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Abstract

Background—There is a critical need to develop valid, non-invasive biomarkers for 

Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive 

diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes.

Methods—We used dMRI from 1002 subjects, along with the Movement Disorders Society 

Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRS III), to develop and validate 

disease-specific machine learning comparisons using 60 template regions and tracts of interest in 

Montreal Neurological Institute (MNI) space between Parkinson’s disease (PD) and Atypical 

Parkinsonism (multiple system atrophy – MSA, progressive supranuclear palsy – PSP), as well as 

between MSA and PSP. For each comparison, models were developed on a training/validation 

cohort and evaluated in a test cohort by quantifying the area under the curve (AUC) of receiving 

operating characteristic (ROC) curves.

Findings—In the test cohort for both disease-specific comparisons, AUCs were high in the dMRI 

+ MDS-UPDRS (PD vs. Atypical Parkinsonism: 0·962; MSA vs. PSP: 0·897) and dMRI Only (PD 

vs. Atypical Parkinsonism: 0·955; MSA vs. PSP: 0·926) models, whereas the MDS-UPDRS III 

Only models had significantly lower AUCs (PD vs. Atypical Parkinsonism: 0·775; MSA vs. PSP: 

0·582).

Interpretations—This study provides an objective, validated, and generalizable imaging 

approach to distinguish different forms of Parkinsonian syndromes using multi-site dMRI cohorts. 

The dMRI method does not involve radioactive tracers, is completely automated, and can be 

collected in less than 12 minutes across 3T scanners worldwide. The use of this test could thus 
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positively impact the clinical care of patients with Parkinson’s disease and Parkinsonism as well as 

reduce the number of misdiagnosed cases in clinical trials.

INTRODUCTION

Parkinson’s disease (PD), multiple system atrophy (MSA), and progressive supranuclear 

palsy (PSP) are neurodegenerative disorders that are challenging to differentiate because of 

shared and overlapping motor and non-motor features (1–3). Accordingly, misdiagnosis of 

PD, MSA, and PSP is high, especially early in disease. Diagnosis accuracy in early PD (<5 

years duration) is approximately 58%, and 54% of misdiagnosed patients have MSA or PSP 

(3–7). Whereas dopamine transporter imaging can identify the nigrostriatal denervation that 

leads to dopaminergic deficiency, it cannot distinguish between the different forms of 

Parkinsonism since they all exhibit this characteristic (8). The lack of a clinically reliable 

non-invasive biomarker to distinguish different Parkinsonian syndromes is a major hindrance 

to improved diagnosis accuracy and therefore better categorization in clinical trials; 

however, diffusion MRI shows particular promise in addressing this shortfall.

Diffusion MRI (dMRI) is a promising technique because it facilitates in vivo quantification 

of brain microstructure associated with histology using a measure called fractional 

anisotropy (FA) (9). However, FA can be susceptible to partial volume effects, as there is 

both tissue and fluid contained in its calculation. Recent work using a single site cohort has 

shown that free-water imaging, a method which allows for the separation of the fluid (i.e., 

free-water (FW)) and tissue (FW-corrected FA (FAT)) components in dMRI can detect 

unique microstructural changes in different forms of Parkinsonism (10). Several studies have 

been performed in Parkinsonian patients showing elevated FW within the posterior 

substantia nigra in Parkinson’s disease and in widespread, yet distinct, networks in MSA and 

PSP (10). While these studies show promise for detecting objective and unique diffusion 

measurements in Parkinsonism, they used manual region delineation, small cohorts, and 

dMRI data acquired from only one MRI scanner. Development of a fully automated, 

generalizable procedure that differentiates Parkinsonian syndromes by utilizing diffusion 

measurements from pathologically relevant regions is a critical need for the field.

The goal of this study was to create and validate an objective and generalizable biomarker to 

differentiate Parkinsonian syndromes. To accomplish this goal, we measured FW and FAT in 

17 regions and 43 white matter tracts relevant to Parkinsonism in Montreal Neurological 

Institute (MNI) space in an internationally derived dataset collected on 17 different 3T MRI 

scanners. At each site, the Movement Disorders Society Unified Parkinson’s Disease Rating 

Scale part III (MDS-UPDRS III) was also collected. We then developed rigorous disease-

specific machine learning comparisons, including PD vs. Atypical Parkinsonism, and MSA 

vs. PSP. Using these comparisons, we tested the ability of three different models (dMRI + 

MDS-UPDRS III, dMRI Only, MDS-UPDRS III Only) to differentiate forms of 

Parkinsonism in a test cohort. Importantly, all models were created without the inclusion of a 

site covariate so that the models are generalizable to sites not included in the present study. 

Comparisons were made between models to determine if dMRI outperformed the MDS-

UPDRS III in the classification of disease state.
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METHODS

Participants and Diffusion MRI Acquisition

This study used 1002 individuals obtained from 8 different cohorts using 17 different MRI 

scanners and included 278 healthy controls, 511 PD, 84 MSA, and 129 PSP subjects (Table 

I). Subjects with Parkinsonism were diagnosed by a movement disorder specialist at their 

respective site using standard diagnostic criteria (1, 2, 7, 11). There are multiple phenotypes 

of MSA, including Parkinsonian (MSAp) and cerebellar (MSAc). A majority (95·24%) of 

our MSA cohort had MSAp. All PSP subtypes were included, but we did not delineate 

subtypes. The controls reported no history of neuropsychiatric or neurological problems. 

Disease severity was assessed using the MDS-UPDRS III or the Unified Parkinson’s Disease 

Rating Scale (UPDRS). UPDRS scores were converted to MDS-UPDRS scores using 

established guidelines (12). Participants provided written consent for all procedures, which 

were approved by Institutional Review Boards.

Diffusion MRI Data Preprocessing

FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl/) and custom UNIX shell 

scripts were used to preprocess the data (13). Data preprocessing using custom MATLAB 

scripts was conducted for all datasets to obtain FW and FAT images for each individual (14). 

Preprocessing was identical to prior work from our group (10). Quality control was 

performed by visually inspecting each individual FW and FAT map. Subjects in which the 

field of view did not encompass the whole brain and/or there were distortions were not 

included in this study (<1% of the total data). Since partial brains and distortions were 

excluded from our analysis, there was no need to impute missing values for any region or 

tract used in the analysis.

Diffusion MRI Data Normalization to MNI Space

In this study, we performed a literature review and analysis (Supplemental Appendix) that 

determined an optimal, automated normalization pipeline for dMRI data. We compared FW 

values obtained from hand-drawn ROIs to template-derived FW values in a subset of 

patients from the University of Florida (n=104, including controls, PD, MSA, and PSP) 

using four different normalization pipelines. We found that using the Advanced 

Normalization Tools (ANTs) software provided the highest intraclass correlation coefficients 

between hand-drawn and template-derived FW values. Thus, FW and FAT were normalized 

using this automated pipeline for all subsequent analyses (15).

Regions of Interest

To perform this study, we created a Parkinson’s disease region of interest template in MNI 

space (Figure 1A), which includes 17 regions in the basal ganglia (anterior substantia nigra, 

posterior substantia nigra, subthalamic nucleus, globus pallidus, putamen, caudate nucleus), 

midbrain/thalamus/cortex (premotor corpus callosum, prefrontal corpus callosum, 

pedunculopontine nucleus, red nucleus, thalamus), and cerebellum (middle cerebellar 

peduncle, superior cerebellar peduncle, inferior vermis, dentate nucleus, cerebellar lobule V, 

cerebellar lobule VI).
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Tracts of Interest

A total of 43 white matter tracts were also used (Figure 1B). We conducted probabilistic 

tractography identically to our prior work using the Human Connectome Project dataset to 

characterize the subthalamo-pallidal, nigrostriatal, and corticostriatal tracts (16). We also 

incorporated several existing tractography templates, which include the sensorimotor area 

tract template (S-MATT) (16), the transcallosal tractography template (TCATT), and a 

cerebellar white matter atlas (17). The S-MATT includes 6 different sensorimotor tracts, 

including the tracts descending from the primary motor cortex, dorsal premotor cortex, 

ventral premotor cortex, supplemental motor area, pre-supplemental motor area, and 

somatosensory cortex. The TCATT includes 5 parietal, 6 occipital, 6 frontal, and 12 

prefrontal commissural tracts (18). We also used the superior and middle cerebellar tracts 

from the cerebellar probabilistic white matter atlas (17). FW and FAT was calculated for 

each region and tract separately in each subject.

Machine Learning

The variables available in this study include dMRI values (FW and FAT in 17 regions and 43 

tracts), MDS-UPDRS III, sex, and age. Three different combinations of variables were 

created: (1) dMRI + MDS-UPDRS III, (2) dMRI Only, and (3) MDS-UPDRS III Only. Age 

and sex were included in all analyses as these are variables that would be readily available 

for input in regular practice. dMRI variables include FW and FAT values in each region and 

tract, resulting in a total of 60 FAT measurements and 60 FW measurements for each 

individual. Each combination of variables was used in the training and validation of a 

support vector machine (SVM) learning algorithm using a linear kernel in the scikit-learn 

package in Python (19). We chose the support vector machine (SVM) because it is a widely 

accepted and robust machine learning model for classification. Compared to recent deep 

learning methods such as convolutional neural networks (CNN) and conventional machine 

learning algorithms such as decision trees and random forests, SVM has the advantage of 

high performance at low computational cost. It also does not need a large amount of labeled 

data. SVM works by separating the data using a hyperplane in the feature space. A linear 

kernel indicates that the data points are represented using its original feature space, instead 

of being projected into a high-dimensional space for classification. We chose to use a linear 

kernel as it the data in this study was able to be linearly separated with good performance. 

Further, the development of SVM models using a linear kernel allowed us to extract the 

coefficient of each ROI and tract to determine its importance in the model. Other more 

complex kernels, such as polynomial and radial basis function kernels, increased the 

computational time required to train the models and did not provide additional accuracy. 

Disease-specific comparisons were made to predict diagnosis (PD vs. Atypical and MSA vs. 

PSP). Training/validation sets for each disease-specific comparison consisted of 80% of the 

total relevant data while the remaining 20% was reserved for a test dataset. Subjects were 

randomly assigned to the training/validation set or the test dataset using stratified sampling 

to ensure that the training/validation and test dataset group proportions were equal to the 

total dataset group proportions (Figure 2). In the training/validation cohort, the data was 

randomly split into 5 subgroups for 5 fold cross-validation. The purpose of the 5 fold cross-

validation was to optimize the F1 score (i.e., the harmonic mean of the precision and recall) 

by optimizing the penalty parameter (C, a measure which directly represents the tolerance 
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for error) across the 5 distinct folds. This penalty parameter was used to train the machine 

learning model using the training/validation dataset and the performance of this optimized 

model was evaluated on the test dataset.

To evaluate the performance of the machine learning models in the training/validation cohort 

and the test cohort, we conducted receiver operating characteristic (ROC) analyses using the 

trained models. The area under the curve (AUC) was calculated for each model (dMRI + 

MDS-UPDRS III, dMRI Only, MDS-UPDRS III Only) for each comparison (PD vs. 

Atypical Parkinsonism and MSA vs. PSP). The models were statistically evaluated using 

Delong’s test to compare AUCs between ROCs (20). We also calculated several measures 

from the confusion matrix, including accuracy, sensitivity, specificity, positive predictive 

value, and negative predictive value. Further, we evaluated the pathophysiological relevance 

of the models by relating feature importance to the absolute value of the coefficients of the 

hyperplane that defines the optimized SVM model. To determine if between-site effects had 

an impact on the machine learning performance, we also conducted secondary machine 

learning analyses in which we harmonized the dMRI data using the ComBat batch-effect 

correction tool, as it has recently been shown to be effective in correcting multisite dMRI 

data (21).

AID-P Application: A Comparison of Imaging, Clinical, and Pathological Diagnosis

We obtained 5 patients (3 from UF; 2 from PSHMC) who had in vivo dMRI collection as 

well as post-mortem neuropathological examination. The dMRI data for these subjects was 

inputted into the AID-P (PD vs. Atypical Parkinsonism, MSA vs. PSP) to determine group 

probabilities. These probabilities were used to classify patients and compared to 

neuropathological diagnosis.

Role of the Funding Source

The funders in this study (National Institutes of Health and Parkinson’s Foundation) had no 

role in the study design, collection, analysis, or interpretation. The corresponding author had 

full access to all the data in the study and had final responsibility for the decision to submit 

for publication.

RESULTS

Machine Learning Inputs

The averages and standard deviations for each machine learning input feature for each group 

(Control, PD, MSA, PSP) can be found in Supplemental Table III. Although we conducted 

machine learning on both unharmonized and harmonized dMRI data, the ROC curves were 

similar (Supplemental Figure 3).

PD vs. Atypical Parkinsonism

To evaluate the performance of the PD vs. Atypical Parkinsonism machine learning models 

(dMRI + MDS-UPDRS III, dMRI Only, MDS-UPDRS III Only), we conducted ROC 

analyses in the training/validation (Figure 3A–B) and test cohorts (Figure 3C–D). The dMRI 

+ MDS-UPDRS III model demonstrated high AUCs in both the training/validation (0·969) 
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and test (0·962) cohorts. Similarly, the dMRI Only model showed high AUCs in the training/

validation (0·961) and test (0·955) cohorts; however, the MDS-UPDRS III Only model had 

substantially lower AUCs (training/validation: 0·745; test: 0·775). In both the training/

validation and test cohorts, there were significant differences between the dMRI + MDS-

UPDRS III and MDS-UPDRS III Only models as well as between the dMRI Only and 

MDS-UPDRS III Only models (p<0·0001). There was no significant difference between the 

dMRI + MDS-UPDRS III and dMRI Only models. An analysis of variable contribution in 

the dMRI Only model revealed that the top 10 contributors to the model included many 

regions previously shown to pathologically involved in Parkinsonism (22) (Figure 4A). 

Additional machine learning performance metrics, including accuracy, sensitivity, 

specificity, positive predictive value, and negative predictive value, were calculated (Table 

II). An important consideration in this comparison is that one contributing cohort (UM) used 

a lower number of directions than the other cohorts, was the only center which had a b-value 

of 800 s/mm2, and did not have any MSA/PSP subjects; thus, it is possible that this cohort 

was skewing results in this analysis. For this reason, we removed this cohort and conducted 

an identical machine learning analysis. We found that even with the removal of this group 

we obtained comparable AUCs in the dMRI + MDS-UPDRS III (training/validation: 0·956; 

test: 0·926) dMRI Only (training/validation: 0·945; test: 0·899), and MDS-UPDRS Only 

(training/validation: 0·763; test: 0·666) models.

Multiple System Atrophy vs. Progressive Supranuclear Palsy

Identical to the PD vs. Atypical Parkinsonism models, the MSA vs. PSP models (Figure 3E–

H) had high AUCs in both the dMRI + MDS-UPDRS III (training/validation: 0·971; test: 

0·897) and dMRI Only models (training/validation: 0·965; test: 0·926), whereas the MDS-

UPDRS III Only exhibited lower AUCs (training/validation: 0·765; test: 0·582). The models 

were compared using Delong’s test, in which there were significant differences between the 

dMRI + MDS-UPDRS III and MDS-UPDRS III Only as well as dMRI Only and MDS-

UPDRS III Only models (p<0·0001). There were no significant differences between the 

dMRI + MDS-UPDRS III and dMRI Only models. An analysis of variable contribution in 

the dMRI model revealed that the top 10 contributors to the model included many regions 

shown to be pathologically involved in atypical Parkinsonism (22) (Figure 4B). Additional 

machine learning performance metrics, including accuracy, sensitivity, specificity, positive 

predictive value, and negative predictive value, were calculated (Table II).

Additional Disease-Specific Comparisons

Secondary disease-specific comparisons were also developed, including Control vs. 

Parkinsonism, MSA vs. PD/PSP, and PSP vs. PD/MSA (Supplemental Figure 2). 

Performance metrics for these machine learning comparisons can be found in Supplemental 

Table IV. Further, the Delong’s comparison of model performance (dMRI + MDS-UPDRS 

III, dMRI Only, MDS-UPDRS III Only) for each disease-specific model can be found in 

Supplemental Table V.

AID-P Application: A Comparison of Imaging, Clinical, and Pathological Diagnosis

The dMRI data in 5 patients who were followed to post-mortem were used to compare 

clinical, pathological, and machine learning (i.e., dMRI Only AID-P) ability to predict 

Archer et al. Page 7

Lancet Digit Health. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disease-state (Table III). In 4/5 patients, the clinical, pathological, and AID-P diagnosis 

matched. In 1 patient, the clinical diagnosis was MSA, but a pathological examination of 

this individual revealed a PSP diagnosis. The AID-P matched the pathological examination 

and predicted this patient to have a PSP diagnosis. Thus, the AID-P accurately predicted 5 

out of 5 cases at pathology, but more subjects are needed to generalize these findings.

DISCUSSION

This study provides a completely automated, objective, validated, and generalizable imaging 

approach to distinguish different forms of Parkinsonian syndromes using geographically 

diverse dMRI cohorts. We utilized a large multisite dataset from 17 different MRI scanners 

aiming to determine if an automated dMRI pipeline with support vector machine learning 

was capable of differentiating between degenerative Parkinsonian syndromes. Imaging 

values were extracted from 17 region and 43 tract templates in MNI space. Age, sex, and the 

MDS-UPDRS III were also collected. All variables were used to develop rigorous disease-

specific machine learning comparisons, including PD vs. Atypical Parkinsonism and MSA 

vs. PSP. For each comparison, three models were developed: (1) dMRI + MDS-UPDRS III, 

(2) dMRI Only, (3) MDS-UPDRS III Only. Their performance was evaluated by creating 

ROC curves in a test cohort. The dMRI Only models had high accuracy, sensitivity, and 

specificity for distinguishing between forms of Parkinsonism. The strength of this approach 

was that it was effective across a range of MRI platforms using standard dMRI sequences, 

indicating the large impact it could have in clinical trials and clinical care for Parkinsonism.

A difficult problem confronting neurologists in Parkinsonism is the correct classification 

into idiopathic Parkinson’s disease or atypical Parkinsonism. Misclassification is common, 

particularly early in the disease (5), which can limit the efficacy of clinical trials that only 

want to recruit patients with PD. While pathological examination is required for final 

confirmation of a clinical diagnosis, this cannot be obtained in vivo, when subjects are being 

recruited and selected for clinical trials. The current study suggests that dMRI, specifically 

FW imaging, could be used as a marker for detecting structural deficits and is highly 

accurate in differentiating degenerative Parkinsonisms. Further, our results indicate that 

dMRI outperformed the MDS-UPDRS III in differentiating Parkinsonian syndromes. Our 

findings in this large multisite dataset were also capable of distinguishing degenerative 

Parkinsonian syndromes with high accuracy, sensitivity, and specificity.

Several prior machine learning studies have been conducted in a variety of neuroimaging 

modalities, and include structural T1, fluorine-18-labelled-flurodeoxyglucose (FDG)-PET, 

and dMRI (23–26). Further, one study has conducted blood-based neurofilament light (NfL) 

chain analyses and successfully separated PD from Atypical Parkinsonism with fair 

accuracy, but this measure was unable to separate MSA and PSP (27). Our automated 

pipeline (the AID-P) builds upon these studies while incorporating several important and 

novel features. These include the largest cohort of patients to date, a procedure that is 

translatable across a large number of scanners using a single pipeline, a completely 

automated approach, and the inclusion of a distinct test cohort. In the test cohort, we 

obtained excellent classification of both PD vs. Atypical Parkinsonism (AUC: 0·955) and 

MSA vs. PSP (AUC: 0·926) using only dMRI variables as input. Importantly, the 
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performance in the test dataset was comparable to that of the training/validation dataset, 

suggesting that our cross-validation approach did not over fit the data and is generalizable to 

new datasets. Since site was not added as a covariate in the model, the data reported here 

may generalize to new cohorts on a patient-by-patient basis because the model would not 

need substantial data from a specific site to produce a predictive value. An important caveat 

is that the dMRI data collection parameters would need to be consistent with those in Table 

I, but these scanning parameters are available on most current 3T MRI scanners as a routine 

sequence.

A potential weakness of this study is that expert clinical diagnosis, not pathologic diagnosis, 

was used to define subject classifications; however, given that the Parkinsonism subjects had 

relatively advanced disease severity, misdiagnosis is less probable. Further, three cohorts 

(UM, PPMI, and 4RTNI) included radiotracer scans confirming that a dopaminergic deficit 

exists. Future evaluation of this method should involve patients with lower disease severity 

as well as other diseases which are often misdiagnosed as Parkinsonisms, including 

dementia with Lewy bodies (DLB) and corticobasal degeneration (CBD)(3). A longitudinal 

assessment of the AID-P would be particularly useful in determining how well it predicts 

subsequent pathology in a large cohort. Moreover, the sample size of MSA and PSP patients 

will need to be larger in future machine learning models, which should further enhance 

accuracy of the method. The relative ease of obtaining dMRI data will facilitate these kinds 

of studies. In the interim, if the AID-P is used for subject classification in clinical research, 

the recommended approach would be to use it in conjunction with expert clinical 

evaluations.

In each machine learning model, a weight was given to each of the regions or tracts. The 

regions and tracts with the highest weights contribute the greatest in classifying subjects in 

the model. It is important to determine how the regions identified by the model may 

compare with prior neuropathological evidence in the literature. In the PD vs. Atypical 

Parkinsonism model, we found that the most important features in the model included FW in 

the dentate nucleus, superior cerebellar peduncle, subthalamo-pallidal tract, and FAT in the 

putamen. In the MSA vs. PSP model, we found that the most important features in the model 

included FW in the superior cerebellar peduncle, dentate nucleus, and subthalamo-pallidal 

tract, and FAT in the anterior substantia nigra. These results largely agree with pathological 

reports in MSA and PSP (28, 29). In MSA, neuropathology is exhibited as glial cytoplasmic 

inclusions in the nigrostriatal and olivopontocerebellar pathways (29); whereas, 

neuropathology in PSP is exhibited as neurofibrillary tangles and/or atrophy in regions that 

include the basal ganglia, frontal cortex, midbrain, and the superior cerebellar peduncle(28). 

While we didn’t directly evaluate the neuropathological characteristics in all subjects in our 

cohort, we tested models created from a large dataset of parkinsonism subjects on 5 patients 

with post-mortem confirmed diagnosis. We found that the AID-P performed with 100% 

accuracy in these cases (Table III). Furthermore, in one patient, the AID-P agreed with the 

post-mortem diagnosis while the clinical diagnosis did not. This example illustrates the 

valuable utility of the AID-P in the clinical setting.

In summary, the AID-P provides an automated, objective, validated, and generalizable 

imaging approach to distinguishing different forms of Parkinsonian syndromes. Using dMRI 
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datasets obtained from a total of 17 different MRI scanners and geographically diverse 

cohorts, in conjunction with 60 freely anatomical region/tract templates in MNI space, this 

study provides strong evidence that dMRI alone can assist in the diagnosis and 

differentiation of different forms of Parkinsonism. Future work is needed to assess the AID-

P from other cohorts across the globe, and the creation of a software platform using cloud 

computing will facilitate international use of the AID-P. Furthermore, future studies could 

implement automated quality control steps which would eliminate the need to visually 

inspect each patient’s dMRI map in MNI space (30). This imaging method does not involve 

radioactive tracers, and the scan can be collected in less than 12 minutes on 3T scanners 

worldwide. The outcome of the current study suggests that the AID-P may function well 

using new data from new sites that have incorporated pulse sequences consistent with the 

MRI scanners used in this study.
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Refer to Web version on PubMed Central for supplementary material.
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RESEARCH IN CONTEXT

Evidence before this study

Parkinson’s disease (PD), multiple system atrophy (MSA), and progressive supranuclear 

palsy (PSP) are neurodegenerative disorders which are challenging to differentiate in a 

clinical setting as they often share motor and non-motor symptoms. While dopamine 

transporter imaging can detect nigrostriatal denervation, it cannot distinguish between 

different forms of parkinsonism. Prior studies have shown some promise in using 

diffusion magnetic resonance imaging (dMRI) to distinguish PD, MSA, and PSP, but 

these prior studies used small samples and most importantly were only tested at one 

imaging site. The main challenge in neuroimaging studies is in evaluating a procedure in 

multisite cohorts. Using dMRI as a method offers unique clinical importance because it 

can be performed on most 3T scanners world-wide, does not need a contrast drug, and 

the data can be acquired within a 12 minute scan.

Added value of this study

Here, we created an automated imaging analysis procedure which was tested in 1002 

subjects across 17 MRI sites, making this the largest cohort of parkinsonism evaluated to 

date. The inputted regions were relevant to parkinsonism, and consisted of regions within 

the basal ganglia, cerebellum, and cortex. Using a fully automated approach, we found 

that dMRI is capable of differentiating PD from MSA/PSP, and MSA from PSP, with 

high accuracy across 17 MRI sites. The top regions identified were those previously 

shown to be pathologically involved in PD, MSA, and PSP. In a subset of 5 cases, the 

dMRI diagnosis matched pathological diagnosis. This study developed a region of 

interest template as well as three white matter tractography templates, all of which are 

available to the public which will expedite future studies in parkinsonism.

Implications of all the available evidence

This study provides an objective, validated, and generalizable imaging approach to 

distinguish different forms of Parkinsonian syndromes using geographically diverse 

dMRI cohorts. Our results are relevant in the clinical setting because they indicate that 

dMRI may provide a biomarker for physicians to use in considering a patient to have 

atypical parkinsonism or PD, and in distinguishing between MSA from PSP. The 

outcome of the current study suggests that the imaging and machine learning model may 

function well using new data from new sites.
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Figure 1. Regions and tracts of interest.
(A) Regions of interest covered many areas of the basal ganglia (column 1), midbrain/

thalamus/cortex (column 2), and cerebellum (column 3). (B) Tracts of interest included a 

subthalamo-pallidal tract, nigrostriatal tract, and corticostriatal tract, as well as 6 

sensorimotor tracts from the S-MATT, 32 transcallosal tracts from the TCATT, and 2 

cerebellar tracts. Abbreviations: aSN, anterior subtantia nigra; pSN, posterior subtantia 

nigra; STN, subthalamic nucleus; GP, globus pallidus; CC 1, prefrontal corpus callosum; CC 

2, premotor corpus callosum; PPN, pedunculopontine nucleus; RN, red nucleus; MCP, 
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middle cerebellar peduncle; InfVermis, inferior cerebellar vermis; SCP, superior cerebellar 

peduncle; preSMA, pre-supplemental motor area; SMA, supplemental motor area; PMd, 

dorsal premotor area; PMv, ventral premotor area; M1, primary motor cortex; S1, 

somatosensory cortex.
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Figure 2. Machine learning procedure.
The PD vs. Atypical Parkinsonism (A) and MSA vs. PSP (B) comparisons were first split 

into training/validation (80%) and test (20%) cohorts using random sampling. Five-fold 

cross-validation was conducted independently for both comparisons to tune the 

hyperparameters in the support vector machine learning analysis. Following hyperparameter 

tuning, this model was applied to the test cohort to evaluate performance.

Archer et al. Page 15

Lancet Digit Health. Author manuscript; available in PMC 2020 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Machine learning performance.
ROC Analyses (A and C) and corresponding AUCs (B and D) for each model in the PD vs. 

Atypical Parkinsonism comparison for the training/validation and test cohorts. ROC 

Analyses (E and G) and corresponding AUCs (F and H) for each model in the MSA vs. PSP 

comparison for the training/validation and test cohorts. For each comparison, Delong’s test 

was conducted to determine between-model differences. ***p<0·0001. Bars represent mean 

with 95% confidence interval error bars.
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Figure 4. Machine learning pathophysiological relevance.
The top 10 predictors of the dMRI Only model for the PD vs. Atypical Parkinsonism (A) 

and MSA vs. PSP (B) comparisons. Abbreviations: SCP, superior cerebellar peduncle; STN-

GP, subthalamo-pallidal tract; pSN, posterior substantia nigra; SMA S-MATT, supplemental 

motor area descending motor tract; MCP, middle cerebellar peduncle; PMv TCATT, ventral 

premotor cortex transcallosal tract; aSN, anterior substantia nigra; PPN, pedunculopontine 

nucleus; IFG-Oper TCATT, inferior frontal gyrus pars opercularis transcallosal tract.
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TABLE II.

Support vector machine learning classification discriminative measures. Training/Validation measures 

represent the averages with 95% confidence intervals during 5-fold cross-validation. Test measures represent 

the performance in the test dataset. Sample sizes for each comparison for the Training/Valiation and Test 

phases of machine learning can be found in Figure 2. Abbreviations: dMRI, diffusion MRI; MDS-UPDRS III, 

Movement Disorders Society Unified Parkinson’s Disease Rating Scale part III; AUC, area under the receiver 

operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; CON, control; 

PD, Parkinson’s disease; MSA, multiple system atrophy; PSP, progressive supranuclear palsy.

PD vs. Atypical

dMRI + MDS-UPDRS III dMRI Only MDS-UPDRS III Only

Training/Validation Test Training/Validation Test Training/Validation Test

AUC 0·969 [0·955, 0·982] 0·962 0·961 [0·943, 0·979] 0·955 0·745 [0·701, 0·789] 0·775

Accuracy (%) 85·06 [82·57, 87·55] 91·49 85·21 [83·43, 86·98] 90·24 63·00 [59·32, 66·68] 66·61

Sensitivity (%) 79·23 [74·16, 84·30] 92·5 78·05 [74·65, 81·45] 90·00 41·53 [32·90, 50·16] 67·50

Specificity (%) 90·89 [88·38, 93·40] 90·48 92·37 [89·28, 95·45] 90·48 84·47 [78·46, 90·48] 65·71

PPV (%) 89·79 [87·16, 92·14] 90·67 91·29 [88·07, 94·51] 90·43 73·47 [66·24, 80·70] 66·32

NPV (%) 81·64 [77·92, 85·36] 92·35 90·91 [88·55, 93·27] 90·05 59·36 [56·13, 62·59] 66·91

MSA vs. PSP

dMRI + MDS-UPDRS III dMRI Only MDS-UPDRS III Only

Training/Validation Test Training/Validation Test Training/Validation Test

AUC 0·971 [0·943, 0·998] 0·897 0·965 [0·937, 0·992] 0·926 0·765 [0·693, 0·838] 0·582

Accuracy (%) 87·99 [84·23, 91·74] 80·13 84·85 [79·65, 90·05] 81·79 69·97 [62·07, 77·87] 50·90

Sensitivity (%) 85·89 [79·50, 92·28] 83·33 83·89 [77·52, 90·26] 86·67 66·79 [57·57, 76·01] 63·33

Specificity (%) 90·10 [86·96, 93·24] 76·92 85·81 [80·11, 91·51] 76·92 73·14 [62·24, 84·04] 38·46

PPV (%) 89·70 [86·65, 92·75] 78·31 85·64 [80·18, 91·10] 78·97 72·35 [62·10, 82·60] 50·72

NPV (%) 86·83 [81·57, 92·09] 82·19 84·41 [78·79, 90·03] 85·23 68·96 [61·15, 76·77] 51·19
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TABLE III.

Application of AID-P to pathological diagnosis in 5 patients.

Patient Clinical Pathological AID-P: PD vs. Atypical (Group Probability) AID-P: MSA vs. PSP (Group Probability)

A PSP PSP Atypical (0·962) PSP (0·805)

B PSP PSP Atypical (1·00) PSP (0·685)

C PSP PSP Atypical (0·955) PSP (0·947)

D MSA PSP Atypical (0·885) PSP (0·927)

E MSA MSA Atypical (0·602) MSA (0·778)
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