to the SITE. . .CLEAVAGE

annotation line, and also marked VALIDATED according to

the criterion in (ii). (vi) All other positions were marked NON

(Table SI).

3.2 Training, validation, and test sets

Ideally, data would be separated into distinct training, test and

validation sets. However, the relative scarcity of cleavage sites,

and their different levels of reliability, present a challenge when

preparing datasets for classification, and necessitate a different

approach. A validation set consisting of a random quarter of

the data was held out and used for parameter optimization. The

rest of the data were used, once optimal parameters were

chosen, in cross-validation to evaluate performance. When
training, only the most reliable proteolytic sites, namely, sites

that were marked VALIDATED, were used as positive
examples, while a subset of the sites marked NON was used

as negative examples. For the purpose of performance

evaluation, on the other hand, it is important to use a set
representative of all data. Thus, in the parts of the data used for

testing, proteolytic sites that were marked VALIDATED or
POTENTIAL were labeled positive, while those marked NON

or AMBG were labeled negative.

3.3 Classifier construction

Homologous sequences raise special difficulties due to the
relationship between redundancy and information. It is there-

fore essential to handle them with care. One approach is to
discard some of the protein sequences, in a way that maximizes

coverage and minimizes redundancy (Hobohm et al., 1992).

The weakness of this approach is that it prevents learning from
the subtle changes that exist between very similar sequences.

For this reason, and due to the scarcity of annotated data,
others and we decided to use all available data. This approach

requires special precautions in order to minimize the risk of

overestimating the predictive performance owing to training set
and test set similarities. One way to avoid training and testing

on homologous data is to divide the data into several partitions
based on a phylogenetic tree, and then calculate the perfor-

mance by cross-validation (Duckert et al., 2004). We used a

different approach, which is described in what follows.
We argue that the task of classifying a site is naturally

divided into two cases, depending on whether or not this site is

similar (to a degree, homologous) to a known proteolytic site,

i.e. a proteolytic site present in the training set. Classifying ‘seen
before’ sites and ‘new’ sites are tasks that are different in

nature, and have a different level of difficulty. This implies the
need for two methods of classification, and, more important,

for separate performance evaluation for the two tasks. In order

to discriminate between the classification tasks, we analyzed
18-mers, arranged symmetrically around a potential proteolytic

site, which were marked as VALIDATED or POTENTIAL.
Each 18-mer was compared to its most similar known

proteolytic site, and the number of identical residues was

counted. Our analysis confirmed that 18-mer sites that share
more than nine residues with a known proteolytic site are most

likely to be proteolytic sites themselves (Figure S1).
We chose this threshold for dividing the data into ‘new’ and

‘seen before’ sites. The number of identical residues to the
closest known proteolytic site was also used as an additional

input feature for the classifier. This feature improves the
classification results (Figure S2).

Figure 1 reveals that, as expected, the tasks of classifying
‘seen before’ sites and classifying ‘new’ sites, are different in

nature, and confirms the need for two separate performance

evaluations. In addition, a classifier trained to identify ‘new’
sites was more successful at identifying ‘new’ sites than a

classifier trained to identify ‘seen before’ sites (Figure 1B).

3.3.1 Parameter tuning A quarter of the data was picked
out at random to serve only for tuning parameters, while the

rest was used at the tuning stage for training. The held out set
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was divided into ‘seen before’ and ‘new’ sites, based on the

maximal similarity to known sites in the training set. The two

classifiers, for ‘seen before’ sites and for ‘new’ sites, were then,

separately, optimized by evaluating precision vs. recall graphs

based on the raw score output of Random Forest (RF). The

inputs to the classifier were (i) a symmetrical window around

the site, and (ii) the maximal identity to a known cleavage site,

divided by the window size. For the classifier specialized in

‘seen before’ sites, we used a symmetrical window of 20 residues

surrounding each site, a negative set 50 times larger than the

positive set, and the internal weighting mechanism of RF was

set to give a weight of 50 to the positive set, and 1 to the

negative set. Mtry was set to 5, and 200 trees were found to be

sufficient. For the classifier aimed at identifying ‘new’

proteolytic sites, we used a symmetrical window of 12 residues

around each site, a negative set 50 times larger than the positive

set, and the internal weighting was set to 2 for the positive

set and 1 for the negative set. Mtry was set to 2 and 200 trees

were again found to be sufficient. For the SVM classifier,

we tried different polynomial kernels. The best degrees were

found to be 4 and 6 for the ‘seen before’ and ‘new’ classifiers,

respectively. The vectors fed to the SVMs were in sparse

representation (Qian and Sejnowski, 1988). The maximal

identity value was used with the SVM the same way as with

the RF classifier.

3.3.2 Classifier construction and performance evaluation The

data that was not used as testing data in the parameter

optimization step (three quarters of the data) was used for

10-fold stratified cross-validation. Specifically, at each step of

the cross-validation, nine-tenths of the data were used for

training. The remaining tenth was used for testing after being

divided into ‘seen before’ and ‘new’ sets with respect to the

current training set. By ‘stratified’ we mean that each tenth part

of the data contained the same proportion of VALIDATED,

POTENTIAL, etc. sites. The parameters used were those found

to be optimal in the parameter tuning step.

3.3.3 Performance evaluation correction As explained

above, all the data that was not used for parameter tuning

was used for testing, in order to reflect the heterogeneity of the

data as much as possible. However, there is uncertainty as to

the label of any data that is not VALIDATED. To a large

degree, we trust sites designated POTENTIAL to be real

proteolytic sites. Manual reviewing of many of the

POTENTIAL sites suggests that this assumption is reasonable.

We assume that most AMBG and NON sites are not

proteolytic sites. Still, it is expected that yet undiscovered

proteolytic sites are hidden among the sites marked NON or

AMBG. The sheer volume of NON sites raises the suspicion

that there are even more unknown proteolytic sites labeled

NON than known proteolytic sites. This may distort perfor-

mance evaluation statistics. We present below a calculation that

attempts to tackle this problem.

Calculated Recall ¼
TPi

Ti
ð1Þ

Calculated Precision ¼
TPi

ðTPi þ PoÞ
ð2Þ

Real Recall ¼
ðTPi þ TPoÞ

ðTi þ ToÞ
ð3Þ

Real Precision ¼
ðTPi þ TPoÞ

ðTPi þ PoÞ
ð4Þ

Where TPi denotes instances in the positive set, correctly

classified as positive, TPo represents mislabeled instances in the

negative set, correctly classified as positive, Ti denotes instances

in the positive set, To represents mislabeled instances in the

negative set, and Po denotes instances in the negative set,

classified as positive. It is now easy to note that calculated

precision evaluations are always underestimated. The reason is

that while the denominator in Equation (2) is the same as in

Equation (4), the numerator does not include TPo, which may

be even larger than TPi.
We now proceed under the assumption that negative data is a

mixture of two statistical types of data—mislabeled positives

Fig. 1. The effect of creating two specialized classifiers. It is clear that the performance of classifiers for ‘seen before’ and ‘new’ sites should be

evaluated separately. Furthermore, the figure shows that it is worth training specialized classifiers: (A) Identification of ‘seen before’ sites.

The classifier trained to identify ‘seen before’ sites is somewhat better at identifying such sites than the classifier trained to identify ‘new’ sites.

(B) Identification of ‘new’ sites. The classifier trained to identify ‘new’ sites performs better than the classifier trained to identify ‘seen before’ sites

at identifying ‘new’ sites.

1052

Y.Kliger et al.



(a fraction � of the negative data) and real negatives.

Mislabeled positives are assumed to have the same statis-

tical nature as positive data. Let Fi (Fo) be the cumulative

distribution function of the score for positive (negative) data.

Let Ni (No) be the number of positive (negative) instances. Let t

be a threshold for the score.

Real Recall ¼
Ni 1� FiðtÞð Þ þ �No 1� FiðtÞð Þð Þ

Ni þ �Noð Þ
¼ 1� FiðtÞ ð5Þ

Note that the real recall is independent of �, and is therefore

equal to the ordinary recall calculated without assuming any

mislabeling.

Real Precision ¼
Ni 1� FiðtÞð Þ þ �No 1� FiðtÞð Þð Þ

TPi þ Poð Þ

¼
1þ �No=Nið Þ �Nið1� FiðtÞÞ

TPi þ Poð Þ

¼
1þ �No=Nið Þ � TPi

TPi þ Poð Þ

ð6Þ

The real precision is the ordinary precision multiplied by a

correction factor: (1þ � No/Ni). Therefore, for �¼ 0 we recover

the ordinary precision.

To summarize, mislabeling leaves the recall unchanged, while

the precision is enhanced by a factor (1þ� No/Ni)¼ 1þTo/Ti.

For furin proteolysis, we can obtain a reasonable estimate of

this factor, because furin sites have an easily detectable

consensus (Nakayama, 1997). We extrapolate from furin to

proteolytic sites of other members of the pro-hormone

convertase family, in an attempt to reflect the curation level

of proteolysis annotation in the Swiss-Prot knowledgebase. We

look for the furin proteolysis consensus site, after RXKR or

after RXRR, in the positive and negative sets. The instances in

the positive set are real positives, whereas the ones in the

negative set are a mixture of proteolytic and non-proteolytic

sites. There is evidence that a lysine located two positions after

the putative proteolytic site prevents cleavage, so such instances

were excluded.

In addition, we observed which residues are most frequent

immediately after the proteolytic site in the positive set. Our

method for finding the ratio To/Ti was to look for the same

subfamily of sites in both positive and negative sets: instances

of a furin consensus followed by one of the 3 most frequent

residues (as found in the positive set), excluding lysine in the

second post-cleavage position. The calculated furin correction

factor was found to be 1.11 for the ‘seen before’ classifier, and

3.04 for the ‘new’ classifier. Note that because of the inaccuracy

of this correction procedure, corrected precision values may

exceed 1. It must be emphasized that the furin correction factor

is based on the assumptions that the ratio of annotated

proteolytic sites to unannotated sites is equal for furin and

other PC sites, and that classifier score distributions are

mixtures as described above. Both these assumptions are very

rough approximations. Still, we believe this correction gives a

better evaluation of classifier performance. A comparison

between the performance of RF and SVM classifiers specialized

in ‘new’ sites is shown in Figure 2. The RF classifier performs

better in the high precision/low recall area, while SVM

performs better in the high recall/low precision area. Figure 2

also shows the effect of the furin correction factor on the raw

score output of the RF and SVM classifiers. The performance

of both the RF and SVM ‘seen before’ classifiers is almost

perfect (Figure S3), as expected, and becomes perfect when

applying correction (data not shown).

3.4 Proteolytic site prediction

The classification procedure described above was repeated, but

this time, no holdout set was removed, and 10-fold stratified

cross-validation was applied to the whole eukaryotic secretome.

For each classifier, scores were replaced by their corresponding

precision values. Each site was given a single score: a ‘seen

before’ site was given its score according to the ‘seen before’

classifier, and a ‘new’ site was given its score according to the

‘new’ classifier.

Fig. 2. Comparison between RF and SVM classifiers specialized in ‘new’ sites, and the effect of the furin correction factor. VALIDATED and

POTENTIAL data are treated as positive for testing, the rest as negative. The furin correction is a way to compensate for the fact that some of the

data we treated as negative for cleavage is actually mislabeled (unknown proteolytic sites). (A) Raw score output of the RF and SVM classifiers;

(B) Precision is multiplied by 3.04, which is the calculated furin correction factor. It should be remarked that because of the imperfection of

the correction procedure, corrected precision values may exceed 1. Precision values that exceed 1 are set to 1.
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For ‘new’ sites, there are 1663 VALIDATED and

POTENTIAL sites, and 569 820 NON and AMBG sites, and

the furin correction factor is 3.04. For ‘seen before’ sites, there

are 2099 VALIDATED and POTENTIAL sites, and 1035

NON and AMBG sites, and the furin correction factor is 1.11.

Based on our data extraction, performance evaluation, and the

furin correction factor, we estimate that the eukaryotic

secretome is comprised of about 7385 proteolytic sites, of

which 2330 (2099 * 1.11) are ‘seen before’, i.e. quite similar to

known proteolytic sites, and 5055 (1663 * 3.04) are ‘new’, i.e. do

not share significant sequence similarity to any annotated

proteolytic site.
The furin correction factor also allows us to estimate the

fraction of unannotated proteolysis for ‘seen before’ and ‘new’

sites. Our results reveal that only 9.9% (0.11/1.11) of ‘seen

before’ sites are still unannotated, while 67% (2.04/3.04) of

‘new’ sites are yet to be discovered. Furthermore, the RF

classifier specialized in ‘seen before’ sites predicts apparently all

231 ‘seen before’ sites with a precision greater than 90%, while

the RF classifier specialized in ‘new’ sites predicts about 33% of

the 3393 unknown ‘new’ sites with a precision of 50%, and 22%

with a precision of 80% (Fig. 2).

3.5 Predicted proteolytic sites in members of the

fibroblast growth factor family

Swiss-Prot 47.4 does not include annotation for proteolytic sites

in any of the members of the Fibroblast Growth Factor (FGF)

family. Yet, our prediction method suggests several proteolytic

sites in some of the proteins in this family, resulting in a

classification of the FGF proteins into three groups of

orthologs: FGFs that have conserved N-terminal proteolytic

sites, FGFs that have conserved C-terminal proteolytic sites

and all others (Table SII). A literature search confirmed some

of our predictions.

Functional proteolytic sites are expected to be conserved

among close species. Our classifier revealed that the proteolytic

site in FGF23 is indeed conserved in all available FGF23

orthologs (Fig. 3). The C-terminal proteolytic site of FGF23 is

important for normal activity of the protein. Several groups

reported proteolysis in FGF23 between Arg179 and Ser180,

and mutations in proximity to this site (R179W, R179Q and

R176Q) were identified in patients with autosomal-dominant

hypophosphatemic rickets (ADHR) (Bowe et al., 2001;

Shimada et al., 2002; White et al., 2000, 2001). The authors

suggested that the proteolysis causes protein inactivation, and

that these mutations created a polypeptide less sensitive to

proteolysis, thus leading to elevated concentrations of FGF23,

and to phosphate wasting in ADHR patients. Our prediction

method revealed that these mutated forms of FGF23 do not

undergo C-terminal proteolysis (Fig. 3). Furthermore, our

predictions of proteolytic sites in the C-terminus of the other

FGF family members might also imply their deactivation by

proteolysis processing.

Another known case is the N-terminal proteolytic of FGF3.

The amino-terminal region downstream of the signal peptide of

the protein is involved in its retention in the Golgi apparatus and

the regulation of its secretion (Kiefer et al., 1993). We predicted

proteolytic sites in the N-terminus of human, mouse, zebrafish,

chicken and xenopus FGF3. Indeed, in xenopus, proteolysis

between Arg45 and Asp46 is essential for FGF3’s biological

activity (Antoine et al., 2000). We suggest that proteolysis of

10–27 N-terminal amino acids occurs during the maturation of

other FGFs, and may be important for their biological activity.

The multiple sequence alignment in Figure 4 confirms that the

N-terminal proteolytic site is conserved between some FGF

family members and in proximity to an upstream variable

region. It is worth noting that the proteolytic site is conserved

even among remote homologs. Some of these homologs possess

an N-terminal signal peptide and are secreted via the classical

secretory pathway, while others do not possess a signal peptide

and are secreted via an alternative pathway (Nickel, 2003).

4 DISCUSSION

This study revealed a big potential for proteolytic site pre-

dictors, because most proteolytic sites are currently still

unannotated. Furthermore, the furin correction factor gives

an estimate of the total number of proteolytic sites. We esti-

mate the eukaryotic secretome to comprise about 7385

(1663� 3.04þ 2099� 1.11) proteolytic sites, which means

that about 1.3% of R/K in the secretome are proteolytic sites

(7385/(1663þ 569820þ 2099 þ 1035)¼ 0.0129). An important

Fig. 3. Proteolytic site predictions for FGF23 of human, three mutant

forms from ADHR patients, and three vertebrate orthologs. Sequences

of FGF23 of human, mouse, rat and pufferfish were aligned together

with R179W, R179Q and R176Q human FGF23 mutants (mutations

are highlighted in dark grey). High score cleavage predictions were

assigned to the true cleavage sites (highlighted in light grey). In normal

FGF23, cleavage is known to take place between the two amino acids in

light grey.

Fig. 4. FGF3 and other FGF family members that undergo proteolysis

in their N-terminal region. Proteolysis of the N-terminal region of

FGF3 is important for regulating its activity. FGF11 to 14 were also

assigned high score N-terminal cleavage site predictions, although they

do not have a leading signal peptide. Removing the signal peptides of

FGF3 members allows alignment of the N-terminal proteolytic sites.

The high conservation of the proteolytic site signatures in contrast to

the variability of the flanking sequences, confirms the importance of the

proteolytic processing that as in FGF3 may be involved in the

regulation of protein activity.
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conclusion is that currently only about half of the proteolytic

sites are annotated [(1663þ 2099)/7385¼ 0.509], meaning there

is a great value for predictors of proteolytic sites.
Another important issue raised in this article is performance

evaluation when some of the data is mislabeled. This mis-

labeling is a result of missing annotation in our case, and these

sites are often unknown proteolytic sites. We showed that such

mislabeling leaves the recall unchanged, while the precision is

reduced by a factor that can be estimated. Furthermore, by

relying on a well-characterized subgroup, namely furin sites, we

were able to estimate the degree of mislabeling. As mislabeling

is very common in perhaps most current biological data, we

believe that our calculation is relevant for performance evalua-

tion in other biological classification problems.
Many sites are currently not annotated as proteolytic sites,

but are predicted by our classifier with high precision. These

include sites in currently developed therapeutic proteins, and in

a few cases, the exact boundaries of peptides identified

experimentally as minimal sequences required for functionality.

We demonstrate the prediction capability of the novel classi-

fier in an analysis of members of the Fibroblast Growth Factor

(FGF) family. We were able to discriminate real proteolysis sites

from non-cleaving sites of mutant FGF23 proteins of ADHR

patients. Additionally the predictor was able to identify cleavage

sites in remote homologs, suggesting a regulatory role for the

predicted cleavages by annotation transfer.
In summary, proteolysis has a great influence on the biolog-

ical function of proteins, and therefore the accurate prediction

of proteolytic sites is important for basic research and

biotechnological applications. It allows identification of biolog-

ically active peptides from non-active precursors. In addition, it

allows identification of mutations and polymorphisms that

influence the generation of active peptides and proteins.
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