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A B S T R A C T

Within less than a year after its epidemic started (in December 2013) in Guinea, Ebola virus (EBOV), a

member of the filoviridae, has spread over a number of West-African countries (Guinea, Sierra Leone and

Liberia) and gained allures that have been unprecedented except by human immunodeficiency virus

(HIV). Although EBOV is highly contagious and transmitted by direct contact with body fluids, it could be

counteracted by the adequate chemoprophylactic and -therapeutic interventions: vaccines, antibodies,

siRNAs (small interfering RNAs), interferons and chemical substances, i.e. neplanocin A derivatives (i.e. 3-

deazaneplanocin A), BCX4430, favipiravir (T-705), endoplasmic reticulum (ER) a-glucosidase inhibitors

and a variety of compounds that have been found to inhibit EBOV infection blocking viral entry or by a

mode of action that still has to be resolved. Much has to be learned from the mechanism of action of the

compounds active against VSV (vesicular stomatitis virus), a virus belonging to the rhabdoviridae, that in

its mode of replication could be exemplary for the replication of filoviridae.

� 2014 Elsevier Inc. All rights reserved.
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1. Introduction

On 23 March 2014, the World Health Organization (WHO)
reported on a new outbreak of Ebola virus (EBOV) infection which
began in December 2013 in the Republic of Guinea, initially in the
Prefecture of Guéckédou [1], and which would shortly thereafter
spread to other West African countries, viz. Sierra Leone and
Liberia. The number of cases reported in Guinea, Liberia and Sierra
Leone for the period of January–September 2014 (Fig. 1) [2] give
little indication that the incidence of EBOV infection has begun to
decline [3]. According to the WHO the EBOV epidemic is still
growing and the doubling time was estimated 15.7 days in Guinea,
23.6 days in Liberia and 30.2 days in Sierra Leone [2]. EBOV
E-mail address: erik.declercq@rega.kuleuven.be.
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infection is a severe hemorrhagic fever caused by the negative-
stranded, non-segmented RNA virus belonging to the genus
Ebolavirus (family Filoviridae, order Mononegavirales). The second
genus in this family is Marburgvirus, causing a similar disease to
EBOV infection; the third genus, Cuevavirus (prototype: Cueva del
Lloviu) [4], is confined to bat hosts. Bats, and in particular the fruit
bat, Myonycteris torquata, seem to be the leading suspect as the
reservoir of Ebola virus infections, but the bats do not seem to get
sick from the virus [5]. Humans, however, present with fever,
headache, joint muscle and abdominal pain accompanied by
diarrhea and vomiting after a highly variable incubation period of
1–25 days; in this stage, EBOV infection could be easily confused
with other tropical fevers such as malaria or dengue, until the
appearance of the hemorrhagic terminal phase presenting with
the characteristic internal and subcutaneous bleedings [6]. To date
treatment against EBOV infection is mostly asymptomatic and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcp.2014.11.008&domain=pdf
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http://dx.doi.org/10.1016/j.bcp.2014.11.008
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Fig. 1. Numbers of confirmed and probable Ebola cases reported weekly from

Guinea, Sierra Leone, and Liberia from January 5, 2014, to September 14, 2014 [2].

Reprinted with permission of the New England Journal of Medicine.
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consists of rehydration, stabilization of blood pressure and control
of fever and pain.

EBOV is subdivided into 5 species: Zaire (EBOV-Z), Sudan
(EBOV-S), Reston (EBOV-R), Tai Forest (EBOV-TF), which was also
known as Côte d’Ivoire Ebola virus until 2010, and Bundibugyo
(EBOV-B) [7]. EBOV-Z and EBOV-S are the predominant EBOVs
associated with known outbreaks, and are more pathogenic than
EBOV-R, which has caused fatal infection only in non-human
primates, and EBOV-TF, which has only caused a single non-fatal
human infection [7]. EBOV-Z, EBOV-S and EBOV-B have often
caused severe hemorrhagic disease with markedly high case
fatality rates (40–90%) (Table 1) [8]. EBOV has been classified as a
BSL4 (biosafety level 4) agent or Category A potential bioterrorism
agent, by the Centers for Disease Control (CDC) and Prevention. It
was first described in 1976 [9].

The filoviridae (Ebola, Marburg), together with the paramyx-
oviridae, rhabdoviridae and bornaviridae, belong to the order of
Table 1
Ebola hemorrhagic fever cases in Africa (1976–2014).

Year Country Town 

1976 Democratic Republic of the Congo Yambuku 

1976 South Sudan Nzara 

1977 Democratic Republic of the Congo Tandala 

1979 South Sudan Nzara 

1994 Gabon Mekouka 

1994 Ivory Coast Tai Forest 

1995 Democratic Republic of the Congo Kikwit 

1996 Gabon Mayibout 

1996 Gabon Booué

1996 South Africa Johannesb

2000 Uganda Gulu 

2001 Gabon Libreville 

2001 Republic of the Congo Not specifi

2002 Republic of the Congo Mbomo 

2003 Republic of the Congo Mbomo 

2004 South Sudan Yambio 

2007 Democratic Republic of the Congo Luebo 

2007 Uganda Bundibugy

2008 Democratic Republic of the Congo Luebo 

2011 Uganda Luwero Di

2012 Uganda Kibaale Di

2012 Democratic Republic of the Congo Isiro Healt

2012 Uganda Luwero Di

2014 Guinea, Sierra Leone, Liberia, Nigeria Multiple 

According to Del Rio et al. [8].

BDBV, Bundibugyo virus; EBOV, Ebola virus; SUDV, Sudan virus; TAFV, Tai Forest Virus
a Laboratory-confirmed cases only.
the Mononegavirales. Ebola virus has a uniform diameter of 80 nm
and form filaments of 800–1100 nm long (Fig. 2) [10]. The classical
virion contains a single genome copy, but polyploid virions
have also been described that contain two or more copies of the
genome [11]. The viral RNA genome encodes seven proteins: NP

(nucleoprotein), VP35 (polymerase cofactor), VP40 (matrix pro-
tein), GP (glycoprotein), VP30 (transcription activator), VP24

(secondary matrix protein), and L (‘‘Large’’), RNA-dependent
RNA polymerase [6]. Whereas NP, VP24 and GP may be involved
in viral entry, the L polymerase may be an attractive target for viral
RNA synthesis inhibitors.

2. Post-exposure (non-antiviral) strategies

Therapeutic strategies against EBOV infection can be classified
into different categories according to their target of action: (i)
recombinant nematode anticoagulant protein c2 (rNAPc2) [12]
and recombinant human activated protein C (rhAPC), which are
aimed at treating clinical symptoms of coagulopathy and sepsis,
respectively, which are observed in infected patients but not
specific for EBOV infection; (ii) small, interfering RNAs (siRNAs)
such as the positively charged phosphorodiamidate morpholino
oligomers (PMO plus) and (iii) monoclonal antibodies (mAbs) to
suppress viremia and virus spread [13]. PMO plus antisense
therapies have been shown to protect > 60% of rhesus monkeys
against EBOV-Z and 100% of cynomolgus monkeys against
Marburg virus infection [14], and the safety and pharmacokinetic
profiles of PMO plus (AVI-6002, AVI-6003) have been further
documented [15]. The PMO AVI-6002 is composed of AVI-7537 and
AVI-7539 and AVI-6003 is composed of AVI-7287 and AVI-7288.
AVI-7537 targets the VP24 gene of EBOV and AVI-7288 targets the
NP gene of Marburg virus. They are now progressing to the late
stage of clinical development [16]. Meanwhile, the potential of
siRNAs as a postexposure treatment strategy for people infected
with EBV has been convincingly demonstrated [17]. Post-exposure
antibody prophylaxis has been shown to protect nonhuman
primates (NHPs) from filovirus (either Marburg or Ebola virus)
infections, even when delayed for 48 hours [18]. The reversion of
advanced EBOV infection in nonhuman primates with ZMapp
Cases, n Deaths, n Species

318 280 EBOV

284 151 SUDV

1 1 EBOV

34 22 SUDV

52 31 EBOV

1 0 TAFV

315 250 EBOV

37 21 EBOV

60 45 EBOV

urg 2 1 EBOV

425 224 EBOV

65 53 EBOV

ed 57 43 EBOV

143 128 EBOV

35 29 EBOV

17 7 EBOV

264 187 EBOV

o 149 37 BDBV

32 15 EBOV

strict 1 1 SUDV

strict 11a 4a SUDV

h Zone 36a 13a BDBV

strict 6a 3a SUDV

1009a 574a EBOV

.



Fig. 2. Structure of Ebola virus. An ebolavirus particle and its characteristic filamentous shape are shown. The negative-strand RNA genome is found in the center of particles

in an encapsidated form as the nucleocapsid, together with the polymerase complex. Embedded in the virus membrane are trimeric glycoprotein spikes. Beneath the

membrane is the matrix protein, which facilitates morphogenesis and budding of virus particles [10].

Reprinted with permission of the New England Journal of Medicine.
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(100% protection of rhesus macaques) [19] has had such an impact
that ethical considerations have trespassed the demand for the
material [20].

3. Vaccination

The time to deploy Ebola vaccines has now come [21]. Viable
Ebola vaccine candidates are rVSV (recombinant vesicular stomatitis
virus) + EBOV-Z-GP (glycoprotein), rRABV (recombinant rabies
virus) + EBOV-Z-GP, rAd5 (recombinant adenovirus serotype
5) + EBOV-Z-GP, VLP (virus-like particles) + EBOV-Z-GP, rHPIV3
(recombinant human parainfluenza virus type 3) + EBOV-Z-GP,
rCMV (recombinant cytomegalovirus) + EBOV-Z-NP (nucleopro-
tein) and rEBOV (recombinant Ebola virus) subunit vaccine + TLR
(toll-like receptor) agonist [21]. That it would be feasible to develop a
preventive vaccine against Ebola virus infection in primates, i.e.

cynomolgus macaques, was already demonstrated in 2000 by Nabel
and his co-workers [22]. VLPs have subsequently been shown to
protect nonhuman primates against a lethal Ebola virus challenge
[23]; VSV-based vaccines expressing the EBOV-Z glycoprotein
completely protect cynomolgus macaques against an aerosol
challenge of EBOV-Z [24]. Complete protection in cynomolgus
macaques against Bundibugyo Ebola virus challenge was also
achieved with a VSV-based vaccine [25]. A single intramuscular
vaccination with Venezuelan equine encephalitis virus (VEEV)
replicon particle (VRP) expressing EBOV-S-GP combined with VRP
expressing EBOV GP provided complete protection against intra-
muscular challenge with either EBOV-S or EBOV-Z in cynomolgus
macaques [26]. Antibodies play a critical role in rVSV- EBOV-Z-GP-
mediated protection against a lethal EBOV-Z challenge in cyno-
molgus macaques [27]. A highly immunogenic fragment [MFL (aa
393–556)] has been derived from EBOV-Z-GP that elicits high levels
of neutralizing antibody in mice [28]. And a VLP vaccine would hold
great potential in the fight against wild ape extinction, as it could be
used for vaccinating captive chimpanzees to protect wild chim-
panzees [29]. While several phase I vaccination clinical trials are in
progress or about to start, it is not expected to get any vaccine
commercially available before the end of 2015.

4. Interferon

Although interferon was discovered at the end of the 1950s
[30], its medical use has been limited, essentially because of its
severe side effects (which are, in principle, similar to those that are
experienced during an acute influenza virus infection). Yet,
interferon has for the last decade, been part, together with
ribavirin, of the standard of care (SOC) in the treatment of hepatitis
C [31–33]. Whenever a new virus emerges (or re-emerges),
however, so does the potential use of interferon. This was the case,
in 2003, at the outbreak of the SARS coronavirus epidemic [34], and
now is interferon envisaged again for the therapy of EBOV
infections [35]. From a practical viewpoint, the potential use of
(pegylated) interferon in the treatment of EBOV infections should
be facilitated by its increased availability now that its usefulness in
the treatment of hepatitis C will be overtaken by the direct-acting
antivirals (DAAs). In addition, interferons could induce a number of
IFITMs (interferon-induced transmembrane proteins), which exert
antiviral activity against a broad range of viruses, including not
only HIV-1, HCV, SARS coronavirus, but also VSV, EBOV, Marburg
and West Nile virus and, possibly, other viruses which could
considerably extend the scope for interferon-based therapy
[36,37].

5. Neplanocin A, 3-deazaneplanocin A

A surprising observation made in 2002 by Bray et al. [38] is that
3-deazaneplanocin A, an S-adenosyl-L-homocysteine (SAH) hydro-
lase inhibitor [40] could induce massively increased interferon-a
production in EBOV-infected mice. Whether this massive interfer-
on production was only epiphenomenal or causally related to the
protective effect of 3-deazaneplanocin A against Ebola has never
been resolved. Nor has been the reason for the induction of the
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massive interferon induction by 3-deazaneplanocin A. A possible
hypothesis is that 3-deazaneplanocin, being a SAH hydrolase
inhibitor, blocks the methylation of the (+)RNA transcribed from
the (�)RNA filovirus genome, thus preventing the release of the
mRNA from the (�)RNA�(+)RNA duplex and generating increased
levels of double-stranded (ds)RNA molecules which then act as
powerful inducers of interferon. SAH hydrolase inhibitors may
specifically block the capping (ribose 20-O-methylation) of viral
mRNAs, as it may provide a molecular signature for the distinction
of self from non-self mRNA dependent on the RNA sensor Mda5
[41]. In addition to the natural neplanocin A, B, C, D and F, the
enantiomers of 10,60-isomer of neplanocin A have been synthesized
(Fig. 3) [42], but their potential for in vivo therapy of EBOV
infections remains to be assessed.

6. BCX4430

BCX4430 (Fig. 4) was described as an inhibitor of the RNA-
dependent RNA polymerase hailed as a possible leap ahead in
filovirus therapeutics [43]. BCX4430 was proposed to function as a
non-obligate RNA chain terminator [44], and its role as a possible
SAH hydrolase inhibitor was not even considered. Even more
importantly, its potential activity against the rhabdovirus VSV was
not even touched upon, although much has to be learned for
filovirus therapeutics from their action against rhabdoviruses
(such as VSV), especially with regard to their mode of action at the
RNA polymerase level. BCX4430 can be considered as an adenosine
analog with 2 structural modifications: (i) it is a C-nucleoside
instead of the usual N-glycoside, and (ii) the 1,4-oxygen has been
replaced by a 1,4-imino group. The original compound synthesized
in this series was BCX-1777 (Fig. 4), the hypoxanthine derivative of
BCX4430 [45]. BCX-1777 was reported as a purine nucleoside
phosphorylase transition-state inhibitor. No antiviral activity was
reported for BCX-1777. Being a hypoxanthine derivative, it
probably has no antiviral effects.

7. Favipiravir (T-705)

I have amply discussed previously [46,47] the potential of
favipiravir for its broad-spectrum activity, that it shares with
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like) analogs [41].
ribavirin, against a wide variety of both (�)RNA viruses [i.e.

influenza (it has been approved in Japan for the treatment of
influenza A virus infections), arena, bunya) and (+)RNA viruses (i.e.

flavi, picorna, noro]. Hence, it is not surprising that it is also active
against the filoviridae, in casu EBOV [48,49]. Structurally, favipir-
avir is closely related to ribavirin (Fig. 5), with which it shares a
carboxamide (C–(O)–NH2) moiety. Perhaps, favipiravir could be
considered as a more specific antiviral version of ribavirin; they are
both targeted at the viral RNA polymerase, although ribavirin is
principally targeted at the IMP dehydrogenase [50]. To be
converted to its active metabolite, acting at the viral RNA
polymerase, favipiravir should first be converted to its phosphor-
ibosyl derivative and subsequently to the triphosphate (Fig. 6)
before it could interact as a RNA polymerase inhibitor, principally
in direct competition with GTP. Again, it should be mentioned that
VSV would serve as an adequate surrogate virus to judge the
potential of favipiravir in the treatment of EBOV infections. An in

vivo animal model for VSV infection in newborn mice has been
described many years ago [51].

8. Lectins

Griffithsin is a red-alga derived lectin that binds to the terminal
mannose residues of the asparagine(N)-linked Man 5–9 GlcNAc2
structures found on the envelopes of HIV-1, HIV-2, HCV, SARS
coronavirus and EBOV. Griffithsin and similar lectins may have
potential usefulness in the treatment of EBOV infections [52]. Nu-
merous lectins, starting with concanavalin A, cyanovirin N and
other mannose-specific plant lectins have been described as
potential antiviral agents [53]. They have been proven particularly
active against HIV-1 [54,55].

9. Endoplasmic reticulum (ER) glucosidase inhibitors

Host cellular ER a-glucosidases I and II are essential for the
maturation of viral glycosylated envelope proteins. Inhibition of
these glycan processing enzymes leads to the misfolding and
degradation of viral glycoproteins. The imino sugar 1-deoxynojir-
imycin and its derivatives are glucose mimics with a nitrogen atom
replacing the oxygen and competitively inhibit ER a-glucosidases I
and II [56]. One of these derivatives, CM-10-18, is efficacious
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against a lethal Dengue virus infection in mouse models [57]. Three
derivatives of CM-10-18, namely IHVR11029, IHVR17028 and
IHVR19029 (Fig. 7) suppressed the mortality of Marburg and Ebola
virus infection, in mice [58].

10. The FGI (Functional Genetics Inc.) compounds

From FGI (Gaithersburg, MD), three compounds (FGI-103, FGI-
104 and FGI-106) were reported to exhibit in vivo efficacy against
N
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Fig. 7. Endoplasmic reticulum (ER) glucosidase inhibit
EBOV, the first one (FGI-103) also exhibiting activity against
Marburg virus, the third one (FGI-106) being active against Rift
Valley virus and Dengue Fever virus, as well as EBOV. The
structures of FGI-103 and FGI-106 were revealed (Fig. 8); the
structure of FGI-104 was not. The mode of action of FGI-103 [59],
FGI-104 [60], or FGI-106 [61], can only be speculated upon.
Fascinating is the perfectly symmetrical structure of FGI-106. This
should tell us something about its mode of antiviral action, which,
nevertheless, has remained enigmatic so far.
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11. Antioxidant NSC62914

NSC62914 was found to exhibit anti-filovirus activity in vitro

and in vivo, in mice infected with EBOV or Marburg virus
[62]. NSC62914 (Fig. 9) was found to act as a scavenger of reactive
oxygen species. In vitro it was also inhibitory to Rift Valley fever
virus, Lassa virus and Venezuelan equine encephalitis virus.

12. Benzylpiperazine adamantane diamides and
benzodiazepine derivatives

Ebola virus entry into the host cells requires the cholesterol
transporter Niemann-Pick C1 [63] and this viral entry can be
blocked by benzylpiperazine adamantane diamides (Fig. 10)
[64]. Various other hit compounds, among which the benzodiaze-
pine compound 7 have also been identified as entry inhibitors for
filoviruses (Fig. 10) [65].

13. LJ-001 and dUY11

Two structurally unrelated compounds (Fig. 11), namely LJ-001,
a rhodamine derivative [66], and dUY11, a rigid amphipathic
fusion inhibitor (RAFI) [67] prevent the fusion of the viral and
cellular membranes and are specifically active against enveloped
viruses. That LJ-001 inhibits the entry of filoviruses including
EBOV, and enveloped viruses such as influenza A, HIV, pox-, arena-,
bunya-, paramyxo- and flaviviruses has been directly demonstrat-
ed [66]. For dUY11, it has only been surmised that it would inhibit
the replication of filoviruses such as EBOV. As it has a relatively
simple structure, and as it has also been shown effective in
preventing virus-induced mortality from EBOV, LJ-001 should be
considered a prime candidate to curtail the ongoing EBOV
epidemics.

14. Selective estrogen receptor modulators (SERMS)

SERMS, previously approved by the FDA were, totally by chance,
found to inhibit EBOV infection (Fig. 12) [68]. The compounds
concerned are clomiphene and toremifene. They would be active
against EBOV through an off-target effect where the compounds
HO

OH OH

NSC629 14 

Fig. 9. Antioxidant NSC62914 [62].
interfere with a late step of viral entry and likely affect the
triggering of fusion [68]. The SERMS are an immediately actionable
class of FDA-approved drugs that can be readily repurposided for
the treatment of filovirus infections.

15. Ion channel blockers

The ion channel blockers amiodarone, dronedarone and
verapamil were found to inhibit the cell entry of filoviruses (i.e.

EBOV) [69]. In particular, amiodarone, a multi-ion channel
inhibitor used clinically as an anti-arrhythmic agent, inhibited
N

N

C2HF4

Benzodiaz epine  deriva �ve (com pound  7) 

Fig. 10. Viral entry inhibitors, benzylpiperazine adamantine diamides 3.0 and 3.47

[55] and benzodiazepine derivative (compound 7) [65].
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filovirus entry within the range achieved in serum during anti-
arrhythmic therapy in humans, i.e. 1.5–2.5 mg/ml [70]. Amiodarone
also inhibited the New World arenavirus Guanarito, while the Old
World arenavirus Lassa and the rhabdoviridae (vesicular stomatitis
virus) and bunyaviridae (Hantaan) were not inhibited [69]
(Fig. 13).

16. CMLDBU3402: EBOV RNA transcription inhibitor

CMLDBU3402 (Fig. 14) was found to inhibit the replication of
the non-segmented negative-strand RNA viruses, EBOV and VSV
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Fig. 13. Ion channel blockers amiodaron
(vesicular stomatitis virus) [71]. In earlier studies Connor et al. [72]
and Smith et al. [73] had noted that inhibition of VSV (i.e. through
inhibition of heat-shock protein 90) presaged inhibition of EBOV
replication.

17. HSPA5: an essential host factor for EBOV infection

The endoplasmic reticulum (ER) chaperone HSPA5 (heat shock
70 kDa protein 5) has been identified as EBOV-associated host
factor and other enveloped viruses such as VSV [74]. The small
molecule (�)-epigallocatechin gallate (Fig. 15) binds to the ATP-
binding site of HSPA5, and thereby disturbs its chaperone function
required for EBOV infection. Besides (�)-epigallocatechin gallate,
varying other molecules have been identified as HSPA5 inhibitors
[75]. Whether they are also inhibitory to VSV and EBOV infection,
remains to be determined.

18. Heme oxygenase-1 (HO-1)

HO-1 is an enzyme that catalyzes the first and rate-limiting
step in the degradation of heme to carbon monoxide (CO), free
iron (Fe++, which is subsequently oxidized to Fe+++ and stored as
ferritin) and biliverdin (which is subsequently reduced to
bilirubin). HO-1 is upregulated not only by its substrate, heme,
but also by various nonheme inducers, such as heat shock,
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inflammatory cytokines, endotoxin, and oxidative stress. It would
also suppress EBOV replication, not at the level of viral entry (or
budding), but at the level of EBOV transcription/replication [76]. It
would now also seem mandatory to examine whether HO-1 also
suppresses VSV replication. It certainly represents a novel
therapeutic strategy against EBOV infection.

19. Miscellaneous compounds preventing cathepsin L cleavage

A number of small molecules preventing cathepsin L cleavage of
viral glycoproteins have been identified to inhibit the entry of SARS
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coronavirus, Hendra, Nipah and/or EBOV (Fig. 16) [77]. These
compounds need to be further optimized and developed into
antiviral drugs useful for the treatment of any of the target viruses.

20. Chloroquine

Chloroquine is a 9-aminoquinoline known since 1934. It was
specifically synthesized as an antimalarial agent but gradually
dismissed from antimalarial therapy and prophylaxis due to the
continuous emergence of chloroquine-resistant Plasmodium falci-

parum strains. It has a pleiade of antiviral effects varying from the
endocytosis to the exocytosis of viral particles, and, in addition,
downregulates IFN-g and TNF-a production and TNF-a receptors
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[78]. It was shown to have anti-HIV-1 activity [79] and to inhibit
SARS coronavirus [80] and to inhibit human coronavirus OC43
infection in newborn mice [81]. Not surprisingly, it was also found
to protect mice against EBOV infection in vivo [82] (Fig. 17).

21. Conclusion

Ebola virus (EBOV) was first identified as a hemorrhagic fever
virus in 1976, that is 5 years before AIDS was recognized, and
7 years before HIV was discovered as its etiologic agent. EBOV has
regularly led to the emergence of epidemics, particularly in Congo
(Zaire), Sudan and Uganda, but it only recently stirred up
worldwide concern with its breakthrough in West Africa. This
started in December 2013, has spread over three countries, Guinea,
Sierra Leone and Liberia, and with a mortality rate of up to 90%, it
has reached a global death toll of about 5000 (and still rising).
There is still no vaccine or treatment available, although EBOV,
while highly contagious, is very sensitive to varying well-defined
compounds. The majority of these compounds (Table 2) are
targeted at either viral entry or virus replication/transcription. To
work with EBOV, BSL 4 (Biosafety level 4, the highest level) is
required, which makes that EBOV can only be handled in very few
laboratories over the world. It should be pointed out, however, that
the mechanism of replication of EBOV, which belongs to the
filoviridae, follows a strategy that is similar to that of vesicular
stomatitis virus (VSV), which belongs to the rhabdoviridae. In this
sense, VSV could be considered as a surrogate virus for EBOV.
This means that several compounds that were previously
described as inhibitors of VSV should be revisited as therapeutic
Table 2
Chemical agents representing therapeutic strategies for EBOV infection.

Compound Viral target

Neplanocin A SAH hydrolase

3-Deazaneplanocin A SAH hydrolase

BCX4430 RNA polymerase

Favipiravir (T-705) RNA polymerase

Lectins Viral entry

Glucosidase inhibitors Viral entry

FGI compounds Unknown

Antioxidant NSC62914 Reactive oxygen species (ROS)

Benzylpiperazine adamantane

diamides

Viral entry

LJ-001 Viral entry

dUY11 Viral entry

SERMS (clomiphene, toremifene) Viral entry

Ion channel blockers Viral entry

CMLDBU3402 RNA polymerase

HSPA5 inhibitors Unknown

Heme oxygenase-1 (HO-1) Unknown

Miscellaneous inhibitors of

cathepsin L cleavage

Viral entry

Chloroquine Unknown
agents for EBOV, and, vice versa, potential anti-EBOV therapies
could be pre-evaluated for their anti-VSV activity. This is most
pertinent for compounds, such as neplanocin A derivatives, that
are targeted at the S-adenosyl-L-homocysteine (SAH) hydrolase, or
favipiravir, which is targeted at the viral RNA polymerase.

Acknowledgments

I thank Mrs. Christiane Callebaut and Mrs. Cathy De Meyer for
their proficient editorial assistance.

References

[1] Gatherer D. The 2014 Ebola virus disease outbreak in West Africa. J Gen Virol
2014;95:1619–24.

[2] WHO Ebola Response Team. Ebola virus disease in West Africa – the first
9 months of the epidemic and forward projections. N Engl J Med 2014;371:
1481–1495.

[3] Briand S, Bertherat E, Cox P, Formenty P, Kieny MP, Myhre JK, et al. The
international ebola emergency. N Engl J Med 2014;371:1180–3.

[4] Negredo A, Palacios G, Vázquez-Morón S, González F, Dopazo H, Molero F, et al.
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