Skip to main content
. 2020 Jan 26;13(3):637–656. doi: 10.1111/1751-7915.13524

Table 1.

The association between gut microbiota and the development and progression of CVD.

  Hypertension Atherosclerosis Heart failure
Participation of gut microbiota α diversity↓, Prevotella↑, the F/B ratios↑, Erwinia↑, Corynebacteriac‐eae↑, Anaerostipes↓, Lactobacillus murinus Streptococcus↑, Enterobacteriaceae↑, Lactobacillales↑, Clostridium subcluster XIVa↑, Bacteroides Campylobacter↑, Candida↑, Shigella↑, Salmonella↑, Yersinia enterocolitica↑, Escherichia/Shigella
Participation of gut microbial metabolites

SCFAs

4‐ethylphenylsulfate

TMAO↑

BAs, butyrate, NAPEs

TMAO↑

Plasma primary BAs↓, specific secondary BAs↑

Propionate, PAG, PCS

Summary of potential mechanisms GPCRs (GPR42, Olfr78 and Gper1) related signalling to elicit biological effects

Intestinal permeability↑

Endothelial cell–cell conjunctions↓ and cell permeability↑

TLR activation↑

Macrophage scavenger receptors and CD36↑

NF‐κB and inflammasome activation↑

Cyp7a1 and Cyp27a1↓

Intracellular Ca2+ release↑

Intestinal perfusion↓ and congestion↑

Intestinal permeability↑

Prolong the effect of angiotensin↑

NLRP3 inflammasome‐associated TGF‐β/Smad3 signalling activation↑

Medications

Captopril: Allobaculum

Candesartan and Irbesartan: normalize the F/B ratio, preserve Lactobacillus levels

Statins: Firmicutes↓, Proteobacteria↑, BAs alteration, butyrate↓

Aspirin:Prevotella, Bacteroides, Ruminococcaceae and Barnesiella alterations, TMAO‐mediated platelet hyper‐responsiveness↓

Digoxin: Eggerthella lenta could inactivate digoxin