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Abstract

Deep sequencing of viral genomes is a powerful tool to study RNA virus complexity. However, the analysis of
next-generation sequencing data might be challenging for researchers who have never approached the study of viral
quasispecies by this methodology. In this work we present a suitable and affordable guide to explore the sub-consensus
variability and to reconstruct viral quasispecies from Illumina sequencing data. The guide includes a complete analysis
pipeline along with user-friendly descriptions of software and file formats. In addition, we assessed the feasibility of the
workflow proposed by analyzing a set of foot-and-mouth disease viruses (FMDV) with different degrees of variability. This
guide introduces the analysis of quasispecies of FMDV and other viruses through this kind of approach.

Key words: viral quasispecies; Illumina sequencing platform; analysis workflow; open-source software; sub-consensus
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Introduction
The error-prone nature of viral RNA-dependent RNA poly-
merases contributes to the generation of viral populations
consisting of different but phylogenetically related variants
known as viral quasispecies [1]. The collection of viral genomes
as a whole faces a continuous process of genetic variation,
competition and selection of the fittest distributions in a given
environment. In fact, the complexity and dynamics of this
mixture of genomes have been related to viral epidemiology,
pathogenesis, virulence and disease progression and confer
various advantages to the viral swarm en bloc [2–4].

The standard Sanger-based sequencing is generally used to
obtain a consensus sequence, i.e. a sequence composed by the
most frequent base at each position in a given sample. However,
because of the complex nature of viral populations, the con-
sensus sequence may not exist in the actual viral quasispecies.
The raw electropherograms produced by Sanger sequencing
may also provide qualitative information of the variability
at each position of the analyzed sequence. Nonetheless, this
methodology may fail in detecting minor nucleotide variants
and their distribution among the genomes comprising the viral
population. Thus, although Sanger sequencing has been an
irreplaceable tool in virology studies, the large complexity of
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Figure 1. Workflow overview. The main steps suggested for NGS analysis and the corresponding file types are indicated in the boxes. Software names are displayed in

red. Green dashed lines show particular algorithms for quasispecies reconstruction and SNV detection.

RNA viruses can only be studied with technology capable of
assessing the sub-consensus variants. Indeed, for several years,
researchers have accomplished the study of quasispecies com-
plexity and dynamics with nucleotide sequences from a limited
number of cloned polymerase chain reaction (PCR)-amplified
fragments [5]. More recently, next-generation sequencing (NGS)
has proved to be an efficient and affordable method to shed light
into the high complexity of viral samples [6–8]. In addition, new
computational tools have opened the opportunity to reconstruct
genome populations from a complex mixture of short viral
sequences [9–11]. Undoubtedly, these technological advances
will help us to increase our current understanding of viral
quasispecies composition and evolution [12, 13].

The analysis of NGS data, however, may be at least chal-
lenging for researchers who have never approached this kind of
studies. In this work we present a suitable, affordable and repro-
ducible guide to explore the sub-consensus variability and to
reconstruct viral quasispecies from Illumina sequencing data. In
addition, we assess the feasibility of this workflow by analyzing
a set of foot-and-mouth disease viruses (FMDV) with different
degrees of variability. We hope that the guide we present in this
study will help other researchers with sample processing and
NGS data analysis in the detection of sub-consensus variants as
well as the reconstruction of viral quasispecies.

Protocol description
The following guide summarizes the major steps that should
be followed to evaluate viral variability and to reconstruct the
population of genomes building the viral quasispecies. Figure 1
displays the protocol outline. Supplementary Table 1 includes a
short description of the software used for the analysis as well as
download links. The reader should keep in mind that not all the
programs available for the evaluation of NGS data are suitable for
viral single nucleotide variant (SNV) detection and quasispecies
reconstruction. This guide was conceived as a reference to start

analyzing NGS data derived from viral sequences and should not
be used as the unique way to assess NGS results (for alternative
software for each step of this guide see Supplementary Table 1).
After these first common analysis steps, the user may choose
other programs according to its particular needs.

Preprocessing of data (filtering and trimming)

Next-generation paired-end sequencing involves sequencing of
both ends of DNA fragments in a library and aligning the forward
and reverse reads as read pairs. Particularly, the paired-end
Illumina sequencing platform retrieves two FASTQ files, i.e. the
forward (R1 file) and the reverse (R2 file) single-end sequencing
reads for each sequenced sample. The FASTQ format is the
common format for data exchange between sequencing tools
[14]. Basically, it is an extension to the FASTA format where each
nucleotide in a sequence has a numeric quality score associated
to it. In all major sequencing platforms this information is
represented by the phred quality score, which is a measure of
the probability of an incorrect base call [15, 16].

Before executing any analysis, the user must check the qual-
ity of the data. FastQC software, for example, can be used on both
files of each sample (Figure 1) [17]. FastQC is a quality control
tool for high throughput sequence data that provides a modular
set of analyses to perform control checks. Next, a conservative
approach to follow would be to filter all reads with a highly
restrictive phred value to decrease the amount of information
available. Alternatively, a less restrictive quality threshold can be
chosen but this would retrieve many erroneously called bases in
the dataset and, therefore, more false positive variant calls [16].
In this work, we chose a conservative phred value of 30 for the
filtering step.

The term trimming refers to the elimination of undesired
portions of the reads, i.e. bases with a quality score below the
threshold or bases corresponding to sequences of the adapters
used for the library construction. BBDuk (Figure 1) [18] is one
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alternative, among a wide range of suitable tools, to trim reads.
This tool, particularly, combines most of the common quality-
related trimming, filtering and masking operations. Filtered and
trimmed reads are stored in new FASTQ files.

Read alignment

The next step in the workflow is to align the dataset (both
filtered and trimmed FASTQ files) against the corresponding
reference with an alignment software (Figure 1) (Supplementary
file 1, line 35). In case there is no known reference genome for the
virus under study, a de novo sequence assembly can be generated
to align the contigs to the closest reference sequence available.

Selecting a suitable alignment tool for NGS data can be a
challenging task because of the wide range of available algo-
rithms [19]. Some parameters, such as the sequencing platform,
paired-end or single-read reads, insert size and read length, are
fundamental when selecting the appropriate tool and depend
on the nature of the NGS data. In particular, for this work-
flow we selected Bowtie2 [20] because of a good compromise
between computing speed and sensitivity. In addition, this pro-
gram presents a slightly better performance regarding accuracy
for reads >150 bases [21].

It is essential to index the reference file before performing the
alignment step (Supplementary file 1, line 31). This step reduces
the amount of memory requirement of the proper alignment
step, which outputs a file with the Sequence Alignment Map
(SAM) format. This format, which is designed to store read
alignments against reference sequences, supports both short
and long reads [22]. The binary counterpart of SAM files, the
Binary Alignment Map (BAM) format, is a companion format
that keeps exactly the same information and that admits com-
pression and fast random access, thus reducing both memory
requirements and running time. Accordingly, the SAM alignment
is converted to BAM format and sorted using SAMtools (Figure 1)
(Supplementary file 1, lines 54 and 60). A recommended step is to
discard unmapped reads to reduce the size of the BAM file even
further (Supplementary file 1, line 63).

BAM statistics

Once the BAM file is available, a good practice is to perform visual
control of the alignments, by using, for example, Tablet [23] or
Integrative Genomics Viewer (IGV) software [24]. This step can
aid in detecting SNVs manually or in revealing false variants.
For this purpose, the user must first index the BAM file with a
proper tool, such as SAMtools (Figure 1) (Supplementary file 1,
line 69).

The statistics from a SAM/BAM file can be assessed with
Qualimap software [25]. This software examines the alignment
file and provides a global overview, which facilitates bias detec-
tion and parameter selection for future analysis. Furthermore,
SAMtools [22] also provides several features to obtain informa-
tion of the alignment quality (e.g. coverage information, Supple-
mentary file 1, line 72).

Analysis of genetic diversity

The size of the genomic region under study determines the
genetic diversity analysis to perform [26]. For instance, if the size
is only one nucleotide, diversity estimation is performed by SNV
detection. By contrast, if the genomic region of interest is larger
than the read length, a global scale study is pertinent and global
haplotype inference should be performed.

SNV detection and analysis

Some of the many tools available for SNV detection and fre-
quency quantification require a BAM file (input) and produce a
variant call format (VCF) file (output), and, thus, they are compat-
ible with the workflow herein reported (Supplementary Table 1).
The selected LoFreq software [27] is an ultra-sensitive variant
caller program that uses a quality-aware approach to call SNVs
while including a statistically rigorous way of accounting for
biases in sequencing errors. Interestingly, this software detects
variants particularly from Illumina data and from non-diploid
organisms. It automatically adapts to changes in coverage and
sequencing quality, which makes it suitable for viral datasets. By
contrast, other tools, such as Genome Analysis Toolkit (GATK) for
example, focus on processing data from human whole-genome
or whole-exome samples and, thus, have not been designed
specifically for viral datasets.

By default, LoFreq only takes concordant reads into account.
Concordant reads are pairs of reads that align uniquely and
therefore satisfy the paired-end constraints. The input file for
LoFreq is the sorted BAM file (Figure 1) and, as most variant
callers, the software outputs a VCF file [28] (Supplementary file
1, line 78). This particular file reports all the relevant information,
in a tab-delimited structure, for each detected variant, including
allele frequencies, raw depth in that position, filter-passed flags
and the estimated error of the call, among others. Any text editor
or spreadsheet software available allows the inspection of the
VCF file. Additionally, the tab-delimited structure allows the
annotation of each variant in a VCF file with a new column that
provides information of interest. It is highly recommendable
to compress and index the files before performing this step
(Supplementary file 1, lines 87 and 89). Moreover, SnpEff software
[29] can be used to annotate the VCF files in order to determine
the impact of a detected variant on the sequence (e.g. synony-
mous, non-synonymous, non-coding) (Figure 1). Accordingly,
this step adds a new column on the VCF file with the predicted
impact on the genome. This software requires a database
of the corresponding reference sequence. This database can
be constructed following the user’s manual, if not already
available as part of the default databases loaded in the source
distribution.

Both the raw and the annotated VCF files can be processed
with BCFtools [28] to facilitate the analysis (Supplementary file
1, lines 91, 93 and 99). This software provides tools to manipulate
VCF files. Some of these tools are merging, intersecting, making
complements, filtering of variants based on particular criteria,
basic overall statistics of two or more files, to mention a few.

Quasispecies reconstruction

We selected three pipelines (QuRe [10], CliqueSNV [30] and
ViQuaS [11]) as an example of suitable programs for viral
quasispecies reconstruction and estimation of the frequencies
of the haplotypes.

QuRe assesses the complexity of viral quasispecies by
using a built-in Poisson error correction method and a post-
reconstruction probabilistic clustering. QuRe is a stand-alone
program that performs alignments of the sequencing reads
(single reads) against the reference genome, separates the anal-
ysis into sliding windows based on coverage and diversity, and
reconstructs all the individual sequences and their prevalence
using a heuristic algorithm [10]. This program requires FASTA
format files as input. Thus, filtered and trimmed FASTQ files
must be converted to FASTA with a proper software, such as
Seqtk (Figure 1) [31]. In this workflow, however, we recommend
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to extract the reads directly from the BAM file, in order to use the
same input data for all reconstruction software (Supplementary
file 1, line 108). Paired-end data are incompatible with QuRe
software and therefore the read files must be concatenated in
one unique file prior to haplotype reconstruction (Supplemen-
tary file 1, line 113). Supplementary File 1 (lines 117-118) displays
the instruction to run QuRe program.

CliqueSNV, on the other hand, is a novel method designed
to reconstruct closely related low-frequency intra-host viral
variants. CliqueSNV first constructs an allele graph with edges
connecting linked SNVs and then identifies true viral variants
by merging cliques of that graph through combinatorial
optimization procedures. These steps eliminate the need of
preliminary error correction and assembly and use the patterns
in distributions of SNVs in sequencing reads in order to infer
haplotypes (Supplementary file 1, lines 129–130).

Lastly, ViQuaS presents a novel reference-assisted de novo
assembly algorithm for inferring local haplotypes, whereas a sig-
nificantly extended version of QuRe algorithm serves for global
strain reconstruction (Supplementary file 1, line 142). CliqueSNV
and ViQuaS software packages work with an alignment file in
BAM format (i.e. these programs allow paired-end reads), as
input file.

Workflow implementation using FMDV
sequences
Sample processing and sequencing

To assess the complete workflow proposed to evaluate qua-
sispecies variability and complexity, we subjected four FMDV
samples (A01L, A01NL, A01Lc and CapLc: GenBank accession
numbers KY404934, KY404935, MK341545 and MK341544, respec-
tively) to NGS. Viruses A01L and A01NL, which were isolated
during the FMDV outbreak that occurred in Argentina in 2000–
2001, belong to serotype A/Arg/01 [32, 33], whereas viruses A01Lc
and CapLc are mutant versions of an infectious cDNA clone
of A01NL virus [34]. The samples were selected according to
their expected genomic variability as inferred from the number
of nucleotide polymorphisms detected by full-length Sanger
sequencing. Viral strain A01L displays a higher number of poly-
morphisms (double peaks in electropherograms) than A01NL
virus (data not shown). On the other hand, A01Lc and CapLc
are expected to exhibit extremely low variability because they
are the result of four passages of the FMDV molecular clones in
BHK-21 cells.

Before sequencing, the samples were subjected to PCR-based
amplification of the FMDV genome, as previously described,
but with minor modifications [35]. Briefly, total RNA was
isolated from supernatants of infected cells and cDNA was
synthesized. Subsequently, two overlapping PCR fragments
comprising approximately 95% of the complete FMDV genome
were amplified (the primer sequences and amplification
protocol are available from the authors upon request). The
purified PCR products were adjusted to equimolar ratio and
1–2 ng of DNA was used for library preparation using Nextera XT
DNA Library Prep Kit (Illumina, San Diego, CA, USA). Sequencing
was performed in an Illumina MiSeq sequencer to produce
paired-end reads of approximately 250 bp each.

Data processing

Two files with all the sequenced reads (in FASTQ format) were
obtained for each sample and the in silico workflow was carried

Figure 2. Coverage distribution of sequenced samples. The coverage distribution

for the sequenced samples obtained with filtered, trimmed reads. Each sample

is indicated with different colors. The FMDV genome is represented at the top of

the figure.

out in approximately 1 h up to the haplotype reconstruction
step. Most of the scripts and software used for the analyses were
executed on a local Ubuntu machine (version 16.04.2 LTS) on a
quad-core, 4GB RAM computing system (Intel Core i3-2370M).
QuRe software with default settings could not be deployed on
this machine because of memory limitations, and was there-
fore run on an 8-core, 32GB RAM high-performance computing
cluster.

Quality check was performed using FastQC software (ver-
sion 0.11.5) [14] on both files of the three samples. Two
datasets evidenced contamination with Nextera adapters
(Supplementary Figure 1a). As recommended, these sequencing
errors were removed to prevent any negative impact on the
alignment of the reads. A quality drop occurred in all samples
towards the 3 ´ end of the reads (Supplementary Figure 1b).
Accordingly, reads were trimmed below a quality score of q30
and adapter-trimmed using BBDuk [18]. Additionally, all reads
with an average quality score below q30 and under 50 bases
were discarded. This step reduced substantially the number
of reads available for analysis (about 35 %) and the number of
sequenced bases (about 60–68 %) across all samples. Each filtered
dataset (both FASTQ files) was aligned to the corresponding
indexed reference (full-length genomes from A01L, A01NL,
A01Lc and CapLc) using Bowtie2 (version 2.2.6) [20]. The non-
default parameters used for this program were no-mixed and
no-discordant. The no-mixed parameter disables alignment
for individual reads when concordant or discordant alignment
for a pair is not found, whereas the no-discordant parameter
disables alignment for reads pairs that align uniquely but do not
satisfy the paired-end constraints. These selected parameters
maximize compatibility of downstream analysis software.

All aligned SAM files were converted to BAM format and
sorted by using SAMtools (version 1.3.1) [22]. The next step was
performed to discard unmapped reads and to reduce the size
of the BAM file further. An inspection of BAM/SAM files was
performed with Tablet [23] (Supplementary Figure 2). Coverage
data were generated using SAMTools [22]. Approximately 94%
of the FMDV genome was covered in all samples with a raw
depth of at least 1000× (Figure 2) and mean insert size ranging
from 250 to 330 bp (Table 1). Next, we obtained the NGS-based
consensus sequence for each sample (nt∼400 to ∼8160) using
BCFTools (version 1.3.1) [28]. As expected, the obtained consen-
sus sequences either matched the corresponding Sanger-based
reference sequence or presented additional polymorphic sites
(data not shown).
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Table 1. Statistics of datasets

Sample ID Total readsa Total mapped readsb Mean coverage across
sample (SD)

Mean insert size (SD) Mean mapping quality

A01L 849 598 445 118 9256 (6045) 330 (87) 39.99
A01NL 874 490 541 604 10 469 (7381) 298 (96) 39.91
A01Lc 646 060 408 224 6746 (5008) 250 (95) 39.87
CapLc 481 696 314 522 6199 (4191) 303 (95) 39.90

aUnfiltered reads
bFiltered, trimmed and concordant reads

Table 2. Statistics for polymorphic sites

Virus Total SNVs Frequency > 1 %

A01L 302 135
A01NL 199 92
A01Lc 77 10
CapLc 45 3

Distribution of polymorphisms across the genome

A single VCF file was obtained using LoFreq (version 2.1.2)
[27] for SNV call of each dataset. A filtering step was performed
to remove calls with a raw depth value below 1000. We chose
this depth cut-off to consider only regions where minor variant
detection is feasible. For instance, under these conditions,
a variant appearing with a frequency around 1% would be
represented at least by 10 reads. After performing the filtering
step, we detected 302, 199, 77 and 45 SNVs for A01L, A01NL,
A01Lc and CapLc, respectively (Table 2). Figure 3A displays the
distribution of all SNVs with their corresponding frequencies
across the FMDV genome. As expected, three levels of variability
were evident. A01L showed both most of the SNVs and the
highest frequencies, followed by A01NL with an intermediate
number of SNVs and lower frequencies. Finally, A01Lc and CapLc
presented a lower number of SNVs associated with extremely
low abundance (only 10 and 3 SNV with a frequency value above
1%, respectively, Table 2).

Next, we used SnpEff [29] to predict the type of substitu-
tion (e.g. synonymous, non-synonymous, non-coding) generated
at each polymorphic site. This step added a new column to
each VCF file. This information, along with SNV frequency and
genome coverage, was merged into a single illustration using
Circos software (Figure 3B). Circos is an effective visualization
tool that facilitates the identification and analysis of the simi-
larities and differences between genomes.

Inferred quasispecies for the four FMDV viruses

Quasispecies reconstruction was performed using QuRe (version
0.99971) [10], CliqueSNV (version 1.4.8) [30] and ViQuaS (version
1.3) [11]. First, we assessed the capability of these programs to
reconstruct known quasispecies samples. For this purpose, we
constructed artificial viral populations using real data from two
datasets of reads obtained from FMDV viruses derived from four
cell passages of two FMDV molecular clones, namely A01Lc and
CapLc (GenBank accession numbers MK341545 and MK341544,
respectively). The consensus sequences of these two viruses
differ in 10 positions across 1300 nt in the coding region of non-
structural protein 2C. Both datasets were randomly sampled
and mixed to obtain three artificial quasispecies with different

proportions of reads: 50/50, 70/30 and 90/10 of A01Lc/CapLc,
respectively. The total number of reads of mixed populations was
40 000. Next, the artificial viral populations were used as probe
samples for haplotype reconstruction using the three programs
included in this guide. Different combinations of parameters
were assessed for each software to reach optimal performance.
For instance, homopolymeric error rate and non-homopolymeric
error rate were used for QuRe, whereas minimum expected
haplotype frequency (tf) and minimum number of reads were
used to support a haplotype (t) for CliqueSNV. In the case of
ViQuaS, we used minimum number of reads needed to call
a base during an extension (r) and minimum base ratio to
accept an overhang consensus base (o). The total number of
reconstructed haplotypes (frequency >1%) and the number of
true positive haplotypes (i.e. haplotypes showing at most one
mutation with regard to the closest variant) were recorded and
used to calculate recall (true positive haplotypes/expected num-
ber of haplotypes) and precision (true positive haplotypes/to-
tal number of haplotypes reconstructed) of the reconstruction
algorithms [11]. Recall and precision were calculated to assess
the performance of the different parameters evaluated for each
program.

Briefly, the optimal non-homopolymeric error rate for QuRe
was 0.00035. This value is close to the value proposed by Kugel-
man et al. [36] for cDNA amplicon Illumina-derived data. The
correct setting of this parameter turned out to be crucial for the
50/50 and 70/30 datasets. In our FMDV samples, a modification
of the homopolymeric error rate to 0.00035 in sample 50/50
did not improve the results substantially (data not shown). For
other viral samples with known mononucleotide stretches, the
homopolymeric error rate should be adjusted accordingly.

CliqueSNV was the most robust software; in fact, almost
every parameter value tested showed similar results. This
robustness occurred as long as the tf parameter was not
set significantly higher than the minimum expected haplo-
type frequency (see runs with tf = 0.5 for 70/30 and 90/10,
Supplementary Table 2). The other important factor to obtain
a robust result was that the t parameter was set lower than
the coverage of the minor haplotype to be detected (see runs
with tf = 100 and tf = 200 for 70/30, where minor haplotype
coverage is close to 100, and runs with t ≥ 50 for sample
90/10; Supplementary Table 2). Lastly, regarding ViQuaS, the
r parameter proved to be relevant to reduce false positive
haplotypes and, thus, to increase precision (see runs with r = 3
to 20 in 50/50 and r = 3 to 35 in 70/30, Supplementary Table 2).

Except for QuRe, all tools reconstructed the two expected
artificial haplotypes for all datasets with the setting of optimal
parameter values. Indeed, QuRe was unable to reconstruct the
minor haplotype in sample 90/10 (recall 0.5; Table 3). In general,
CliqueSNV and QuRe produced the closest estimations of hap-
lotype frequencies, as shown by the lower root mean square
deviation (RMSD) values (Table 3). ViQuaS software retrieved
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Figure 3. Distribution of SNVs across the FMDV genome. (A) The frequency of the variants detected in each sample is indicated with different colors and symbols.

(B) Circos histogram displaying the similarity between A01L, A01NL and A01Lc genomes. Variants with frequency above 1% that were called by LoFreq are shown. The

FMDV genome is represented with a line and divided in three regions with different colors (light yellow: 5′UTR, light green: polyprotein-coding sequence, grey: 3′UTR)

in the periphery of the circle. The light blue bars represent the frequency of each variant detected (in log scale). Variants shared by two samples (A01L and A01NL or

A01L and A01Lc) are linked by the colored lines (light green: non-coding mutation, light blue: synonymous mutation, light red: non synonymous mutation).

Table 3. Statistics for haplotype reconstruction with tuned parameters

Dataset Software Parameter values Recalla,b Precisionb,c RMSDd

50/50 QuRe 1E-25 0.00035 100 1 1.00 9.76
ViQuaS 20 0.7 1 0.67 23.72
CliqueSNV t 10 tf 0.01 1 1.00 7.20

70/30 QuRe 1E-25 0,00035 100 1 1.00 0.55
ViQuaS 35 0.7 1 0.67 14.49
CliqueSNV t 10 tf 0.01 1 1.00 6.59

90/10 QuRe 1E-25 0.00035 100 0.5 1.00 10.00
ViQuaS 5 0.7 1 0.67 2.78
CliqueSNV t 10 tf 0.01 1 1.00 2.00

aRecall was calculated as the true positive haplotypes/expected number of haplotypes.
bOnly one mutation (with regard to the closest variant) was allowed for a reconstructed haplotype to be consider as a true positive haplotype.
cPrecision was calculated as the true positive haplotypes/total number of haplotypes reconstructed.
dRMSD is the root mean square deviation of the frequency estimations of the two expected haplotypes.

more than the two expected haplotypes in all cases; which
explains the low precision of this tool (0.67). Interestingly, the
optimal parameter tuning for CliqueSNV and QuRe was the
same for the three artificial samples. By contrast, the optimized

ViQuaS parameters, specifically r, reached different values for
each dataset.

To test whether the quality of reads would influence hap-
lotype reconstruction, we generated two new 50/50 datasets
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Figure 4. Haplotype networks for A01L and A01NL viruses. Haplotype networks were created under the Median-joining method (with epsilon = 0 to minimize the

distances) using SplitsTree4 software. (A) FMDV genome representation. The blue bar indicates the genomic region used for haplotype reconstruction. (B) A01L haplotype

network. (C) A01NL haplotype network. Font color indicates the program used to obtain the corresponding haplotype: green for QuRe, red for ViQuaS and blue for

CliqueSNV. Black color indicates sequences obtained by more than one software; Sanger consensus sequences were included as reference. Only haplotypes representing

75 % of total frequency are presented. For each sequence, the name indicates the software that was used for the analysis, number of haplotype and estimated frequency.

in which reads were trimmed with a quality score of 10 and
20. This analysis evidenced that ViQuaS is the most robust
reconstruction software, since it produced almost the same
results regardless of the quality score of the reads (Supplemen-
tary Figure 3). At Q10, QuRe retained a recall value of 1, but
showed a precision drop with three reconstructed haplotypes
instead of the two expected. Finally, CliqueSNV was unable to
reconstruct either of the expected haplotypes at Q10. Remark-
ably, the three reconstruction tools showed similar recall and
precision values at Q20 and Q30 (Supplementary Figure 3).

The next step was to assess the population structure of A01L,
A01NL, A01Lc and CapLc. Briefly, the global haplotypes present
in each sample (positions 400 to 8100 of the FMDV genome,
coverage >1000×) were reconstructed performing each software
run with the selected parameters (Figure 4A). In the case of
ViQuaS, A01L and A01NL samples seemed to resemble more
closely 50/50 and 90/10 datasets, respectively, and therefore the
parameters were set accordingly. Additionally, because the viral
samples present a 10-fold increase in coverage with respect to
the artificial datasets, the t parameter was changed from 10 to
100 reads in the case of CliqueSNV. ViQuaS program required a
running time of around 2 days to analyze each dataset, whereas
QuRe and CliqueSNV only needed approximately 2 h and 20 min,
respectively.

The number of reconstructed haplotypes varied between the
software packages, ranging from 12 to 29 (A01L) and from 4 to
9 (A01NL) (Supplementary Table 3). Regardless of the software

that is used, these results evidence that the viral population
of A01L is more complex than that of A01NL. Consistently, all
A01L haplotypes displayed an estimated frequency below 35%,
whereas A01NL showed a predominant haplotype in all cases
(frequency over 70%).

For each sample, we aligned the haplotype sequences and
obtained phylogenetic networks to analyze the sequence simi-
larity of the haplotypes retrieved with all of the reconstruction
software (Figure 4). Both samples were resolved using the
median joining algorithm. It constructs a simplified network
that combines features of Kruskal’s algorithm (which finds min-
imum spanning trees by favoring short connections) and Farris’
maximum parsimony heuristic algorithm [37] (Figure 4B and C).
For A01L, none of the reconstructed haplotypes matched
the Sanger-derived consensus sequence, except for a minor
haplotype inferred by ViQuaS (Figure 4B, black arrow). In
addition, although none of the sequences was identical, the
haplotypes inferred by different programs showed a similar
distribution along the network. On the other hand, the simplified
network obtained for this virus demonstrated a low complexity
of the A01NL sample. Indeed, the reconstructed predominant
haplotype presented almost the same sequence and a similar
estimated frequency (over 70%) regardless of the software used
for the analysis. Furthermore, the sequence of the predominant
haplotype reconstructed by ViQuaS and QuRe matched the
Sanger-derived consensus sequence of A01NL virus (Figure 4C,
black arrow). Finally, the reconstructed haplotypes for A01Lc and

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz086/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz086/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz086/-/DC1
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CapLc were identical to their Sanger consensus, independently
of the software used for the analysis.

Taken together, these results support the concept of three
levels of variability regarding quasispecies complexity in these
four samples, and highlight the coherent results obtained from
applying this guide.

Discussion
In a natural environment, the complexity of a viral population
depends on combined processes, such as replication, mutation
and selection, throughout its evolution. In the case of RNA
viruses, the result of this evolution is a complex structure of
closely related sequences: the quasispecies. The level of com-
plexity that a viral population presents is a pathogenesis and vir-
ulence determinant [2, 38]. Here, we present a workflow designed
to quantify this complexity through NGS technology-derived
data. The workflow, which was conceived as a selection of
software and pipelines, was evaluated using FMDV sequences.

This highly contagious virus belongs to the genus Aph-
thovirus within the Picornaviridae family and is the etiological
agent of a vesicular disease of cloven-hoofed animals, including
cattle, swine, sheep, goat and many wildlife species [39]. Like
other RNA viruses, FMDV shows high variability both at the
nucleotide and amino acid level [40].

In this work, we used Illumina sequencing to elucidate the
quasispecies complexity of four FMDV viruses with different
degrees of variability. The results derived from the analysis of
these FMVD viruses may be applied to other RNA viruses.

Whilst NGS technology has its own rate of base miscall, sam-
ple preparation steps influence the accuracy of the data obtained
throughout the analyses. For instance, during retrotranscription
(RT) and PCR, sequence errors may occur because of primer
mismatches, low polymerase fidelity and in vitro recombination.
This hinders the identification of viral variants, especially those
of low frequency (rare variants) [41]. In this context, several
researchers have designed specialized bioinformatics tools to
identify the true viral variants and discard false positive muta-
tions [27, 41, 42]. Thus, the validation of true SNVs relies heav-
ily on the methodology used and the analysis performed. The
distinction between true variants and technical noise is a chal-
lenging step during data analysis. A conservative approach for an
SNV caller would constraint the sensitivity limit, whereas a less
restrictive threshold would result in poor precision. Hence, the
detection of SNVs of low frequency requires high sensitivity and
precision of the call method [43]. In this sense, LoFreq accurately
calls variants occurring in less than 0.05% of a population, with
high-quality (40) and high-coverage (over 10000×) sequencing
data [27].

The data considered in this work displayed above 1000×
coverage and mean quality values of more than 30. For the same
experimental conditions of our study, Wilm et al. [27] estimated
a frequency threshold of true variants of 0.2–0.3%. Instead, we
used a more conservative frequency threshold of 1% to consider
an SNV as a true variant. In our datasets, samples A01L, A01NL
and A01Lc showed 135, 92 and 10 SNVs above this limit, respec-
tively. This result demonstrates the potential of this workflow to
detect SNVs with a wide range of frequencies (1 to 100 %).

Interestingly, this workflow allowed us to detect that both
molecular clones, A01Lc and CapLc, presented an extremely low
variability after four passages on BHK-21 cells. Moreover, these
two clones displayed this low variability even with the amplifi-
cation and sequencing steps known as error sources. The level of
variability detected from these cloned samples may be used as a

control to estimate the local error rate and improve true variant
detection by tuning software parameters more accurately [43].
In fact, other researchers have previously proposed the use of
monoclonal strains as a tool for estimating the background
noise [44, 45]. Alternatively, some authors have suggested using
two, or more, independent sequencing runs of the same sample
and, then, considering as valid only SNVs that appear in all
the runs [35]. Furthermore, if the detection of rare variants is
mandatory, the sensitivity of the computational methods can be
improved by detecting and reducing errors during amplification
and library preparation [43]. In this sense, several groups have
developed approaches such as CirSeq and primerIDs to improve
data quality from an experimental design perspective [46–48].

NGS data may be used also to assess covariation of sites in the
genome, i.e. how different SNVs are linked in the same molecule.
In this case, the length of the window analyzed should not be
longer than the mean insert size. For further information on
available software for studying this local diversity see Posada-
Céspedes et al.’s [43] review.

When working with RNA viruses, researchers may also study
sequence variability at the viral population level. In this case,
the aim is to infer the sequence of the genomic variants and
their corresponding frequencies in the quasispecies in order
to assess its complexity. The use of the pipelines suggested
in this guide may help researchers to reconstruct near full-
length haplotypes present in the viral population of a sample
under study. Interestingly, the fact that none of the reconstructed
haplotypes in A01L sample (except one minor haplotype from
ViQuaS) was identical to the Sanger consensus sequence (which
is expected particularly in highly variable samples) reveals the
artificial nature of this sample and reinforces the relevance of
assessing quasispecies composition.

Indeed, analysis of artificial quasispecies with known com-
position showed almost no impact on haplotype reconstruction
upon reduction in the quality score to 20. Under this condition
longer reads are retained, thus increasing coverage. This is a crit-
ical parameter during haplotype reconstruction. Consequently,
our data show the possibility of working with a reduced quality
score in case one needs to increase coverage to facilitate haplo-
type reconstruction.

As evidenced in this work, the tuning of program parameters
is recommended to optimize precision and recall of haplotype
reconstruction tools. In this sense, both CliqueSNV and ViQuaS
parameters are dependent on coverage and sample variability.
As mentioned before, availability of control samples with known
variability may be helpful to define optimal parameter values.
In cases of unknown sample variability, QuRe software would
be the first choice to start the analysis, because its running
parameters are independent of the sample but dependent on the
underlying sequencing technology.

Although the sequences of the haplotypes retrieved by
QuRe, CliqueSNV and ViQuaS programs were not identical
(Supplementary Table 3), the predominant haplotypes obtained
by these methods were phylogenetically related and thus the
quasispecies structure could be estimated (Figure 4). Thus,
despite the pipeline or software used, this type of analysis allows
the identification of the number and the frequency of haplotypes
of a sample and this information constitutes an estimate of
the viral complexity [12]. This was evidenced by the diverse
number of haplotypes detected in FMDV samples displaying
different degrees of variability (A01L, A01NL and A01Lc), even
by using programs with different haplotype reconstruction
methods. Remarkably, for A01L, the frequency of the SNVs
present in the reconstructed quasispecies from QuRe software

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbz086/-/DC1
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best correlated with the frequency of the SNVs detected by
LoFreq (Supplementary Figure 4). Thus, QuRe proved to be the
most accurate reconstruction tool for this particular sample with
a complex quasispecies structure.

Alternatively, other haplotype reconstruction methods may
be applied [43]. In fact, other authors have argued that the
performance of the methods used to reconstruct a viral popu-
lation, which are in continuous development, depends on the
population characteristics and the sequencing parameters [11].
Moreover, the longest region that can be successfully recon-
structed depends on the insert size and diversity; in fact, par-
tial haplotype reconstruction would be more appropriate when
conserved genomic regions do not allow accurate genome-wide
integration of sequencing data. Thus, the selection of different
programs and parameters depends on the particular needs.

Lastly, long-read third generation sequencing technology (e.g.
the one developed by Oxford Nanopore Technologies) has been
developed in recent years [49]. Nanopore direct RNA sequenc-
ing has no limit in reading length and is independent from
cDNA synthesis and amplification prior to sequencing. Thus,
it seems to be an excellent tool for full-length sequencing of
viral quasispecies and transcriptomes [50, 51]. However, despite
its enormous potential, this technology has a very high error
rate (∼10%). This drawback makes it still unsuitable for the
characterization of intra-sample virus heterogeneity or of accu-
rate quasispecies composition. In addition, bioinformatics tools
for the analysis of nanopore-based sequences are still under
development and the associated cost of sequencing is unaf-
fordable for most laboratories [52]. Of course, the continuous
improvement of this sequencing platform will have a profound
impact on virology studies in the future.

In the past years, NGS has transformed the amount of data
available to study biological systems. In line with this, several
computational tools have been designed in order to examine the
sequence diversity at a fine resolution. In the case of the FMDV
populations, the implementation of this guide should work as a
starting point and could allow an efficient and flexible analysis
for unveiling the variability of the quasispecies. Thus, this guide
could contribute to the study of the role of quasispecies on viral
pathogenesis, virulence and evolution.

Key Points
• A user-friendly guide for the analysis of NGS-derived

viral sequences is introduced.
• Quasispecies variability is assessed in terms of SNVs

and haplotype reconstruction.
• Three alternative programs were selected in this guide

for the reconstruction of haplotypes from artificial viral
populations.

• FMDV samples are used to test the workflow and critical
parameters are discussed and interpreted.

Supplementary Data

Supplementary data are available online at https://academic.
oup.com/bib.
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