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Abstract

Objective: Adults with established diagnoses of serious mental illness (bipolar disorder and 

schizophrenia) exhibit structural brain abnormalities, yet less is known about how such 

abnormalities manifest earlier in development.

Method: Cross-sectional data publicly available from the Philadelphia Neurodevelopmental 

Cohort (PNC) were analyzed. Structural magnetic resonance neuroimaging data were collected on 

a subset of the PNC (N = 989; 9–22 years old). Cortical thickness, surface area (SA), and 

subcortical volumes were calculated. Study participants were assessed for psychiatric 

symptomatology using a structured interview and the following groups were created: typically 

developing (n = 376), psychosis spectrum (PS; n = 113), bipolar spectrum (BP; n = 117), and BP + 

PS (n = 109). Group and developmental differences in structural magnetic resonance 

neuroimaging measures were examined. In addition, the extent to which any structural aberration 

was related to neurocognition, global functioning, and clinical symptomatology was examined.

Results: Compared with other groups, PS youth exhibited significantly decreased SA in the 

orbitofrontal, cingulate, precentral, and postcentral regions. PS youth also exhibited deceased 

thalamic volume compared with all other groups. The strongest effects for precentral and posterior 

cingulate SA decreases were seen during early adolescence (13–15 years old) in PS youth. The 

strongest effects for decreases in thalamic volume and orbitofrontal and postcentral SA were 

observed in mid-adolescence (16–18 years) in PS youth. Across groups, better overall functioning 

was associated with increased lateral orbitofrontal SA. Increased postcentral SA was associated 

with better executive cognition and less severe negative symptoms in the entire sample.
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Conclusion: In a community-based sample, decreased cortical SA and thalamic volume were 

present early in adolescent development in youth with PS symptoms, but not in youth with BP 

symptoms or with BP and PS symptoms. These findings point to potential biological distinctions 

between PS and BP conditions, which could suggest additional biomarkers relevant to early 

identification.
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The transition from adolescence to adulthood is a unique period of development supported 

by specialized brain maturation and is a time when the prevalence of psychiatric disorders 

markedly increases.1 Severe psychiatric disorders, such as bipolar disorder and 

schizophrenia, likely arise through deviations from typical neurodevelopmental trajectories, 

although the exact nature of these changes remains unknown. Although structural brain 

alterations in adults with bipolar disorder and psychosis are well established,2–7 less is 

known about the manner in which these differences emerge, and whether youth experiencing 

a broad spectrum of psychosis- and bipolar-associated symptomatology exhibit similar 

differences.

Importantly, structural brain volume can be decomposed into cortical thickness (CT) and 

surface area (SA), which are driven by distinct genetic and neurobiological mechanisms.8–10 

Compared with healthy controls, a recent large-scale meta-analysis found widespread SA 

deficits across the cortex in adult patients with schizophrenia,4 which were not observed in a 

large-scale meta-analysis of cortical structure in bipolar disorder.5 This pattern also was 

observed in a study that directly compared structural brain alterations in adult participants 

with schizophrenia and bipolar disorder.6 Similarly, adults with schizophrenia exhibited 

widespread CT decreases,4 whereas cortical thinning was restricted to frontal and temporal 

regions in bipolar disorder.5 Bipolar disorder and schizophrenia are associated with smaller 

volumes in the hippocampus and thalamus, but the effects are of greater magnitude in 

schizophrenia.2,3 Collectively, these findings suggest that widespread cortical SA and CT 

deficits are unique to schizophrenia, although subcortical structural abnormalities are present 

in schizophrenia and bipolar disorder, albeit to a greater extent in schizophrenia. It is not 

known to what extent these differences are present in youth experiencing a range in severity 

of bipolar spectrum (BP) and psychosis spectrum (PS) symptoms.

In addition, there are commonalities between the 2 disorders in clinical characteristics, such 

as psychotic symptoms and genetic risk variants.11,12 For these disorders, medication effects 

can contribute to the observed brain alterations.4,5 As such, it would be informative to 

investigate individuals at earlier stages of symptom emergence, before the effects of chronic 

illness, and those who experience subclinical levels of symptomatology and thus are not 

medicated. Furthermore, many patients display mixed mood and psychotic symptoms,13 yet 

it is not clear to what extent similar neuroanatomic differences are observed in those who 

have PS and BP symptoms compared with those with only PS or BP symptoms.

An initial investigation into volumetric abnormalities in youth with PS symptoms drawing 

from the same population sample used in the present study, the Philadelphia 
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Neurodevelopmental Cohort (PNC),14,15 found that youth with PS symptoms exhibited 

decreased whole-brain gray matter, particularly in the medial temporal lobe and in the 

frontal, temporal, and parietal cortices.16 Smaller-scale studies of youth experiencing 

subclinical PS symptoms found a similar pattern: decreased gray matter in the frontal and 

temporal regions.17 Furthermore, progressive medial orbitofrontal CT decreases were 

observed in clinical high-risk youth who converted to a psychotic disorder, indicating that 

these CT patterns might emerge before the onset of psychosis.18 However, the impact of 

mood symptoms, such as BP symptoms, on structural brain alterations has not yet been 

investigated. Furthermore, we do not know whether individuals who exhibit PS and BP 

symptoms have distinct neuroanatomic alterations from these 2 groups.

To our knowledge, no studies have investigated the independent contributions of CT and SA 

to brain structure in PS and BP youth. Existing evidence shows that these indices are driven 

by different genetic and neurobiological mechanisms.8–10 Furthermore, these 

subcomponents of brain volume offer a potentially meaningful window into the 

developmental course of brain structure. Early childhood brain development in healthy 

infants indicates cortical SA and CT develop separately, with CT achieving 97% of adult 

values on average by 2 years of age; in contrast, SA achieves only 69% of adult values by 2 

years and continues to develop and expand.19 As a result, these researchers suggested that 

SA explains most of cortical volume variation after 2 years and proposed that early 

identification and prevention of neuropsychiatric illnesses focus on SA. However, this notion 

has not been fully explored, particularly with regard to youth who could be exhibiting early 

signs of serious mental illness.

As such, this study leveraged cross-sectional neuroimaging data from the PNC to examine 

CT, SA, and subcortical volumes of PS, BP, PS and BP (BP + PS), and typically developing 

(TD) youth to determine common and distinct brain differences in youth with PS + BP 

symptoms; age-associated differences compared with TD youth; and whether dimensional 

symptom severity is related to observed structural differences. Importantly, the criteria used 

to define the BP and PS groups reflect a broader range of symptomatology than those 

applied in adult case-control studies, given the young age of the sample and our interest in 

investigating a wider spectrum of mood and psychosis symptoms in this non-clinically 

ascertained cohort. We hypothesized that PS youth would exhibit the most severe deficits, 

with the largest effect sizes occurring in the prefrontal and temporal regions; and within 

regions that exhibited group differences, PS youth would show the greatest age-associated 

differences compared with TD youth.

METHOD

Sample

All data were obtained from the publicly available PNC (first release, number 7147) through 

the Database of Genotypes and Phenotypes (dbGap) platform. The data and analyses in the 

present publication are based on study data downloaded from the dbGaP web site under 

phs000607.v1.p1 (eg, https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs000607.v1.p1). The PNC is a population sample consisting of 9,498 youth (9–

22 years old) who participated in neurocognitive and genetic assessments after providing 
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written informed consent or assent with parental consent (youth <18 years old). A subset of 

these youth (N = 997) also underwent neuroimaging. Study participants were assessed for 

psychiatric symptoms using the GOASSESS interview,20 which incorporates questions from 

the Schedule for Affective Disorders and Schizophrenia for School-Age Children (KSADS),
21 the Structured Interview for Prodromal Syndromes (SIPS),22 and the PRIME Screen 

Revised.23 The TD group consisted of youth who denied clinically significant symptoms of 

psychopathology based on responses to the GOASSESS interview. Similar to previous 

publications on the PNC,16,20,24–26 psychopathology was considered significant if symptoms 

endorsed were consistent with the frequency and duration of a DSM-IV psychiatric disorder 

and correspondingly accompanied by significant distress or impairment (rating ≥ 5 on scale 

of 0–10). Individuals who endorsed symptoms meeting these criteria were excluded from the 

TD group, resulting in a final sample of 376 youth.

The PS group was defined as in prior PNC publications.16,20,24–26 Specifically, it included 

participants who had a score of 6 on any PRIME Screen Revised item, had a score of 5 or 6 

on at least 3 items on the PRIME Screen Revised, or scored at least 2 standard deviations 

above the total score of age-cohort mean on the SIPS; or answered yes to hallucination-

related questions on the KSADS and endorsed experiencing significant impairment or 

distress as a result and not using drugs at the time of the experience of the symptom; or 

scored at least 2 standard deviations above the age-cohort mean total score on 6 SIPS 

negative symptom items: attention and focus, disorganized speech, perception of self, 

experience of emotion, occupational function, and volition. We defined a BP group that 

included participants who endorsed at least 2 primary depressive symptoms on the KSADS 

and at least 2 primary manic or hypomanic symptoms lasting at least 1 day outside the 

context of substance use, illness, or medication use, with significant impairment or distress 

as a result of symptoms. The BP criteria were chosen based on the existing literature 

examining precursors to bipolar disorder, which consistently found that the presence of 

subsyndromal depression and mania significantly predicted the development of bipolar 

disorder.27–30

When defining clinical groups, the word “prodrome” was omitted for several reasons. First, 

the “prodrome” has been defined as “the early symptoms and signs that precede the acute 

clinical phase of an illness”31 and we do not know how many PNC participants will go on to 

develop a full-blown psychiatric disorder. Second, the original design of the PNC study was 

to take a population-based sample, not a help-seeking group. Third, researchers focusing on 

early intervention of psychosis and bipolar disorder caution against the use and 

interpretation of “prodrome.”32 Instead, our focus was to sample symptoms dimensionally 

from subclinical to fully symptomatic to better understand the underlying neuroanatomic 

abnormalities that might be associated with BP and/or PS symptomatology.

Clinical Symptoms and Functioning

Responses to the PRIME Screen Revised questionnaire were summed as a dimensional 

measure of positive symptoms. Responses were rated on a Likert scale (0 definitely disagree, 

1 = somewhat disagree, 2 = slightly disagree, 3 = not sure, 4 = slightly agree, 5 = somewhat 

agree, 6 = definitely agree). Responses to mood-related symptoms on dimensional measure 
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of mood. The exact items used for positive, negative, and mood symptoms are presented in 

Table S1, available online.

As part of the clinical testing, all participants were rated on the Global Assessment of 

Functioning (GAF), a widely used clinical scale to rate the social, occupational, and 

psychological functioning of an individual.33 The scale ranges from 0 to 100, with higher 

scores indicating better overall functioning. We used current GAF scores as our measure of 

functioning.

Neurocognitive Factor Scores

PNC participants underwent cognitive testing using the Penn Computerized Neurocognitive 

Battery. Descriptions of the metrics and calculation of efficiency scores for 4 domains were 

calculated according to a confirmatory factor analysis (N = 9,13834) for complex cognition 

(language reasoning, nonverbal reasoning, and spatial ability), executive control (mental 

flexibility, attention, and working memory), episodic memory (verbal memory, face 

memory, and spatial memory), and social cognition (emotion identification, emotion 

differentiation, and age differentiation).

Imaging Processing and Analysis

All neuroimaging data (N = 997) were acquired on the same 3-T Siemens TIM Trio 

magnetic resonance neuroimaging (MRI) scanner at the Children’s Hospital at the 

University of Pennsylvania. The following imaging sequence was used for T1-weighted 

images (magnetization-prepared rapid acquisition gradient echo): repetition time 1,810 ms, 

echo time 3.5 ms, inversion time 1,000 ms, flip angle 9, slice thickness 1 mm, and right-to-

left/anterior-to-posterior field of view 180/240 (as described by Satterthwaite et al.14). The 

FreeSurfer Image Analysis Suite 5.3.0 (https://surfer.nmr.mgh.harvard.edu/fswiki/

FreeSurferMethodsCitation) was used to derive bilateral measures of CT, cortical SA, and 

subcortical volume. FreeSurfer is a well-validated neuroimaging processing protocol that has 

previously been described in detail.35,36 We extracted values based on the Desikan 

FreeSurfer atlas37 and averaged the values from 2 hemispheres (34 regions for CT and SA; 6 

subcortical volume regions). We implemented a quality assessment pipeline developed for 

the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium38 to 

assess individual scan quality (Supplement 1, available online). This pipeline has been 

implemented in multiple large-scale studies of psychiatric disorders and of typical 

development.2–5,39–46 We used a well-established fully automated processing pipeline for 

the analysis of neuroimaging data, because a previous publication showed that mean effect 

sizes for manually edited regions of interest (ROIs) did not differ from most unedited ROIs.
47

Statistical Analyses

Data were analyzed using a mixed-effects regression with lme448 in R.49 For all analyses, 

family membership (Supplement 2, available online) was included as a random effect and 

sex was included as a covariate. For regional SA, total SA of the estimated intracranial 

volume (ICV) was included as a covariate. For subcortical measures, the total estimated ICV 

was included as a covariate. For CT measures, overall mean CT was included as a covariate. 
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We adjusted for these global measures because there was a significant main effect of group 

on all global structural MRI (sMRI) measures (Table S2, available online). False discovery 

rate correction was applied to p values at a .05 level to control for multiple comparisons.50 

Equations for all analyses are presented in Supplement 3, available online.

Analysis 1: Group Differences in CT, SA, and Subcortical Volume.—To 

determine an omnibus main effect across the 4 groups, we examined the overall main effects 

of group (TD, PS, BP, and PS + BP) for each sMRI measure and included age and the 

aforementioned variables as covariates. We followed up any significant main effects using 

the R package lsmeans51 to investigate pairwise comparisons between groups.

Analysis 2: Age-Associated Differences in PS, BP, and/or PS + BP.—First, we 

examined linear, inverse, and quadratic forms of age within the TD group only. We used the 

Akaike information criterion, a commonly used measure for model selection,52 to determine 

the model with the best fit (ie, lowest Akaike information criterion). For each sMRI measure 

(ie, each ROI examined), the inverse form of age (1/age) was considered the best fit. Second, 

to determine age-associated differences between groups (PS, BP, PS + BP, TD), we 

examined an omnibus age-by-group interaction among the 4 groups for each sMRI measure. 

As in analysis 1, we followed up any significant main effects by conducting pairwise 

comparisons of the least-squares means in each group (lsmeans51).

For any significant structural abnormalities identified in analysis 1, we conducted an 

exploratory analysis by binning age groups using methods similar to those previously used 

to characterize changes in late childhood (10–12 years old), early adolescence (13–15 years 

old), late adolescence (16–18 years old), and adulthood (19–22 years old). This parsing of 

groups is consistent with previous developmental publications.53,54 After conducting a linear 

mixed model at each developmental stage for each region that significantly differed from 

controls, we estimated the R2 contribution of diagnosis using the R package r2glmm.55

Analysis 3: Effects of Dimensional Measures.—For any sMRI measure that 

exhibited a significant overall group difference in analysis 1 or 2, we examined relations 

with dimensional measures of symptoms and functioning, specifically positive symptoms, 

negative symptoms, neurocognitive factor scores,34 and current global functioning (GAF 

score). For any statistically significant relations with false discovery rate correction (q 
= .05), we confirmed that this relation remained present when group status was included as a 

factor in the model to confirm that the relation was still present once diagnosis status was 

taken into account. We also confirmed that there was no significant age-by-group interaction 

with any of the dimensional factors.

RESULTS

Participant information, including mean symptom measures and overall functioning scores, 

is presented in Table 1. Overall group differences in neurocognitive factor scores and 

corresponding pairwise contrasts are presented in Table S2, available online.
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Global Neuroanatomic Measures

TD youth had significantly larger estimated ICVs (χ2 = 13.4, p = .004) and larger total SA 

(χ2 = 12.9, p = .005) than all clinical groups (BP, PS, BP + PS). Compared with the other 3 

groups, the BP + PS group exhibited significantly decreased overall mean CT (χ2 = 10.5, p 
= .01; Table S3, Figure S1, available online).

Analysis 1: Decreased SA in Multiple Regions and Decreased Thalamic 
Volume Are Specific to PS Youth—Compared with all other groups (TD, BP, BP + PS), 

individuals in the PS group exhibited significantly decreased SA in the lateral orbitofrontal 

(χ2 = 16.67, p = .0008, q = .02), medial orbitofrontal (χ2 = 17.48, p = .0.0006, q = .02), 

poster cingulate (χ2 = 13.18, p = .004, q = .05), precentral (χ2 = 20.53, p = .0001, q = .01), 

and postcentral (χ2 = 13.49, p = . 004, q = .05; Figure 1A–E, Table 2) regions and 

significantly decreased thalamic volume χ2 = 13.55, p = .004, q = .05; Figure 1F, Table 3). 

BP + PS youth had a larger medial orbitofrontal SA compared with TD and BP youth 

(Figure 1B). For all other sMRI measures, there were no significant pairwise differences 

among the TD, BP, and BP + PS groups (Table 4).

Overall group differences forþall measures without global covariates (ie, overall mean CT, 

total SA, or estimated ICV) are reported in Tables S4 and S5, available online.

Analysis 2: Structural Differences Are Greatest in Early and Late Adolescence 
in PS Youth—For all models, inverse age was the best fit (Tables S6 and S7, available 

online). Consistent with previous publications,56–58 22 of the 34 regions exhibited cortical 

thinning with increasing age in TD youth (q < .05). In this sample, the largest effect sizes 

were observed for the cingulate (isthmus and posterior) and temporal (middle and superior) 

regions. Eighteen of 34 regions exhibited SA changes with age (q < .05). In most of these 

regions, SA decreased with increasing age. However, SA of the rostral anterior cingulate 

cortex increased with increasing age in TD youth (q = .01). In subcortical regions, TD youth 

exhibited increasing thalamic volume with increasing age (q = 2e-6). The caudate, putamen, 

palladium, and nucleus accumbens decreased in volume with increasing age (q < .05). 

However, across all groups, no significant age-by-group interaction remained statistically 

significant for any ROI measure (CT, SA, or subcortical volume) after false discovery rate 

correction (q > 0.37 for all comparisons; Tables S8 and S9, available online).

Because only the PS group exhibited neuroanatomic differences compared with the TD 

group, we focused our exploratory analyses on these 2 groups. Within separate 

developmental stages, we found that the largest estimated effect size for group differences 

was during early adolescence for precentral (R2 = 0.04) and posterior cingulate (R2 = 0.04) 

regions, whereas the largest estimated effect sizes for group differences in the thalamus (R2 

= 0.09), postcentral (R2 = 0.07), and orbitofrontal (lateral R2 = 0.04, medial R2 = 0.04) 

regions were during late adolescence (Table S10, available online).

Analysis 3: SA Is Related to Cognition, Functioning, and Clinical Symptoms 
Across Diagnostic Groups—Better functioning was associated with increased lateral 

orbitofrontal SA (χ2 = 7.1, p = .008, q = .02; Figure 2A). Higher complex cognition scores 

were associated with larger precentral SA (χ2 = 19.0, p = 1.0e-5, q = .0001; Figure 2B). 
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Higher executive functioning scale scores were associated with larger postcentral SA (χ2 = 

7.1, p = .008, q = .02; Figure 2C), and increased negative symptom severity was associated 

with decreased postcentral SA (χ2 = 8.0, p = .004, q = .02; Figure 2D). All associations 

remained statistically significant (q < .05) when group status was included as a factor in the 

model. There were no statistically significant relations between neuroanatomic measures and 

positive symptoms of psychosis or mood symptoms (p > .2 for all comparisons).

Post hoc analyses showed that all results remained statistically significant when only 1 

unique family member was included in the model.

DISCUSSION

The goal of this study was to examine patterns of structural brain aberrations in youth 

experiencing subclinical symptoms of severe mental illness to help us better understand 

abnormal developmental processes in distinct brain regions and determine more informative 

early biomarkers of illness. This analysis showed several novel findings; specifically, in a 

cross-sectional sample from the PNC, we found that decreased SA in multiple cortical 

regions (orbitofrontal, posterior cingulate, pre- and postcentral) was specific to PS youth 

compared with TD youth, BP youth, and youth with BP PS. Among subcortical structures, 

we found decreasedþvolume specifically in the thalamus in the PS group compared with the 

other 3 groups. These findings provide support for the growing literature that neuroanatomic 

alterations are observable across the psychosis spectrum and potentially before the onset of 

full-blown illness.16,25 Moreover, we found that—across groups—higher overall 

functioning, less negative symptoms, and better higher-order cognition were associated with 

increased SA in some of these regions (specifically, lateral orbitofrontal and postcentral 

regions), providing support for the notion that structural brain abnormalities reflect real-

world behavior in youth. These dimensionally measured brain-behavior relations highlight 

the importance of examining neural changes in a non–help-seeking cohort, because our 

findings show that these neural differences still have functional consequence, regardless of 

whether an individual develops a severe mental illness.

Structural Brain Differences Are Present in PS Youth Before Adulthood

Consistent with multiple studies of youth at clinical high risk for developing psychosis,59–61 

we found that youth with PS symptoms (without co-occurring BP symptoms) exhibited 

decreased thalamic volume. Together, these findings suggest that decreased thalamic 

volumes are present in help-seeking and non–help-seeking youth with PS symptoms. 

Furthermore, these findings suggest that thalamic decreases, although prominent in 

schizophrenia,62–64 are not specific to the full-blown disorder and perhaps indicative of the 

extended psychosis phenotype.

In a prior study examining a larger cohort of PS youth (N = 391), Satterthwaite et al.16 found 

that PS youth exhibited volumetric decreases in the posterior cingulate, orbitofrontal, and 

parietal cortices. We extend these findings by showing that the previously observed 

volumetric decreases in these regions are driven by SA decreases and that they are specific 

to PS youth who do not have concurrent BP symptoms. By examining separate components 

of volume (ie, SA and CT), we can better understand the underlying neural dysfunction of 
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PS symptoms. Specifically, converging evidence suggests that cortical SA is determined by 

the proliferation of radial unit progenitors, which consist of neuroepithelial cells and radial 

glial cells.65 Thus, the decreased SA observed in the orbitofrontal, precentral, postcentral, 

and posterior cingulate regions in PS youth could reflect decreased production of radial unit 

progenitors in these areas of the cortex. Given that, in this sample of TD youth, orbitofrontal 

SA was not significantly associated with age, which could be indicative of an early insult to 

brain development. Intriguingly, in youth with PS, SA differences are more circumscribed 

and not as widespread as in adults with schizophrenia.4,6 Furthermore, the effect sizes for 

SA when comparing TD with PS youth were stronger (Cohen d range 0.2–0.4) than the 

effect sizes identified in a recent multisite consortium-wide meta-analysis comparing 

subjects with schizophrenia with healthy controls (Cohen’s d range 0.05–0.1).4 These results 

suggest that SA decreases in orbitofrontal, pre- and postcentral, and posterior cingulate 

regions might reflect the earliest risk markers of severe psychopathology and/or extended 

psychosis phenotype.

Lack of CT Differences

Inconsistent with studies of adults with established schizophrenia and bipolar disorder 

diagnoses,4–6,66 we did not identify statistically significant differences in CT in youth with 

PS, BP, or BP + PS symptoms. The lack of findings could mean that cortical thinning 

observed in adults with schizophrenia and bipolar disorder reflects neuroanatomic changes 

that occur after the onset of overt psychiatric illness because of the effects of medications 

and/or neurotoxic effects of chronic psychiatric illness. Alternatively, the absence of CT 

decreases in youth with subclinical PS and BP symptomatology could represent a marker of 

resilience. The lack of CT decreases observed in youth with PS and BP might be due to the 

highly heterogeneous nature of these “broader spectrum” groups.

Lack of Differences in BP Youth

Surprisingly, we did not observe any neuroanatomic differences between TD youth and BP 

youth. There are multiple reasons for the lack of differences. Other neuroimaging 

modalities, such as task-based functional MRI, might be more sensitive to differentiating 

those with BP symptoms from those without. For example, using a whole-brain pattern 

analysis of task-based working memory functional MRI data, researchers differentiated 

individuals with bipolar disorder from relatives with major depressive disorder or no 

psychopathology with high specificity and accuracy.67 Another study found that, during an 

affective labeling task, youth at high risk for developing bipolar disorder and youth with a 

bipolar disorder diagnosis exhibited decreased activation in the inferior and middle temporal 

gyrus but increased activation in the dorsolateral prefrontal cortex.68 Because the PNC has 

several task-based imaging studies, including working memory and emotion recognition 

tasks, it might be a useful endeavor to examine potential neural abnormalities in BP youth 

compared with TD and/or PS youth.

Of note, in addition to the criteria that we used to define the BP groups, 2 studies focusing 

on high-risk youth with a first-degree relative with bipolar disorder reported that the 

presence of externalizing symptoms, anxiety, and mood lability were significant predictors 

of the development of bipolar disorder.27,28 However, we did not include these as criteria for 
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the BP group because these factors are not specific to bipolar outcome.29,30 Future 

prospective studies of BP youth might want to test the effect of including these variables as 

part of the BP criteria in population-based samples.

Unexpected Patterns Observed in PS + BP Youth

Unexpectedly, we found structural differences in youth with PS symptoms, but not in those 

with BP + PS symptoms. One proposed hypothesis is that the combination of mood and 

psychotic symptoms is associated with different underlying neurobiological mechanisms.69 

Is the experience of PS symptoms within the context of BP symptoms different than PS 

symptoms on their own, without prominent mood abnormalities? Intriguingly, individuals 

with mood and psychotic symptoms have higher levels of functioning and better long-term 

outcome than those with schizophrenia, although these individuals are still impaired 

compared with healthy controls.70,71 In this sample, we found that BP + PS youth and PS 

youth had similar levels of global functioning. Thus, these groups are not functioning well 

but show different biological patterns, suggesting that there might be different mechanisms 

driving this impairment.

Developmental Implications

The age-associated cortical thinning observed in the TD group in this sample is consistent 

with previous longitudinal and cross-sectional studies of structural brain development during 

adolescence.56–58,72 However, it is important to note that other longitudinal studies have 

identified different developmental trajectories of CT, including, nonlinear CT changes from 

late childhood adolescence into adulthood.72–74 Given that we studied a cross-sectional 

sample of TD youth, the ability to detect nonlinear changes in structural brain development 

is limited. Importantly, there is work showing that, in a broader sample of PNC youth, 

implementation of general additive models identified nonlinear age-associated changes in a 

few discrete brain regions.72 However, this publication included youth who would have been 

included in our PS, BP, or BP + PS groups. Given the importance of nonlinear 

developmental changes in structural brain development, it will be important for future 

investigations to bring together multiple samples of TD youth and use MRI harmonization 

methods to account for site effects75,76 to allow for a more fine-grained analysis of age-

associated disruption in youth at risk for and with psychiatric disorders.

In addition to identifying specific structural alterations in PS youth, we observed preliminary 

evidence that the strongest effect sizes for group differences between TD youth and PS 

youth occurred during early and late adolescence. In regions that exhibited significant age-

associated changes in typical development (thalamic volume, posterior cingulate and 

postcentral SA), the period of early and late adolescence could be a particularly plastic or 

vulnerable stage in which an at-risk youth could “fall off” the normative developmental 

trajectory and be at greater risk for developing a psychiatric illness. Alternatively, these 

findings could be attributable to distinct developmental brain alterations, depending on the 

age at which one first begins to experience psychotic symptoms. It is important to note that 

this is an initial descriptive analysis. Longitudinal studies of PS youth are necessary to probe 

these intriguing hypotheses. Growth charts, typically used as references for early 

identification of atypical development for metrics such weight and head circumference,77 
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have recently been extended to assess how psychiatric disorders are related to deviations 

from normative development.26,78 In the future, multisite sample characterization of typical 

structural neurodevelopment will provide a template to further assess abnormal development 

of brain function in those with PS.

Brain-Behavior Relations

We found that larger lateral orbitofrontal SA is related to global functioning across groups. 

Functions associated with the lateral orbitofrontal cortex include evaluating possible 

outcomes based on contingencies and suppressing goal-irrelevant information to enable 

decision making or action.79–82 It is plausible that lateral orbitofrontal structural aberrations 

contribute to impaired decision making, affecting one’s overall functioning. There is a 

wealth of evidence examining decision making in adults with an established diagnosis of 

schizophrenia and bipolar disorder83–88; however, the nature and extent of the relation 

between brain maturation and the development of decision making in youth, and across the 

broader psychosis spectrum, has yet to be explored. We also found that increased SA in the 

postcentral gyrus was associated with less severe negative symptoms and better executive 

cognition. The presence of this relation suggests that decreased postcentral SA is a common 

underlying neural mechanism that contributes to cognitive functioning and negative 

symptoms. Furthermore, because these relations were identified in the entire sample, these 

findings suggest that structural alterations in the postcentral region could be an important 

area for further study of trans-diagnostic brain-behavior relations.

This study was not without limitations. Importantly, we could not examine within-subject 

change over time in this cross-sectional sample. Furthermore, despite the large overall 

sample, the number of individuals within each discrete developmental stage was more 

limited, particularly in the youngest and oldest groups. Although age-associated changes can 

be small, albeit meaningful, continued development of methods for combining data from 

different sites and scanners is warranted to fully map developmental changes in brain 

structure and function and their relevance to emerging psychiatric disorders. Furthermore, 

because we used data from a publicly available source, we were limited by the provided 

data. Data on socioeconomic status and/or family history of a psychiatric disorder were 

unavailable, 2 variables that significantly contribute to increased risk for psychiatric 

disorders89–91 and should be examined in future studies examining adolescent 

neurodevelopment and BP and PS phenotyping. Because the focus of the original PNC study 

was on psychosis risk, there was more detailed phenotyping on clinical symptoms associated 

with psychosis. Given the high overlap in genetics, neurobiology, and symptomatology in 

psychosis and bipolar disorder, future studies should incorporate semistructured interviews 

that assist with identifying precursors to bipolar disorder (eg, Bipolar Prodrome Symptom 

Interview92).

By examining a population-based, non–help-seeking sample, we could rule out possible 

confounds, such as illness chronicity and medication use; however, at the same time, we do 

not know whether youth exhibiting PS and/or BP symptoms are destined to develop a full-

blown major mental illness. However, the presence of subthreshold psychotic experiences 

(ie, hallucinatory and delusional experiences) increases the likelihood that one will develop 
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subsequent psychopathology.93–95 Furthermore, although most help-seeking youth deemed 

at risk for psychosis do not go on to develop overt psychosis, many continue to experience 

significant occupational and social impairment.96,97 Thus, we could be tapping into an 

identification of a cohort at risk for general psychopathology. These sorts of questions can 

only be answered with long-term follow-up of participants as they mature.

Taken together, our results provide compelling novel evidence for structural brain 

differences specific to PS youth in adolescent neurodevelopment. These findings suggest 

potential biological distinctions between PS and BP conditions, which could suggest 

additional biomarkers relevant to early identification. In future studies, data-driven factor 

analytic approaches.15,98 could provide an alternative approach to investigating 

neurobiological associations with cognition and behavior in adolescent neuroimaging 

cohorts. Future longitudinal studies focusing on typical “neurodevelopmental growth charts” 

and the extent and specific developmental periods during which youth at risk for serious 

mental illnesses deviate from these trajectories78 are necessary to address many remaining 

questions regarding brain alterations relevant to emergent psychopathology in vulnerable 

youth.
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FIGURE 1. 
Surface Area Decreases in Psychosis Spectrum (PS) Youth

Note: Psychosis spectrum youth exhibited decreased (A) lateral orbitofrontal, (B) medial 

orbitofrontal, (C) posterior cingulate, and (D) precentral and (E) postcentral surface areas 

and (F) thalamic volume compared with typically developing youth (TD), bipolar spectrum 

youth (BP), and youth with BP and PS.

*p < .05; **p < .01; ‡p < .005.
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FIGURE 2. 
Relations Between Surface Area and Dimensional Measures

Note: Across the entire sample, (A) larger lateral orbitofrontal surface area was associated 

with higher global functioning scores, (B) larger precentral surface was associated with 

higher complex cognition scores, (C) larger postcentral surface area was associated with 

higher executive function scores, and (D) larger postcentral surface area was associated with 

decreased negative symptoms. BP = bipolar spectrum; GAF = Global Assessment of 

Functioning; PS = psychosis spectrum; TD = typically developing.
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TABLE 2

Overall Statistics Examining Main Effect of Group on Cortical Thickness and Surface Area Measures

Cortical Thickness Surface Area

Brain Region χ2 p q χ2 p q

Banks of superior temporal sulcus 2.31 .51 .69 9.80 .02 .19

Caudal anterior cingulate 5.34 .15 .38 4.77 .19 .42

Caudal middle frontal 6.53 .09 .27 7.35 .06 .26

Cuneus 4.88 .18 .42 1.44 .70 .83

Entorhinal 0.59 .90 .92 2.14 .54 .72

Fusiform 1.65 .65 .81 6.80 .08 .26

Inferior parietal 4.01 .26 .53 6.81 .08 .26

Inferior temporal 0.28 .96 .96 4.18 .24 .52

Isthmus cingulate 0.55 .91 .92 3.27 .35 .53

Lateral occipital 7.75 .05 .26 3.42 .33 .53

Lateral orbitofrontal 3.85 .28 .53 16.67 .0008 .02

Lingual 3.73 .29 .53 3.27 .35 .53

Medial orbitofrontal 6.57 .09 .27 17.48 .0006 .02

Middle temporal 0.86 .83 .89 8.47 .04 .25

Parahippocampal 5.02 .17 .41 3.32 .35 .53

Paracentral 0.60 .90 .92 3.25 .35 .53

Pars opercularis 0.88 .83 .89 6.73 .08 .26

Pars orbitalis 1.95 .58 .74 7.35 .06 .26

Pars triangularis 1.24 .74 .85 7.26 .06 .26

Peri-calcarine 2.30 .51 .69 2.29 .52 .69

Postcentral 9.20 .03 .20 13.49 .004 .05

Posterior cingulate 2.05 .56 .73 13.18 .004 .05

Precentral 3.40 .33 .53 20.53 .0001 .01

Precuneus 3.38 .34 .53 4.73 .19 .42

Rostral anterior cingulate 2.84 .42 .60 6.05 .11 .32

Rostral middle frontal 5.50 .14 .37 5.86 .12 .33

Superior frontal 3.68 .30 .53 7.54 .06 .26

Superior parietal 1.34 .72 .84 9.51 .02 .19

Superior temporal 3.92 .27 .53 3.44 .33 .53

Supramarginal 4.03 .26 .53 7.06 .07 .26

Frontal pole 2.95 .40 .59 0.87 .83 .89

Temporal pole 1.15 .76 .86 1.61 .66 .81

Transverse temporal 3.61 .31 .53 10.08 .02 .19

Insula 0.61 .89 .92 7.10 .07 .26

Banks of superior temporal sulcus 2.31 .51 .69 9.80 .02 .19

Caudal anterior cingulate 5.34 .15 .38 4.77 .19 .42

Caudal middle frontal 6.53 .09 .27 7.35 .06 .26

Cuneus 4.88 .18 .42 1.44 .70 .83
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Cortical Thickness Surface Area

Brain Region χ2 p q χ2 p q

Entorhinal 0.59 .90 .92 2.14 .54 .72

Fusiform 1.65 .65 .81 6.80 .08 .26

Inferior parietal 4.01 .26 .53 6.81 .08 .26

Inferior temporal 0.28 .96 .96 4.18 .24 .52

Isthmus cingulate 0.55 .91 .92 3.27 .35 .53

Lateral occipital 7.75 .05 .26 3.42 .33 .53

Lateral orbitofrontal 3.85 .28 .53 16.67 .0008 .02

Lingual 3.73 .29 .53 3.27 .35 .53

Medial orbitofrontal 6.57 .09 .27 17.48 .0006 .02

Middle temporal 0.86 .83 .89 8.47 .04 .25

Parahippocampal 5.02 .17 .41 3.32 .35 .53

Paracentral 0.60 .90 .92 3.25 .35 .53

Pars opercularis 0.88 .83 .89 6.73 .08 .26

Pars orbitalis 1.95 .58 .74 7.35 .06 .26

Pars triangularis 1.24 .74 .85 7.26 .06 .26

Peri-calcarine 2.30 .51 .69 2.29 .52 .69

Postcentral 9.20 .03 .20 13.49 .004 .05

Posterior cingulate 2.05 .56 .73 13.18 .004 .05

Precentral 3.40 .33 .53 20.53 .0001 .01

Precuneus 3.38 .34 .53 4.73 .19 .42

Rostral anterior cingulate 2.84 .42 .60 6.05 .11 .32

Rostral middle frontal 5.50 .14 .37 5.86 .12 .33

Superior frontal 3.68 .30 .53 7.54 .06 .26

Superior parietal 1.34 .72 .84 9.51 .02 .19

Superior temporal 3.92 .27 .53 3.44 .33 .53

Supramarginal 4.03 .26 .53 7.06 .07 .26

Frontal pole 2.95 .40 .59 0.87 .83 .89

Temporal pole 1.15 .76 .86 1.61 .66 .81

Transverse temporal 3.61 .31 .53 10.08 .02 .19

Insula 0.61 .89 .92 7.10 .07 .26

Note: Boldface type indicates measures that reached statistical significance after correction for multiple comparisons (q < .05). For all measures, 1/
age, sex, and family membership were included in the model as covariates. For surface area measures, total surface area was included as an 
additional covariate. For cortical thickness measures, total mean cortical thickness was included as an additional covariate.
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TABLE 3

Overall Statistics Examining Main Effect of Group on Subcortical Volume Measures

Subcortical Structure X2 p q

Thalamus 13.55 .004 .05

Caudate 1.44 .70 .75

Putamen 2.64 .45 .53

Pallidum 1.28 .73 .77

Hippocampus 5.24 .16 .27

Amygdala 7.75 .05 .17

Nucleus accumbens 8.13 .04 .15

Note: Boldface types indicates measures that reached statistical significance after correction for multiple comparisons (q < .05). For all measures, 
1/age, sex, family membership, and total intracranial volume were included in the model as covariates.
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TABLE 4

Pairwise Contrasts Between Groups

Cortical surface area Contrast Z Ratio p

Lateral orbitofrontal TD > PS 3.6 .0003

BP > PS 2.3 .02

BP + PS > PS 3.1 .002

Medial orbitofrontal TD > PS 2.5 .01

BP + PS > PS 3.9 .0001

BP + PS > BP 2.6 .009

BP + PS > TD 2.3 .02

Posterior cingulate TD > PS 2.9 .004

BP > PS 2 .04

BP + PS > PS 3.4 .0007

Precentral gyrus TD > PS 4.3 .0001

BP > PS 2.6 .009

BP + PS > PS 3.6 .0003

Postcentral gyrus TD > PS 3.2 .002

BP > PS 2.4 .02

BP + PS > PS 3.2 .001

Subcortical volume Thalamus TD > PS 3.5 .0005

BP > PS 2.1 .04

BP + PS > PS 3 .002

Note: For measures statistically significant in Tables 1 and 2, pairwise contrasts between each group were conducted. BP = bipolar spectrum youth; 
BP + PS = bipolar and psychosis spectrum youth; PS = psychosis spectrum youth; TD = typically developing youth.
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