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Deficient Responses of Pulmonary Macrophages from Healthy Smokers to
Antiviral Lymphokines in Vitro
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The antiviral function of pulmonary macrophages obtained by broncholavage of healthy
smokers and nonsmokers was studied. Compared with nonsmokers' cells, smokers' mac
rophages produced significantly more virus during in vitro infection with herpes simplex
virus type 1 (HSV-l). Exposure of macrophages to either antiviral macrophage-activating
factor or interferon-y for 20 hr before infection resulted in diminished production of HSV-l
by both types of macrophages. However, in contrast to smokers' cells, exposure of non
smokers' macrophages to these antivirallymphokines totally prevented viral replication.
This difference could not be attributed to diminished adsorption of virus to smokers'
macrophages or to an increased proportion of extracellular to intracellular virus in smokers'
cell cultures. The effect of smoking on viral infectivity did not appear to be mediated
by secretion of a soluble factor by the macrophage because incubation of nonsmokers'
cells with supernatant from smokers' cell cultures did not affect the growth of HSV-l.

Cigarette smoking increases both the risk and
severity of viral infection of the respiratory tract.
Healthy young adult smokers have more frequent
acute infections of the respiratory tract than do non
smokers of the same age [1, 2]. During episodes of
acute nonspecific illness in the respiratory tract,
smokers report more symptoms [3] and develop more
signs [4] in the lower respiratory tract than do non
smokers. Although the etiology of acute illness in
the respiratory tract was not characterized in some
of these studies, a substantial proportion of acute
nonspecific illness in the respiratory tract is caused
by viral infection [5].

Smoking has been found to influence the impact
of respiratory tract infection on the host in studies
in which definite viral etiology has been specified.
During an epidemic of influenza (HINI) in young
soldiers, smoking was associated with increased risk
of development of clinically apparent infection as
well as increased likelihood of a severe influenza syn-
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drome [6]. In chronic bronchitis in which smoking
is the major causative factor [7], rates of viral infec
tions in the respiratory tract are greater in smoking
than in nonsmoking controls for rhinoviruses [8],
respiratory syncytial virus [9], influenza A and B
viruses, parainfluenza virus types 1, 2, and 3, and
coronavirus OC 43 [9, 10]. Viral infection of the re
spiratory tract is also responsible for substantial mor
bidity in chronic bronchitis; viruses have been im
plicated in up to one-third of all exacerbations of
bronchitis [11, 12].

In spite of the impact of cigarette smoking on vi
ral infection of the respiratory tract, little is known
about how smoking alters respiratory defenses
against viruses. The pulmonary macrophage is a
principal cellular defense in the lung against infec
tious agents, including viruses [13, 14]. Because var
ious functional, metabolic, and structural alterations
have been demonstrated in this cell as a result of ex
posure to tobacco smoke, it is reasonable to specu
late that certain critical antiviral functions of the
pulmonary macrophage may also be affected by
smoking. For this reason we assessed the infectivity
of herpes simplex virus type 1 (HSV-l) for pulmo
nary macrophages from healthy smokers and non
smokers. Because macrophage mechanisms for re
stricting viral growth may be activated in vivo by
lymphokines, soluble mediators of the immune re
sponse [15, 16], we also investigated the possibility
that smoking affects lung defenses by altering mac
rophage responsiveness to antiviral lymphokines.
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Materials and Methods

Source of macroph ages. Pulmonary macro
phages were harvested from healthy smokers and
nonsmokers as described previously [17]. All volun
teers for this study were screened by standardized
questionnaire [18], chest auscultation, and spirom
etry [19]. Individuals were excluded from this study
if they had a history or evidence of chronic pulmo
nary disease, abnormal lung sounds, or abnormal
spirometry. To ensure that macrophages were free
of respiratory viruses and had not been recently ex
posed to endogenous antiviral mediators such as in
terferon, we only accepted volunteers for bron
cholavage if they were free of all respiratory tract
symptoms for the prior two weeks. All smokers iden
tified in this fashion smoked at least one pack of
cigarettes per day (range, one to 2.5 packs per day)
for two years (range, two to 12 years).

Because preliminary studies confirmed the work
of Daniels et al. [20], which demonstrated that
monocytes obtained from HSV-l-seropositive and
-seronegative donors were equally permissive for
viral replication, the serological status of the donor
was not taken into account in these studies.

Macrophage infection. Pulmonary macrophages
were isolated from broncholavage fluid by centrifu
gation at 100 g for 10 min at 20 C. They were main
tained in RPMI-1640 medium supplemented with 25
mM HEPES buffer, 50 ug of gentamicin/ml, 2 mM
L-glutamine, and 10070 heated-inactivated fetal calf
serum. Cells (5 x 105

) were seeded in 35-mm plastic
dishes with 2-mm grids (Miles Laboratories, Naper
ville, Ill) to facilitate counting. Cells remaining ad
herent after incubation for 3 hr were >97070 viable,
as assessed by ability to exclude trypan blue, and
>94070 phagocytic of latex beads 1.1 urn in diameter.
Cells from smokers and nonsmokers were similar
with respect to viability and phagocytic ability. How
ever, smokers' cells exhibited morphological differ
ences from nonsmokers' cells by light microscopy:
smokers' cells appeared larger, spread more rapidly
on plastic, and contained numerous refractile in
tracytoplasmic inclusions.

Within 24 hr of isolation, macrophages were in
fected with KOS strain HSV-l at an moi of 20:1 by
exposure of cells to virus (0.1 ml) for 60 min at 37
C in an atmosphere of 95070 room air and 5070 CO2 •

Unadsorbed virus was removed by three washes with
media.

At intervals after infection, virus present in the
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supernatant of macrophage cultures was quantitated
by determination of the number of viral pfu in repli
cate cultures of Vero cells [21]. In this assay 1%
pooled human serum was used as a source of HSV
I-specific antibody to neutralize virus released into
the culture medium after lysis of infected cells and
to prevent spread of released virus to noninfected
cells.

Adsorption of HSV-l to macrophages was deter
mined after exposure of cells to viral inoculum for
1 hr, followed by extensive washing of cells with
serum-free medium to remove unadsorbed virus. Ad
sorbed virus was then quantitated by freeze-thawing
cells at -70 C and measurement of the number of
viral pfu in the lysate. Freeze-thawing cells in this
manner resulted in complete disruption of macro
phage cultures (as seen by light microscopy) from
both smokers and nonsmokers. Cell-associated vi
rus was quantitated at intervals after infection in a
fashion analogous to the method used for determi
nation of initial adsorption of HSV-l to cells.

Cells were quantitated by counting pulmonary
macrophages remaining on one of the four central
grids of the 35-mm dish. This technique was feasi
ble because all nonadherent cells were nonviable.
Virus-specific cytolysis was determined as described
previously [22] by comparison of the number of re
maining cells in infected cultures at intervals after
infection to those present in infected wells at 1 hr
after exposure to virus. The latter number was mul
tiplied by the percentage of cytolysis in uninfected
cells at the time under analysis to account for non
specific cell death in macrophage cultures.

Modification of infection in nonsmokers' cells by
exposure to supernatant from cultures of smokers'
macrophages was attempted by incubation of non
smokers' cells with supernatants (50070 by volume)
from one- to three-day-old cultures of smokers' cells
for 24 hr before viral infection.

Preparation oflymphokines and macrophage ac
tivation. Human interferon-gamma (IFN-y) was
obtained from Meloy Laboratories (Springfield, Va).
Antiviral macrophage-activating factor (AV-MAF)
was prepared from concanavalin A (10 ug/rnlj
stimulated human leukocyte concentrates obtained
as a by-product of plateletpheresis as described pre
viously [23]. This procedure involves partial purifi
cation of leukocyte supernatants by gel filtration on
a column (2.5 x 100em) of Sephadex" G-IOO(Phar
macia Fine Chemicals, Piscataway, NJ), followed by
isoelectric focusing of the effluent on ampholine
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Results

Growth of HSV-l in pulmonary macrophages.
Replication of HSV-I in untreated pulmonary mac
rophages from smokers and nonsmokers is shown
in figure 1. Peak viral growth occurred 24 hr after
initiation of infection in cells from both sources; vi
ral growth in smokers' macrophages was 10 times
greater than growth in nonsmokers' cells (P < .01).
This result could not be explained by differences in
cell number between smokers' and nonsmokers' cell
cultures because the initial number of adherent cells
in these cultures before infection was similar and be
cause >800/0 cell lysis was observed in both smokers'
and nonsmokers' cell cultures by 48 hr after infec
tion. At the time of greatest viral replication (24 hr),
infectivity of HSV-I was greater for smokers' cells
when corrected for cell count (pfu per cell, 3.39 ±
0.51 and 0.35 ± 0.10 for smokers' and nonsmokers'
cell cultures, respectively).

Effect of lymphokine exposure on viral replica
tion. Pretreatment of macrophages with AV-MAF
(50 ul/ml) for 20 hr before infection resulted in di
minished viral replication in both smokers' and non
smokers' cells compared with cells exposed to medi
ator control (figure 2). In cells from nonsmokers,
inhibition of viral replication was observed at both
24 and 48 hr after infection. In contrast, smokers'
cells exposed to AV-MAF were not capable of to
tally suppressing viral growth, as evidenced by an
increase in the amount of virus recovered during the
first 24 hr after infection. Exposure to AV-MAF pro
tected cells from smokers and nonsmokers to a simi-

Control macrophage cultures were exposed to the
mediator control fraction (50 ul/rnl) in a similar
fashion.

Quantitation of cellular protein. The cellular
protein concentration was determined in uninfected
macrophage cultures grown in serum-free medium
after incubation for 3 hr. Nonadherent cells were first
removed by gentle washing, and intracellular pro
tein in the remaining adherent cells was released into
the culture supernatant by freeze-thawing once at
-70 C. The concentration of protein was quanti
tated by a modification [25] of the Lowry assay,
based on the differential A S 9 S of Coomassie'" bril
liant blue 0-250 (Bio-Rad, Richmond, Calif) when
protein binding occurs.

Statistical analysis. Results were analyzed by a
noninpaired Student's t test [26].

24 48
Hours after Infection
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electrofocusing equipment (model 8102; LKB
Producter, Bromma, Sweden) to yield 11 fractions.
Previous studies in human pulmonary macrophages
from nonsmoking donors and a transformed human
macrophage-like cell line, V937, demonstrated that
the fraction containing antiviral activity against
HSV-I in macrophage effector cells was the one with
an isoelectric point between 1.4 and 2.2 [22]. This
fraction contained no detectable IFN-y activity when
tested in a classical interferon assay with human fi
broblasts [24] and was not neutralized by monoclonal
antibody to IFN-y [22]. This fraction is therefore
referred to as AV-MAF.

A mediator control fraction was prepared in an
analogous manner from the supernatant of unstimu
lated leukocytes. Concanavalin A (10 ug/ml) was
added to mediator control supernatant after removal
of cells.

Macrophages were activated by exposure to either
IFN-y (500 Vlml) or AV-MAF (50 ul/rnl) for 20 hr
at 37 C in an atmosphere of 950/0 room air and 50/0
CO2 • Before infection, mediator was removed by
three washes of the cells in serum-free medium. In
previous studies these conditions were the optimal
concentration and incubation period to achieve ac
tivation of antiviral mechanisms of nonsmoker mac
rophages in this in vitro system [22]. The concentra
tion of AV-MAF used in these experiments was
expressed as J.lI of the lymphokine-containing frac
tion concentrated to I/50th the volume of the origi
nal supernatant by vacuum concentration.

Figure 1. Replication of HSV-l in untreated pulmonary
macrophages from smokers (e) and nonsmokers (0). Vi
rus is quantitated in pfu/ml of macrophage supernatant
on the abscissa; time after infection is shown on the or
dinate. Data are mean ± SD (bars) values from five ex
periments. The asterisk indicates P < .01 compared with
nonsmokers' macrophages.
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Figure 2. Effect of AV-MAF (closed symbols) versus
mediator control (open symbols) on replication of HSV-I
in pulmonary macrophages from nonsmokers (top; n =
4) and smokers (bottom; n = 6). A dagger indicates P
< .01 compared with mediator control; an asterisk indi
cates P < .05 compared with mediator control.

24 48

HOURS AFTER INFECTION

Figure 3. Effect of IFN-y (closed symbols) versus medi
ator control (open symbols) on replication of HSV-I in
pulmonary macrophages from nonsmokers (top; n = 3)
and smokers (bottom; n = 4). A dagger indicates P < .03
compared with mediator control; an asterisk indicates P
< .05 compared with mediator control.

Table 1. Effect of AV-MAF concentration on HSV-l
replication in smokers' pulmonary macrophages.

NOTE. Maximal viral replication is the highest yield of vi
rus (pfu/ml) found in duplicate macrophage supernatants at
either 24 or 48 hr after infection for each experiment. Maximal
percentage virus-specific cytolysis is the greatest percentage of
cell death attributable to HSV-I in duplicate cultures at 48 hr
after infection in each experiment. Data are mean ± SO values
from three experiments.

* p < .05 compared with mediator control.
t p < .01 compared with mediator control.

was observed in the number of virions per cell at 24
hr of infection compared with cells exposed to a
lower viral inoculum (20 virions per cell): 0.39 ± 0.18
pfu per cell for the larger inoculum versus 0.35 ±
0.1 as shown earlier for the smaller inoculum. Max
imal viral replication and lymphokine-mediated vi
ral inhibition were similarly unaltered (data not
shown). Exposure of cells to an inoculum of >100
virions per cell was associated with cytotoxicity
within 8 hr after exposure and was not tested further.

lar degree from virus-specific cytolysis. At 48 hr af
ter infection, mean ± SD cytolysis in smokers' cell
cultures was 77.70/0 ± 40/0 with addition of media
tor control and 48.60/0 ± 10/0 with addition of AV
MAF, compared with 80.680/0 ± 1.60/0 and 48.90/0
± 1.80/0 for nonsmokers' cell cultures, respectively.

Exposure of macrophages to IFN-y (500 U/ml)
diminished viral growth in both smokers' and non
smokers' cells but only totally inhibited viral repli
cation in nonsmokers' cells (figure 3).

To examine the possibility that the different re
sponse of smokers' cells to AV-MAF could be at
tributable to the use of suboptimal concentrations
of this lymphokine to activate cells, we pretreated
smokers' macrophages with different amounts of AV
MAF before initiation of infection (table I). In these
studies the maximal antiviral effect was achieved
with 50 J..LVml, the amount used in the experiment
shown in figure 2. Incubation of cells with 200 ul
of AV-MAF/ml resulted in 100/0-150/0 cell death and
was not tested further. Exposure of smokers' cells
for periods as long as 48 hr or as short as 8 hr to
AV-MAF before infection did not result in dimin
ished viral growth compared with cells exposed to
this lymphokine for 20 hr (data not shown).

In three experiments nonsmokers' cells were ex
posed to an increased moi (50-100 virions per cell)
to determine whether the different inocula would af
fect infectivity or lymphokine responses. No increase

Treatment
(ul/rnl)

Mediator control (50)

AV-MAF
10
50

100

Maximal viral
replication
(x 105

)

6.4 ± 1.57

3.8 ± 1.2*
2.6 ± 0.9t
2.9 ± 0.2t

Maximal
virus-specific
cytolysis (0J0)

68.36 ± 7.3

48.06 ± 5t
35.83 ± s.rt
31.33 ± 3.3t
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Table 2. Adsorption of HSV-1 to pulmonary macro
phages.
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Table 3. Ratio of cell-associated virus to total virus
recovered during infection.

NOTE. Adsorption of HSV-I to macrophages was measured
after incubation for I hr. Data are mean ± SD values from three
experiments.

* p < .01 compared with the corresponding nonsmokers' cell
culture.

Source of cells

Nonsmoker
No treatment
Mediator control
AV-MAF

Smoker
No treatment
Mediator control
AV-MAF

pfu X 105
/

5 X io- cells

0.5 ± 0.06
0.4 ± 0.07
0.5 ± 0.11

1.2 ± 0.17*
1.16 ± 0.11*

1.0 ± 0.13*

pfu X 105/llg of
protein in 5 x 105 cells

0.2 ± 0.024
0.19 ± 0.01

0.2 ± 0.04

0.16 ± 0.02
0.15 ± 0.04

0.187 ± 0.02

Time after infection (hr)

Source of cells 24 48

Nonsmoker
Mediator control 0.85 0.25 0.31
AV-MAF (50 ul /rnl) 1.6 0.38 0.35

Smoker
Mediator control 0.88 0.43 0.38
AV-MAF (50 ul/rnl) 2.50 0.28 0.25

NOTE. The ratio of cell-associated HSV-I to the total
amount of virus recovered was determined by separate quanti
tation of viral pfu in celllysates (cell-associated virus) and cul
ture supernatants and addition of these values to obtain the total
amount of virus for each interval studied. Data are mean values
from three experiments.

Cell-associated virus during infection. Because
exposure to tobacco smoke alters the ultrastructure
of the pulmonary macrophage plasma membrane
[27], it is possible that the abnormalities in viral in
fectivity and lymphokine responses observed in
smokers' cells are related to alterations in initial ad
sorption of virus to the cell surface. Smokers' mac
rophages exposed or not exposed to lymphokine ad
sorbed more virus on a per cell basis than did
nonsmokers' cells after exposure for 1 hr to HSV-l
(table 2). For determination of whether this finding
is the result of altered binding of HSV-l to the mac
rophage plasma membrane or is attributable to the
larger volume of the smokers' macrophage [28], vi
rus initially adsorbed to cells was quantitated with
respect to the amount of protein present in cell ly
sates of macrophage cultures to account for differ
ences in cell size. There were no differences between
smokers' and nonsmokers' cells or lymphokine
exposed and control cells in terms of amount of cell
associated virus per ug of macrophage protein (ta
ble 2). Thus, smokers' macrophages adsorbed more
HSV-l at 1 hr after infection on a per cell basis than
did nonsmokers' cells, but this difference appears at
tributable to the larger surface area of smokers' cells.

To examine the possibility that differences between
smokers' and nonsmokers' cells are related to an al
tered capacity of smokers' cells to excrete virus, we
measured the ratio of cell-associated virus to the to
tal amount of virus recovered in celllysates and su
pernatants. This value was comparable between
smokers' and nonsmokers' cells (table 3). It does not
appear therefore that increased release of virus into
culture medium from smokers' cells accounts for en-

hanced infectivity of HSV-l for smokers' cells or for
the diminished response of smokers' cells to antiviral
lymphokines.

Are abnormal antiviral responses in smokers' cells
mediated by a soluble factor? To investigate the
possibility of whether smokers' macrophages secrete
a substance capable of altering viral infectivity in
nonsmokers' cells, we incubated macrophages from
nonsmokers with supernatants from unstimulated
smokers' macrophages for one day before infection.
In three experiments viral replication in nonsmok
ers' cells was unaffected by prior exposure to super
natant from cultures of smokers' cells. Maximal vi
ral replication was 2.8 ± 1.7 x 105 pfu/ml for cells
exposed to medium alone and 1.76 ± 1.1 x 105

pfu/ml for cells exposed to medium containing
smokers' supernatant (50070 by volume).

Discussion

These studies demonstrate that cigarette smoking can
alter lung cellular defenses against HSV-l in two dis
tinct ways: (l) Smoking enhances infectivity of HSV-l
for macrophages, and (2) smoking leads to subop
timal activation of antiviral activity in macrophages
by two lymphokines (AV-MAF and IFN-y). These
data describe the interaction of macrophages with
a single virus; the relevance of these findings to other
respiratory viruses is unclear. However, these obser
vations raise the possibility that abnormal antiviral
responses of macrophages may be one pathogenic
mechanism underlying the increased incidence and
severity of viral infection in the respiratory tract in
smokers [1-6, 8-10]. Although exposure to tobacco
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smoke can affect other aspects of lung defense, such
as mucociliary transport [29], noncellular defenses
may be less important than phagocytic cells in eradi
cation of infectious agents from the respiratory tract
[30]. For this reason alteration of critical antiviral
functions in pulmonary macrophages by cigarette
smoke could have a substantial impact on the fate
of viruses that reach the lower respiratory tract. In
ability of smokers' macrophages to restrict viral repli
cation could lead to increased production of virus
within pulmonary airways and parenchyma at an
early phase of infection, when the spread of virus
cannot be limited by immune factors. Diminished
activation of antiviral mechanisms in smokers' mac
rophages by lymphokines may also interfere with the
effectiveness of macrophages at a later stage of in
fection, after cellular immunity has developed.

In the in vitro system used in these studies to evalu
ate macrophage antiviral responses, a single viral
agent, HSV-l, was tested. This virus is an uncom
mon cause of respiratory tract infection in im
munocompetent humans: In one series, HSV-l was
recovered in 5070 of all episodes of community
acquired infections of the lower respiratory tract,
compared with an isolation rate of 1.4070 in healthy
controls [31]. This virus may also be a cause of seri
ous pneumonitis in immunosuppressed individuals
[32, 33]. Nevertheless, HSV-l has been an exception
ally useful agent to probe antiviral responses of mac
rophages in vitro because it grows rapidly in macro
phages, produces cell lysis, and can be inhibited by
lymphokine-activated macrophages [22, 34, 35]. One
of the lymphokines used in these studies, IFN-y, has
been associated with augmentation of mononuclear
phagocyte activity against neoplastic and infectious
processes [36-38]. On the other hand, AV-MAF is
an unique lymphokine that, like IFN-y, is capable
of activating antiviral activity of macrophages [22]
but can be separated from IFN-y in the supernatant
of human peripheral blood leukocytes by prepara
tive isoelectric focusing [22-24]. The suboptimal re
sponses of smokers' pulmonary macrophages to both
these lymphokines may have important implications
for the effect of smoking on other lymphokine
mediated activities of macrophages, such as killing
tumor cells and other intracellular parasites (e.g.,
Legionella pneumophila), because both lung cancer
and legionellosis are more common in smokers than
nonsmokers [7, 39].

These studies extended the spectrum of functional
abnormalities in macrophages that have been at-
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tributed to cigarette smoke. Smoking has been shown
to depress antibacterial activity of pulmonary mac
rophages in vitro [40-42] and inhibit phagolysosome
fusion [43], a crucial mechanism for eradication of
certain intracellular microbes. Only one previous
study assessed the impact of smoking on macro
phage responses to lymphokines. Human pulmonary
macrophages from smokers had diminished re
sponses to macrophage migration-inhibitory factor
[44]. These functional alterations may be based on
metabolic or structural changes in macrophages pro
duced by exposure to tobacco smoke. For instance,
macrophage levels of the energy-generating enzymes
adenosine triphosphatase [45] and glucose-3
phosphate dehydrogenase [46] are diminished in
smokers' cells and may be responsible for lowered
rates of phagocytosis observed in smokers' macro
phages. Similarly, smoking-related ultrastuctural
changes, consisting of increased blebs and lamellipo
dia, in the macrophage plasma membrane have been
implicated in altered pinocytosis and endocyto
sis [27].

Although in the present studies we did not eluci
date the mechanism(s) responsible for increased in
fectivity and diminished lymphokine response in
smokers' macrophages, these alterations could not
be explained by increased release of intracellular vi
rus into culture medium during infection (table 3)
or by differences between the optimal concentration
of lymphokine needed to produce an antiviral state
in smokers' and nonsmokers' cells (table 1).
Moreover, macrophage abnormalities associated
with smoking do not appear to be the result of ex
posure of cells to a soluble factor secreted by
smokers' macrophages because incubation of non
smokers' cells with supernatant from smokers' cell
cultures did not alter the infectivity of HSY-l for cells
treated in this manner.

Altered antiviral responses of smokers' macro
phages may be due in part to enhanced initial ad
sorption of HSY-l (table 2). Because the amount of
virus adsorbed to smokers' and nonsmokers' cells
is similar when corrected for intracellular protein
concentration (table 2), increased uptake of HSY-l
by smoker's cells appears to be related to a larger
surface area available for attachment of virus. This
conclusion is in contrast to a previous study that
found only a small size difference in these cell popu
lations on the basis of direct measurement of cell
diameter [28]. This method of assessing cell size
could underestimate true cell volume compared with
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measurements of cellular protein concentration. By
the latter method smokers' cells appeared nearly
twice as large as nonsmokers' cells. On a per cell ba
sis, smokers' macrophages are exposed to more than
twice the amount of adsorbed virus as are nonsmok
ers' cells (table 2). It may be, therefore, that increased
infectivity of HSV-I for smokers' cells results from
greater initial adsorption of virus, diminished abil
ity of the extra protein in smokers' cells to limit viral
replication, or both.

Thus, smoking appears to depress the intrinsic an
tiviral activity of macrophages against HSV-I and
diminish the augmentation of this activity by lym
phokines. Further studies are needed to clarify the
relevance of these observations for other respiratory
viruses and other lymphokine-directed macrophage
functions. The importance of smoking in acquired
antiviral and immune deficiencies of macrophages
remains speculative.
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