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Thousands of epigenomic data sets have been generated in the past decade, but it is difficult for researchers to effectively use
all the data relevant to their projects. Systematic integrative analysis can help meet this need, and the VISION project was
established for validated systematic integration of epigenomic data in hematopoiesis. Here, we systematically integrated ex-
tensive data recording epigenetic features and transcriptomes from many sources, including individual laboratories and
consortia, to produce a comprehensive view of the regulatory landscape of differentiating hematopoietic cell types in
mouse. By using IDEAS as our integrative and discriminative epigenome annotation system, we identified and assigned epi-
genetic states simultaneously along chromosomes and across cell types, precisely and comprehensively. Combining nuclease
accessibility and epigenetic states produced a set of more than 200,000 candidate cis-regulatory elements (cCREs) that ef-
ficiently capture enhancers and promoters. The transitions in epigenetic states of these cCREs across cell types provided
insights into mechanisms of regulation, including decreases in numbers of active cCREs during differentiation of most lin-
eages, transitions from poised to active or inactive states, and shifts in nuclease accessibility of CTCF-bound elements.
Regression modeling of epigenetic states at cCCREs and gene expression produced a versatile resource to improve selection
of cCREs potentially regulating target genes. These resources are available from our VISION website to aid research in ge-

nomics and hematopoiesis.
[Supplemental material is available for this article.]

Individual laboratories and major consortia (e.g., The ENCODE
Project Consortium 2012; Cheng et al. 2014; Yue et al. 2014;
Roadmap Epigenomics Consortium et al. 2015; Stunnenberg
etal. 2016; The ENCODE Project Consortium et al. 2020) have pro-
duced thousands of genome-wide data sets on transcriptomes and
many epigenetic features, including nuclease accessibility, histone
modifications, and transcription factor occupancy, across diverse
cell types. However, it is challenging for individual investigators
to find all the data relevant to their projects or to incorporate the
data effectively into analyses and hypothesis generation. One
approach to address this challenge of overwhelming data is to in-
tegrate the deep and diverse data sets (Ernst and Kellis 2010,
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2012; Hoffman et al. 2012, 2013; Zhou and Troyanskaya 2015;
Greenside et al. 2018; Lee et al. 2018; Ludwig et al. 2019). An effec-
tive integration will produce simplified representations of the data
that facilitate discoveries and lead to testable hypotheses about
functions of genomic elements and mechanisms of regulatory
processes. Our multilaboratory project called VISION (validated
systematic integration of hematopoietic epigenomes) is endeavor-
ing to meet this challenge by focusing on an important biological
system, hematopoietic differentiation. Not only is hematopoietic
differentiation an important biological and medical system with
abundant epigenetic data available (e.g.,, Cheng et al. 2009;
Fujiwara et al. 2009; Yu et al. 2009; Wilson et al. 2010; Pilon
et al. 2011; Tijssen et al. 2011; Wong et al. 2011; Wu et al. 2011,
2014; Kowalczyk et al. 2012; Su et al. 2013; Lara-Astiaso et al.
2014; Pimkin et al. 2014; Corces et al. 2016; Huang et al. 2016;
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Concise representation of regulatory landscapes

Heuston et al. 2018; Ludwig et al. 2019), but it also provides a pow-
erful framework for validation of the integrative modeling.
Specifically, work over prior decades has established key concepts
that a successful modeling effort should recapitulate, and predic-
tions of the modeling can be tested genetically in animals and
cell lines. Here, we report on our initial systematic integrative mod-
eling of mouse hematopoiesis.

The production of many distinct blood cell types from a com-
mon stem cell (hematopoiesis) is critically important for human
health (Orkin and Zon 2008), and it has been studied intensively
in humans and mouse. Despite some differences between these
species (An et al. 2014; Cheng et al. 2014; Pishesha et al. 2014),
the mouse system has served as a good model for many aspects
of hematopoiesis in humans and mammals (Sykes and Scadden
2013). In adult mammals, all blood cells are produced from meso-
dermally derived, self-renewing hematopoietic stem cells (HSCs)
located in the bone marrow (Till and McCulloch 1961; Kondo
et al. 2003). Studies of populations of multilineage progenitor
cells, purified using cell surface markers (Weissman and Shizuru
2008), show that hematopoietic differentiation proceeds from
HSCs through progenitor cells with progressively more restricted
lineage potential, eventually committing to a single cell lineage
(Reya et al. 2001). More recent analyses of single cell transcrip-
tomes have revealed heterogeneity in each of these cell popula-
tions (Sanjuan-Pla et al. 2013; Psaila et al. 2016). Overall,
analyses of single cell transcriptomes support an ensemble of path-
ways for differentiation (Nestorowa et al. 2016; Laurenti and
Gottgens 2018). Regardless of the complexity in cell-fate path-
ways, it is clear that changes in patterns of gene expression drive
the differentiation program (Cantor and Orkin 2002; Graf and
Enver 2009). Misregulation of gene expression patterns can cause
diseases such as leukemias and anemias (Higgs 2013; Lee and
Young 2013; Ling and Crispino 2020), and thus, efforts to better
understand the molecular mechanisms regulating gene expression
can help uncover the processes underlying cancers and blood
disorders.

Comprehensive epigenomic and transcriptomic data can be
used to describe how both the patterns of gene expression and
the regulatory landscapes change during hematopoietic differenti-
ation. Previous reports provided many insights and data sets on
epigenomic changes during hematopoiesis in mouse (e.g., Lara-
Astiaso et al. 2014) and in human (e.g., Adams et al. 2012;
Corces et al. 2016). Additional informative data sets have come
from detailed studies in cell line models of hematopoietic differen-
tiation. In the intensively studied process of hematopoiesis, such
comprehensive data sets could encompass virtually all the regula-
tory and transcriptional changes that occur during differentiation.
However, distilling the regulatory events that are most critical to
producing the transcriptional patterns needed for distinctive cell
types is still a major challenge. Here, our major aim is to systemati-
cally integrate the extensive epigenomic data to improve accessi-
bility and understanding of the data and to facilitate the
generation of novel hypotheses about changes in the regulatory
landscape during hematopoietic differentiation. We determined
epigenetic states, which are common combinations of epigenetic
features, to generate a readily interpretable “painting” of the epige-
nomic landscape across selected mouse hematopoietic cell popula-
tions. The state assignments coupled with peaks of nuclease
accessibility produced an initial compendium of more than
200,000 candidate cis-regulatory elements (cCREs) active in one
or more hematopoietic lineages in mouse, which are valuable for
further studies of hematopoietic gene regulation.

Results

Epigenomic and transcriptomic data sets of mouse
hematopoietic cells

We reasoned that integrative analysis of the large number of ge-
nome-wide determinations of RNA levels and epigenetic features
should provide an accessible view of the information that would
help investigators use these diverse data sets, and it may lead to
novel insights into gene regulation. To conduct the integrative
and discriminative analysis, we collated the raw sequence data
for 150 determinations of relevant epigenetic features (104 exper-
iments after merging replicates) across 20 cell types or populations
(Fig. 1A), including histone modifications and CTCF by ChIP-seq,
nuclease accessibility of DNA in chromatin by ATAC-seq and
DNase-seq, and transcriptomes by RNA-seq. The purified cell pop-
ulations and cell lines are described in detail in the Supplemental
Material, section 1 (Supplemental Fig. S1).

The epigenomic data were gathered from many different
sources, including individual laboratories and consortia (Fig. 1B;
Supplemental Tables; Supplemental Fig. S2). These data had
quality metrics within the ENCODE recommendations (see Sup-
plemental Material, section 2; Supplemental Tables S1-S5). How-
ever, this diversity of sources presented a challenge for data
analysis because each experiment differed widely in sequencing
depth, fraction of reads on target, signal-to-noise ratio, presence
of replicates, and other properties (Xiang et al. 2020), all of which
can impact downstream analyses. We used two strategies to im-
prove the comparability of these heterogeneous data sets. First,
the sequencing reads from each type of assay were uniformly
processed, using pipelines similar to or adapted from current
ENCODE pipelines (see Supplemental Material, section 2). One
notable difference is that our VISION pipelines allow reads to
map to genes and genomic intervals that are present in multiple
copies, thereby allowing interrogation of duplicated chromosomal
segments, including multigene families and regions subject to
deletions and amplifications. Second, for the ChIP-seq and nucle-
ase accessibility data, we applied a new normalization method,
S3norm, that simultaneously adjusts for differences in sequencing
depths and signal-to-noise ratios in the collected data (Methods)
(Xiang et al. 2020). As with other normalization procedures, the
S3norm method gives similar signals in common peaks for an epi-
genetic feature, but it does so without inflating the background sig-
nal (Supplemental Material, section 3; Supplemental Fig. S3).
Preventing an increased background was necessary to avoid intro-
ducing spurious signals during the genome-wide modeling of the
epigenetic landscape.

An overview of the similarities across all the data sets showed
that most clustered by epigenetic features across cell types (Supple-
mental Fig. S4). For example, nuclease accessibility was highly cor-
related among the cell types examined, showing the global
similarity in this primary feature of the regulatory landscape in
blood cells (Fig. 1C). Other features such as CTCF and the signature
marks for active promoters (H3K4me3) and enhancers (H3K27ac)
showed notable but substantially lower correlations with the nu-
clease accessibility signal. In contrast, the H3K9me3 heterochro-
matin mark, the H3K27me3 Polycomb repressive mark, and
H3K36me3 had almost no correlation with nuclease sensitivity,
and H3K4mel showed modest correlation. The groupings within
epigenetic features were more apparent after S3norm normaliza-
tion (Supplemental Fig. S5), which supports the effectiveness of
the normalization. The similarity of patterns for a particular
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Figure 1. Hematopoietic cell types and data sets used for integrative analysis. (A) Schematic represen-
tation of the main lineage commitment steps in hematopoiesis, along with three immortalized cell lines
(HPC7, G1E, G1E-ER4) and their approximate position relative to the primary cell populations shown.
Abbreviations for cell populations are as follows: (LSK) Lin~Sca1*Kit*, which includes hematopoietic
stem cells and multipotent progenitor cells; (CMP) common myeloid progenitor cells; (GMP) granulo-
cyte monocyte progenitor cells; (MEP) megakaryocyte erythrocyte progenitor cells; (CLP) common lym-
phoid progenitor cells; (CFUE) colony forming unit erythroid; (ERY) erythroblasts; (RBC) red blood cells;
(CFUMK) colony forming unit megakaryocyte; (iMK) immature megakaryocytes; (MK_fl) maturing
megakaryocytes from fetal liver; (PLTS) platelets; (EOS) eosinophils; (MAS) mast cells; (NEU) neutrophils;
(MON) monocytes; (T_CD8) CD8" T cells; (T_CD4) CD4* T cells; (B) B cells; (NK) natural killer cells.
(B) Available hematopoietic data sets. Shown in each row: cell type along with its representative color,
tissue stage ([Ad] adult; [ES diff] embryonic stem cell derived, differentiated), and source ((BM] bone mar-
row; [sp] spleen, liver, blood). Shaded boxes indicate the presence of the data set, and letters denote the
source ([V] VISION; [L] Lara-Astiaso et al. (2014); [O] other). For more information, see Supplemental
Table S1. (C) Correlations of nuclease-accessible signals with all features (S3norm normalized) and across
cell types. The genome-wide Pearson correlation coefficients r were computed for each cell type—feature
pair and displayed as a heatmap after hierarchical clustering (using 1 —r as the distance measure). The
features are indicated by a characteristic color (first column on right), and the cell types are indicated
in the second column to the right using the same colors as panel B. The full correlation matrix of all fea-
tures across all cell types is in Supplemental Figure S4.

see Noonan and McCallion 2010;
Hardison and Taylor 2012; Long et al.
2016). Moreover, the co-occurrences
can be modeled formally using genome
segmentation to learn the most frequent-
ly occurring, unique combinations of
epigenetic features, called epigenetic
states, and assigning each segment of
DNA in each cell type to an epigenetic
state. Computational tools such as
ChromHMM (Ernst and Kellis 2012),
Segway (Hoffman et al. 2012), and
Spectacle (Song and Chen 2015) provide
informative segmentations primarily in
one dimension, usually along chromo-
somes. The integrative and discrimi-
native epigenome annotation system
(Zhang and Hardison 2017; Zhang et al.
2016), or IDEAS, expands the capability
of segmentation tools in several ways. It
integrates the data simultaneously in
two dimensions, along chromosomes
and across cell types, thus improving
the precision of state assignments. It
uses continuous (not binarized) data as
the input, and the number of epigenetic
states is determined automatically
(Supplemental Fig. S6). Also, when con-
fronted with missing data, it can make
state assignments with good accuracy
(Zhang and Mahony 2019).

When applied to the normalized
epigenomic data from the 20 hematopoi-
etic cell types, IDEAS learned 27 epige-
netic states, including many expected
ones as well as others that have been
less frequently studied. The IDEAS model
summary shows the prevalence of the
eight epigenetic features in each state
as a heatmap, organized by similarity
among the states (Fig. 2A). The epigenet-
ic state assignments were well supported
by the underlying epigenomic data (Fig.
2B; Supplemental Fig. S3C). The epige-
netic states described an informative
landscape, distinguishing multiple state
signatures representing distinct classes
of regulatory elements (including en-

feature across cell types suggested that combinations of features
may be more effective than a single epigenetic mark to find pat-
terns distinctive to a cell type.

In summary, our compilation of signal tracks, peak calls, esti-
mates of transcript levels, and other material established a unified,
consistently processed data resource for mouse hematopoiesis,
which can be accessed at our VISION website (http://usevision
.01g).

Simultaneous integration in two dimensions of nonbinary
epigenomic data

The frequent co-occurrence of some histone modifications has led
to discrete models for epigenetic structures of cCREs (for review,

hancers, promoters, and boundary elements). For example, six
states showed a promoter-like signature, with high frequency of
H3K4me3 (states 18, 21, 10, 15, 24, and 11); these are displayed
in different shades of red, and P is the initial character in the explic-
it label. These six states distinguished promoter-like signatures by
the presence or absence of other features with functional implica-
tions. For instance, the four promoter-like states that were also nu-
clease accessible (states 21, 10, 15, and 24) may encompass the
nucleosome-depleted region found adjacent to the transcriptional
start site (TSS). Supporting this interpretation, three of these states
(states 21, 10, and 24) also had the H3K27ac mark that frequently
flanks the nucleosome-depleted region of active promoters. For all
the major categories of chromatin associated with gene expression
and regulation, including bivalent promoters, CTCF occupancy,
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Figure 2. Segmentation of the epigenomes of hematopoietic cells after integrative modeling with
IDEAS. (A) Heatmap of the emission frequencies of each of the 27 states discovered by IDEAS, with state
number and function-associated labels. Each letter in the label indicates a function associated with the
combination of features in each state, defined in the box. The indicator for transcribed is H3K36me3, ac-
tive is H3K27ac, enhancer-like is H3K4me1>H3K4me3, promoter-like is H3K4me3>H3K4me1, hetero-
chromatin is H3K9me3, and polycomb is H3K27me3. (B) Example of normalized epigenetic data from
ERY in fetal liver around the Gfilb locus, covering 70 kb from Chr 2: 28,565,001-28,635,000 in
GRCmM38/mm10, used as input to IDEAS for segmentation. The signal tracks are colored distinctively
for each feature, with the inferred epigenetic states shown on the last track. The upper limit for signal
in each normalized track is given at the right. (C) Bar graphs of the average coverage of genomes by
each state. The top graph emphasizes the high abundance of state Q, and the second graph shows
the abundances of the 26 nonquiescent states. The key for annotated colors is the same order as the
states in the bar graph. (D) Segmentation pattern across cell types around the Gfilb exemplar locus.
Signal tracks for EP300 (ENCSR982L)Q, ENCODE consortium) and CTCF from mouse fetal liver were in-

promoters (red), intronic enhancers (or-
ange), and transcribed regions (green)
in CMP, erythroid, and megakaryocytic
cells but fewer active states in other cell
types. Downstream (left) from Gfilb was
a large region with many DNA segments
assigned to enhancer-associated states;
these were model-generated candidates
for regulating expression of Gfilb. The
potential roles of the intronic and
downstream candidate enhancers were
supported by binding of the coactivator
EP300 observed both in mouse fetal

cluded for validation and confirmation, along with the locations of enhancers shown to be active

(Enh_vald) (Moignard et al. 2013).

enhancers, transcriptional elongation, repression, and heterochro-
matin, multiple states were discovered that differed in the combi-
nations of associated features and their signal strengths. These are
described in more detail in the Supplemental Material, section 7
(Supplemental Fig. S7).

The fraction of the genome in each state reveals the propor-
tion of a genome associated with a particular activity. The most
common state in all the epigenomes is quiescence, that is, state
zero with low signals for all the features (Fig. 2C). The mean per-
centage of the genome in this state was 86%, with values ranging
from 85%-92% in individual cell types. About 60% of the genome
was in this state in all cell types examined, indicating that in hema-
topoietic cells, ~40% of the mouse genome is incorporated within
chromatin with the dynamic histone modifications identified in
this study. The most common nonquiescent states were tran-
scribed, heterochromatic, and Polycomb repressed (Fig. 2C). The
remaining portion of the genome was populated with a large num-
ber of active states, comprising ~4% of the genome. Thus, only a
small proportion of the genome in each cell type was found in
chromatin associated with the dynamic histone modifications as-
sayed here. This small fraction of the genome is probably respon-
sible for much of the regulated gene expression characteristic of
each cell type.

liver and MEL cells (Yue et al. 2014; The

ENCODE Project Consortium et al

2020), information that was not included
in training the model. Furthermore, previous studies of cross-
regulation between GATA2 and GFI1B revealed three enhancers
downstream from the Gfilb gene by reporter gene assays in trans-
genic mouse and transfected cells (Moignard et al. 2013). These
enhancers overlapped with the model-predicted enhancers and
provided strong experimental validation of the predictions from
the IDEAS segmentation.

cCREs across mouse hematopoiesis

Although genomic regions potentially involved in gene regulation
can be discerned from the segmentation views of regulatory
landscapes, it is important to assign discrete genomic intervals as
CREs to clarify assessments and validations of regulatory elements
and to empower systematic modeling of regulatory systems.
Therefore, we combined our nuclease sensitivity data with IDEAS
segmentation to infer a set of 205,019 cCREs in the 20 cell types.

A cCRE was defined as a DNA segment assigned as a reproduc-
ible peak by ATAC-seq or DNase-seq that was not in a quiescent
epigenetic state in all cell types (Supplemental Fig. $8). We consid-
ered ATAC-seq or DNase-seq data to be reproducible when peaks
were called in each replicate (when replicates were available).
Some peaks were assigned to the quiescent state in all cell types,
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and these were removed from the set of cCREs. No cell type-specif-
ic cCREs could be called in mature MK or CLP cells because no
ATAC-seq or DNase-seq data were available for these cell types;
however, we inferred the epigenetic states in these two cell types
for the DNA segments predicted to be cCREs in other cell types.
This information about the locations and epigenetic states of
cCREs in hematopoietic cell types provides a valuable resource
for detailed studies of regulation both at individual loci and across
the genome globally.

Because a wide range of hematopoietic cells was interrogated
for epigenetic features, we expected that the set of cCREs from the
VISION project would expand and enhance other collections of
cCREs. Thus, we compared the VISION cCRE set with the Blood
Cell Enhancer Catalog, which contains 48,396 candidate enhanc-
ers based on iChIP data in 16 mouse hematopoietic cell types
(Lara-Astiaso et al. 2014), and a set of 56,467 cCREs from mouse fe-
tal liver released by the ENCODE Project (The ENCODE Project
Consortium et al. 2020). Furthermore, we examined the set of
431,202 cCREs across all assayed mouse tissues and cell types in
the SCREEN cCRE catalog from ENCODE (The ENCODE Project
Consortium et al. 2020). The overlapping DNA intervals among
combinations of data sets revealed substantial consistency in the
inferred cCREs (Fig. 3A). A large proportion of the VISION cCREs
(70,445 or 41.5%) were in the iChIP Blood Enhancer Catalog
and/or the SCREEN fetal liver cCREs. Conversely, a majority of
the cCREs in the iChIP catalog (78.7%) were also in VISION
cCREs, as expected given the large contribution of iChIP data to
the VISION compilation. An even larger proportion (84%) of the
SCREEN fetal liver catalog was in VISION cCREs. The cCREs that
are common among these collections, despite differences in data
input and analysis, are strongly supported as candidate regulatory
elements.

The VISION cCRE set is substantially larger than either the
iChIP Blood Enhancer Catalog or the SCREEN fetal liver cCREs,
and we hypothesized that the larger size reflected the inclusion of
greater numbers of cell types and features in the VISION catalog.
This hypothesis predicts that VISION cCREs that were not in the

other blood cell cCRE sets may be found in larger collections of
cCREs, and we tested this prediction by comparing VISION cCREs
to the entire set of ENCODE SCREEN cCREs. Indeed, we found an-
other 58,504 (34.5%) VISION cCREs matching this catalog across
mouse tissues, supporting the interpretation that the VISION
cCRE set is more comprehensive than other current blood cell
cCRE collections. Overall, the comparisons with other collections
supported the specificity and accuracy of the VISION cCRE set.

To further assess the quality of the VISION cCRE set, we
evaluated its ability to capture known cis-regulatory elements
(CREs) and independently determined DNA elements associated
with gene regulation. By using a collection of 212 experimentally
determined, erythroid CREs curated from the literature (Dogan
et al. 2015) as known erythroid CREs, we found that although
the iChIP Blood Enhancer catalog captured only a small portion,
the VISION and SCREEN fetal liver cCREs overlapped with almost
all the erythroid CREs (Fig. 3B). The latter two collections were
built from data sets that included highly erythroid tissues, such
as fetal liver, which may explain their more complete coverage
than the Blood Enhancer Catalog, which was built from data
sets from fewer erythroid cell types. Increasing the number of
cCREs to more than 400,000 in the SCREEN mouse cCREs did
not substantially increase the number of known CREs that over-
lap. Thus, the VISION cCREs efficiently captured known ery-
throid CREs.

The coactivator EP300 catalyzes the acetylation of histone
H3K27, and it is associated with many active enhancers. We
used ChIP-seq data on EP300 as a comparison set of blood cell
candidate enhancers that were determined independently of
the data analyzed in VISION. The ENCODE consortium has re-
leased replicated data sets of EP300 ChIP-seq data determined
in three blood-related cell types from mouse, MEL cells repre-
senting maturing proerythroblasts, CH12 cells representing
B cells, and mouse fetal liver from embryonic day 14.5 (Yue
et al. 2014; The ENCODE Project Consortium et al. 2020). After
reprocessing the ChIP-seq data using the VISION project pipe-
lines, replicated peaks were merged across the cell types to gener-

ate a set of more than 60,000 EP300
peaks in blood-related cells. The VISION

A 253186 B iChIPSCR_flVISION  SCR_all cCRE set efficiently captured the EP300
9 1 5 200 = : 50 peaks, hitting almost two-thirds of these
@ 50000 E § proxies for regulatory elements, a much
c o 40 & .
.% & 150 S larger fraction than captured by the
& H:‘ﬁ’ 30 & Blood Enhancer catalog or ENCODE fetal
g 250004 g 100 —e—Known ERY CREs § liver cCREs (Flg 3B). Expanding the num-
w -=—EP300 peaks 20 3 ber of SCREEN cCREs to more than
ol S 5} 5 400,000 gave only a small increase in
:g:(?IIRF:FL I é 10 5;) the number of EP300 peaks captured.
= V/|SION o t I f 0 i i i i 0 The EP300 peaks not captured by the
mSCRfa” ¢ 0 100 200 300 400 500 VISION cCREs tended to have lower sig-
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Figure 3. Comparative analysis of VISION cCREs. (A) Overlaps of the VISION cCREs with three other
cCRE catalogs. The overlapping cCREs in all four data sets were merged. The numbers of merged
cCREs in each set are labeled on each row, and the numbers in each level of overlap are shown in columns,
visualized using an UpSet plot (Lex et al. 2014). The sets compared with the VISION cCREs were the Blood
Enhancer Catalog derived from iChlIP data (iChIP) (Lara-Astiaso et al. 2014), the SCREEN cCREs specific to
mouse fetal liver at E14.5 (SCR_FL), and those for all tissues and cell types in mouse (SCR_all). (B) The
VISION cCREs capture known regulatory elements and orthogonal predicted cCREs. The number of
known CREs that are also present in each cCRE collection was plotted against the number of regulatory
elements (known or inferred) in each data set. The EP300 peaks were deduced from EP300 ChIP-seq data
from ENCODE, reprocessed by VISION pipelines, from FL E14.5, MEL, and CH12 cells. Replicated peaks
were combined into one data set and merged to get more than 60,000 peaks. The number of known
EP300 peaks that were also present in each cCRE collection was plotted against the number of cCREs

in each data set.

Number cCREs x 10?'

nal strength and were less associated
with ontology terms such as those for
mouse phenotype (Supplemental Fig.
$9), suggesting that VISION cCREs cap-
tured the more likely functional EP300
peaks.

These analyses show that the
VISION cCREs included almost all known
erythroid CREs, and they captured a large
fraction of potential enhancers identified
in relevant cell types by a different feature
(EP300).
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Concise representation of regulatory landscapes

Global comparisons of regulatory
landscapes and transcriptomes
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The collection of cCREs and transcrip-
tomes in VISION provided an opportuni-
ty to examine the relationships between
cell types, including both purified popu-
lations of primary cells and cell lines. In
conducting this analysis, we distin-
guished a cCRE from an active cCRE. A
cCRE, which is a DNA interval predicted
to be a regulatory element in any cell
type, is present in all cell types, just as
a gene is present in all cell types.
However, a cCRE can show evidence of
activity (either positive or negative) dif-
ferentially across cell types, just as genes
may be active in only some cell types.
Thus, we refer to cCREs in epigenetic
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progenitor (CFUMK) and immature
(iMK) megakaryocytic cells. The other
contained both innate (NEU, MON)
and acquired (B, NK, T-CD4, T-CDS8)
immunity cells. Comparisons using a di-
mensional reduction approach (princi-
pal component analysis or PCA) also
supported these groupings (Supplemen-
tal Fig. S10A).

Furthermore, the PCA and subse-
quent analyses showed that a substan-
tial reduction in the number of active
cCREs was a major contributor to the differences in the landscape
of nuclease accessibility during hematopoietic differentiation.
The first principal component (PC1) captured a large fraction
(82%) of the variation, placing the cell types along an axis
with many multilineage progenitor cells on one end and many
mature cells on the other (Supplemental Fig. S10A). That PC1
axis was highly correlated with the numbers of active cCREs
(Supplemental Fig. S10B), and a direct comparison showed a pro-
gressive decline in numbers of cCREs active in most maturing
blood cells (Fig. 4B). We conclude that a reduction in numbers
of active cCREs is a major trend during mouse hematopoietic
differentiation.

Figure4. Global comparisons of nuclease accessibility profiles and transcriptomes across mouse hema-
topoietic cell types. (A) Heatmap of the hierarchical clustering of nuclease-sensitive elements (ATAC-seq
and DNase-seq, using S3norm for normalization), with Spearman’s rank correlation r as the similarity
measure, and 1 — ras the distance measure for hierarchical clustering across 18 cell types. Results include
replicates for cell types with replicated data (indicated by bars next to the cell type name). (B) Numbers of
dynamic cCREs in each cell type, determined from ATAC-seq and DNase-seq profiles and analyzed as
both peak calls from HOMER (Heinz et al. 2010) or from peaks after S3 normalization. (C) Heatmap of
the hierarchical clustering of RNA-seq (TPM values for all genes, quantile normalized, showing replicates),
with Spearman’s r as the similarity measure. (D) Concordant decreases during hematopoietic differenti-
ation in nuclease accessibility and expressed genes, shown as the association between numbers of genes
expressed and numbers of dynamic cCREs across cell populations and types.

The gene expression landscape was also compared across cell
types, using estimates of gene transcript levels from RNA-seq data
in a subset of 12 cell types interrogated by the same method within
our VISION laboratories. RNA-seq data on acquired immunity
cells were not included because the assay was performed by a sub-
stantially different procedure (Lara-Astiaso et al. 2014), and this
difference in RNA-seq methodology dominated the combined
comparison. The hierarchical clustering results (Fig. 4C) and PCA
(Supplemental Fig. S10C) revealed three clusters that were largely
consistent with the analysis of the regulatory landscape, grouping
megakaryocytic cells with multilineage progenitors while keeping
primary erythroid cells (CFUE and ERY) and innate immune cells
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(NEU and MON) in distinct groups. In contrast, MEP cells grouped
with progenitor cells in the transcriptome profiles, whereas they
grouped with erythroid cells by nuclease sensitivity data. MEP cells
have a pronounced erythroid bias in differentiation (Psaila et al.
2016), and this difference in the grouping of MEPs suggests that
the regulatory landscape of MEP has shifted toward the erythroid
lineage before reflecting that bias in the transcriptome data. G1E
and G1E-ER4 cell lines, which are models for GATA1-dependent
erythroid differentiation, also were placed differently based on
cCRE and transcriptome data, forming a separate cluster in the
transcriptome data. Although that result reveals a difference in
the overall RNA profiles between G1E and G1E-ER4 cells versus pri-
mary cells, their grouping with primary erythroid cells by cCRE
landscape supports the use of these cell lines in specific studies
of erythroid differentiation.

The decrease in numbers of cCREs during differentiation and
maturation was associated with a decrease in numbers of genes
expressed. The highest numbers of protein-coding genes were ex-
pressed in the progenitor (LSK, CMP, GMP, MEP) and megakaryo-
cytic (CFUMK and iMK) cells, with fewer in MON and NEU, and
the lowest number in erythroid cells (CFUE and ERY) (Fig. 4D). A
larger number of genes were expressed in the ES-derived cell lines,
G1E and G1E-ER4, than in the primary erythroid cells. A similar
decline was observed over a 10-fold range of thresholds for declar-
ing a gene as expressed (TPM exceeding one, five, or 10). The par-
allel decreases in numbers of active cCREs and expressed genes led
to a strong positive association between these two features
(Pearson correlation r=0.90 or 0.78 when values for G1E and
G1E-ER4 cells were excluded and included, respectively, in a linear
fit) (for coding genes, see Fig. 4D; for noncoding genes, see
Supplemental Fig. S10D). Similar results were reported for transi-
tions during megakaryopoiesis and erythropoiesis in Heuston
et al. (2018) based on peak calls for histone modification and nu-
clease accessibility. Our results based on integrative modeling con-
firm these conclusions and show that the reduction in numbers of
expressed genes and active cCREs was observed broadly across
hematopoiesis. By considering specifically genes encoding hema-
topoietic regulators, we found that this general decline in tran-
scription led to a reduction in the number of hematopoietic
regulators produced in differentiated, maturing erythroid cells
but not in other hematopoietic cell types (Supplemental Fig.
S11). We conclude that the breadth of transcription declines dur-
ing differentiation, and furthermore, the loss of activity of cCREs
may contribute to the decrease in numbers of genes expressed.

Epigenetic states of cCREs vary across cell types in an
informative manner

The VISION catalog of cCREs, annotated by their epigenetic state
in each cell type, can be used to track both the timing and types
of transitions in epigenetic states during differentiation, which
provide insights into regulatory mechanisms, for example, which
cCRE:s are likely to be inducing or repressing a target gene. The full
scope of state transitions in cCREs across cell types is complex, and
in this section, we focus on major transitions contributing to
changes in the numbers and state of active cCREs.

Within the dominant pattern of decreasing numbers of active
cCREs during commitment and maturation of lineages (except
MK), the reduction was particularly pronounced for cCREs in state
9 (EN) and state 13 (CN) (Fig. 5A), whereas changes in the numbers
of cCREs in other states were more modest (Fig. 5B; Supplemental
Fig. S12A,B). These state-specific reductions suggested that many

active cCREs in progenitor and MK cells were in a poised enhancer
mode (state 9 EN) or in a CTCF-bound, nuclease-accessible state
(state 13 CN). We then determined the states into which these
cCREs tended to transition by examining all state transitions in
cCREs between all pairs of cells. In the case of CMP cells differen-
tiating to ERY, we found that cCREs in the poised enhancer state 9
in CMP did not tend to stay in state 9, but rather they more fre-
quently transitioned to states 12 (active enhancer), 3 (polycomb),
and O (quiescent) in ERY (Supplemental Fig. S12C). These classes of
state transitions were strongly supported by examination of the
underlying signals for the nuclease sensitivity and histone modifi-
cations (Fig. SC). This systematic analysis of transitions in epige-
netic states across cell types helps uncover the differentiation
history of cCREs and provides mechanistic insights into regula-
tion. For example, by using SeqUnwinder (Kakumanu et al.
2017) to discover discriminative motifs, we found that the CMP
cCREs that transition from poised to active enhancer in the ery-
throid lineage were enriched for the GATA transcription factor
binding site motif, whereas those that transition to a polycomb
state were enriched in motifs for binding ETS transcription factors
such as SPI1 (also known as PU.1) (Supplemental Fig. S13). These
results are consistent with the known antagonism between
GATA1 and SPI1 in erythroid versus myeloid differentiation
(Rekhtman et al. 1999; Zhang et al. 1999). Thus, they illustrate
the value of machine-learning approaches, such as assigning epi-
genetic states systematically and finding discriminative motifs,
to uncover relationships from genome-wide data that fit with
models derived from decades of experimentation.

Another major state of cCREs in progenitor and megakaryo-
cytic cells was CTCF bound and nuclease accessible (state 13).
Much of the decrease in numbers of cCREs in this state occurred
through a loss of accessibility while retaining occupancy by
CTCEF (state 7) (Supplemental Fig. S12C,D). To eliminate the possi-
bility that the inferred loss of nuclease sensitivity was an artifact of
low sensitivity in the ATAC-seq data, we examined these cCREs for
DNase sensitivity in an independent experiment conducted on
ERY from fetal liver (ERY_fl). We found that the cCREs undergoing
the transition from state 13 to state 7 had low nuclease sensitivity
in ERY by both assays, as well as in CFUE, while retaining a strong
CTCF signal (Fig. SD). Thus, we concluded that the state 13 to state
7 transition was not an artifact of poor sensitivity of the accessibil-
ity assays. The loss of nuclease accessibility at this subset of CTCF-
bound sites occurred between the MEP and CFUE stages, suggest-
ing that it could be connected to the process of erythroid commit-
ment. By examining genes in the vicinity of the CTCF-bound
cCREs, we found that this loss of nuclease sensitivity at CTCF-
bound sites occurred in more gene-poor regions, and it was associ-
ated to some extent with gene repression (Supplemental Fig. S14).
The CTCF-bound cCREs that retained nuclease accessibility during
differentiation were enriched at topologically associated domain
(TAD) boundaries that were common across myelo-erythroid dif-
ferentiation (Supplemental Fig. S15).

In summary, the number of active cCREs declined as cells
differentiated from stem and progenitor cells to committed, ma-
turing blood cells. This decrease in cCREs was strongly associated
with a reduction in the numbers of expressed genes in commit-
ted cells. Our analysis of epigenetic states in cCREs across this
process revealed major declines in two states. First, the poised en-
hancer state was prevalent in cCREs in stem and progenitor cells,
and it had two major fates. One was a transition to an active en-
hancer state, and in the erythroid lineage this transition was as-
sociated with GATA transcription factor binding site motifs, as
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Figure 5. Transitions in epigenetic states at cCREs across hematopoietic differentiation. (A,B) The num-
bers of cCREs in each cell type are colored by their IDEAS epigenetic state, emphasizing decreases in num-
bers of cCREs in states 9 and 13 (A), whereas numbers in other states are less variable (B). (C) Aggregated
and individual signal profiles for cCREs in the poised enhancer state 9 in CMPs as they transition from LSK
through CMP and MEP to CFUE and ERY. Profiles for up to four relevant epigenetic features are presented.
Data for H3K27me3 are not available for CMP, MEP, or CFUE. The first graph in each panel shows the
aggregated signal for all cCREs in a class, and graphs below it are heatmaps representing signal intensity
in individual cCREs. In the aggregated signal, red lines show signals for cCREs that transition from poised
state 9 to active enhancer-like state 12, and blue lines show signals for cCREs that transition from poised
state 9 to polycomb repressed state 3. (D) Aggregated and individual signal profiles for CTCF-bound
cCREs that either retain or lose nuclease accessibility during differentiation from LSK to ERY. In the aggre-
gated signal, red lines show signals for cCREs that stay in the CTCF-bound, nuclease-sensitive state 13,
and blue lines show signals for CTCF-bound cCREs that lose nuclease sensitivity as they transition from
state 13 to state 7. Signals were normalized by S3norm. (AT) ATAC; (4m1) H3K4mel; (27ac)
H3K27ac; (27m3) H3K27me3; (CT) CTCF.

CTCF-bound and nuclease-accessible
state. The number of cCREs in that state
declined during differentiation, with
many cCREs transitioning to a state
with CTCF still bound but no longer nu-
clease accessible. Further studies are
needed to better understand the roles
of these different classes of CTCF-bound
sites.

Estimating regulatory output and
assigning target genes to cCREs

We investigated the effectiveness of
the collection of mouse hematopoietic
cCREs from VISION in explaining levels
of gene expression. We developed a mod-
eling approach to evaluate how well the
cCREs, in conjunction with promoters,
could account for levels of expression in
the 12 cell types for which the RNA-seq
measurements were determined in the
same manner. This modeling approach
had the additional benefit of making pre-
dictions of target genes for each cCRE.
We reasoned that the epigenetic
state assignments for each cCRE DNA
interval in each cell type could serve as
a versatile proxy for cCRE regulatory ac-
tivity because the states were based on a
systematic integration of multiple epige-
netic signals. As explained in detail in
the Supplemental Material, section 16,
we estimated promoter and cCRE effects
on expression by treating the states
as categorical variables and training a
multivariate linear model of gene ex-
pression on the states. Each cCRE and
promoter could be composed of multi-
ple epigenetic states (Fig. 6A), and we
used the proportion of promoters and
the proportion of pooled cCREs covered
by a state as the predictor variable for
that state (Fig. 6B). However, in our sub-
selection training, a given cCRE is repre-
sented by a single state rather than a
weighted sum of states (Supplemental
Material). All cCREs within 1 Mb of
the TSS of a gene were initially consid-
ered and then filtered by a minimum
correlation to that gene’s expression.
Not all cCREs within the 2-Mb region
surrounding a gene’s TSS were expected
to influence expression. Thus, cCREs
predicted to have limited contribution
to explaining expression were removed

expected for activation of erythroid genes. The other fate was to
lose nuclease sensitivity and switch to a repressed state. Those
state transitions were not novel observations, but our extensive
annotation of the cCREs allows investigators to identify which
cCREs around genes of interest make those transitions. Second,
another state prevalent in stem and progenitor cells was a

via a subselection strategy during iterations of model fitting
(Fig. 6B; Supplemental Fig. S16B).

The regression coefficients, §, determined for the epigenetic
states showed some expected trends. For example, the coefficients
for the set of differentially expressed genes were high for most pro-
moter-like and enhancer-like states and low for most polycomb-
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Figure 6. Initial estimates of regulatory output and target gene prediction

IDEAS states in promoters and cCREs versus gene expression. (A) lllustration of promoters and cCREs
around two potential target genes, showing expression profiles of the genes across cell types (shades
of blue; left) and promoters/cCREs with one or more epigenetic states assigned in each cell type.
(B) Multivariate linear regression of proportion of promoters and pooled cCREs in each state against ex-
pression levels of potential target genes, keeping promoters and cCREs separate and learning the regres-
sion coefficients iteratively in a subselection strategy. Values of the regression coefficients’ beta for each
epigenetic state for promoters and cCREs for differentially expressed genes. The values of the regression
coefficients for each epigenetic state are presented as a blue-to-red heatmap.
cCREs to explain levels of expression on Chr 1-Chr 19 and Chr X in the 12 cell types for all genes and in
the four categories of genes (71-4). A leave-one-out strategy was used to calculate the accuracy predicting
expression. The distributions of adjusted r? values are shown as box-plots for promoters, distal cCREs, and
combined. (D) lllustration of eRP scores for cCREs in and around the Alas2 gene, including a comparison
with previously measured enhancer and promoter activities. Nested TADs called by OnTAD (An et al.

2019) are shown in the bottom tracks.

repressed and heterochromatin states (Fig. 6B; for a full set of
values, see Supplemental Fig. S16D).

We evaluated the accuracy of predicting gene expression from
the weighted sum of the state-specific regression coefficients using
a leave-one-out strategy. Specifically, we trained a linear model on
data from 11 of the 12 cell types, minimizing mean squared error
(MSE), and then computed the adjusted r* for the accuracy of the
predicted expression levels compared with the actual expression

categories, especially for differentially ex-
pressed genes (Fig. 6C, graphs 2 and 3).
Overall, these evaluations indicated that
promoters contributed strongly to the
broad expression category (expressed or
not, differential or constitutive), and dis-
tal cCREs contributed to the expression
level of each gene within a category.

By considering these linear re-
gression coefficients as proxies for the
regulatory output of cCREs in a parti-
cular epigenetic state, we used them to
estimate the impact of histone modifica-
tions around cCRE:s close to differentially
expressed genes. Many expected associa-
tions were found, but in addition, this analysis revealed that
H3K27ac was the histone modification at cCREs most distinctly as-
sociated with gene activation, CTCF at a cCRE was associated with
repression, and H3K4mel and nuclease accessibility were about
equally frequent in states with positive or negative impacts on ex-
pression (Supplemental Fig. S17).

The positive predictive power of these initial estimates of eRP
scores supported their utility in assigning candidates for target

using regression models of

(C) Ability of eRP scores of
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genes for cCREs. The estimated eRP scores can serve as one indica-
tor of the potential contribution of each cCRE to the regulation of a
gene in its broad vicinity. Thus, a set of likely cCRE-target gene
pairs can be obtained at any desired eRP threshold. We provide a
large table of potential cCRE-target gene pairs at the VISION pro-
ject website, along with a versatile filtering tool for finding cCREs
potentially regulating a specified gene in a particular cell type. The
filtering tool also allows further restriction of cCREs to those with-
in the same topological associated domain or compartment as the
candidate target gene. The example from the Alas2 locus (Fig. 6D)
illustrates how these eRP scores were consistent with results from
previous experimental assays for CREs within the gene (Wang
et al. 2006), and they raise the possibility of additional, distal
cCREs regulating the gene. These data-driven, integrated resources
should allow users to make informed decisions about important
but challenging issues such as finding the set of cCREs likely to reg-
ulate a particular gene.

Discussion

One goal of the VISION project is to gather information from our
laboratories, other laboratories, and consortia to conduct system-
atic integrative analysis and produce resources of high utility to
investigators of genome biology, blood cell differentiation, and
other processes. In this study, we compiled and generated epige-
nomic and transcriptomic data on cell types across hematopoietic
differentiation in mouse. The data were systematically analyzed by
the IDEAS method to assign genomic intervals to epigenetic states
in 20 cell types, with each state defined by a quantitative spectrum
of nuclease sensitivity, histone modifications, and CTCF occupan-
cy. Most of these combinations of epigenetic features are associat-
ed with specific regulatory elements or events, such as active
promoters, poised enhancers, transcribed regions, or quiescent
zones, and thus, the epigenetic state assignments provide a guide
to potential functions of each genomic interval in each cell type.
In effect, the IDEAS segmentation pipeline reduced 150 dimen-
sions (or tracks) of epigenomic data to 20 dimensions, that is,
the number of cell types examined. Although the cell populations
studied can be conceptualized as cell “types,” it is important to
keep in mind that these populations, especially of stem and pro-
genitor cells, are heterogeneous, and thus our integrative analyses
do not delve into all the stages of hematopoietic differentiation
and maturation. We further focused the epigenomic data by con-
structing an initial registry of 205,019 cCREs, which are discrete ge-
nomic intervals with features predictive of a potential regulatory
role in one or more hematopoietic cell types, along with state as-
signments and initial estimates of regulatory output for candidate
target genes in each cell type. Investigators now have simplified
ways to view the large amount of data, for example, in a genome
browser, and to operate computationally on the state assignments
and cCREs.

We provide multiple ways for investigators to access and in-
teract with the data via our VISION website (http://usevision
.org). The raw and normalized data tracks can be downloaded for
further analysis. The regulatory and transcriptomic landscapes
around individual genes can be viewed in our custom genome
browser, which is built on the familiar framework of the UCSC
Genome Browser (Haeussler et al. 2019). Tables of annotated
cCREs and their associations with specific genes by regression
can be downloaded, and cCRE:s for specific genes and genomic in-
tervals can be obtained by queries at the website. Links are provid-
ed to additional resources such as CODEX for more extensive

transcription factor occupancy and histone modification data
(Sanchez-Castillo et al. 2015), the 3D Genome Browser for visual-
izing matrices of chromatin interaction frequencies (Wang et al.
2018), and the ENCODE registry of cCREs (The ENCODE Project
Consortium et al. 2020).

We chose IDEAS as the systematic integration method be-
cause its joint segmentation along chromosomes and across cell
types retains position-specific information, thereby providing
more precision to the state assignments (Zhang and Hardison
2017; Zhang et al. 2016). Furthermore, the IDEAS method does
not require determination of all features in all cell types, and thus
cell types with missing data were included (Zhang and Mahony
2019). Even an extreme case of the cell type CFUMK, for which
the only epigenomic data set was ATAC-seq, was assigned a mean-
ingful segmentation pattern. The local clustering of cell types by
their epigenomic profiles in IDEAS allows the system to learn the
signal distribution for a feature missing in one cell type from the
available signal in locally related cell types and then use that signal
distribution when assigning likely states in the cell type with miss-
ing data. Although full determination of all biochemical features in
each cell type is preferred, attaining complete coverage is difficult,
especially for rare cell types. Indeed, many integrative analysis pro-
jects are contending with the challenges of missing data (Ernst and
Kellis 2015; The ENCODE Project Consortium et al. 2020; Schreiber
et al. 2020). We suggest that the IDEAS method provides a princi-
pled approach with good utility for integrative analyses in the
face of missing data.

Our collection of cCREs in mouse blood cells efficiently cap-
tures known erythroid regulatory elements and potential enhanc-
ers predicted by available EP300 occupancy data. However, this
initial cCRE registry is unlikely to be complete, especially for cell
lineages underrepresented in our collection. The VISION resources
can be useful for analysis of new data from users, such as searching
for overlaps of the cCREs with peaks from new data sets. Also, par-
allel efforts, such as the Immunological Genome Project (Yoshida
et al. 2019), are generating complementary resources that can ex-
pand the cCRE registry. Only DNA intervals in nuclease-accessible
chromatin were assigned as cCREs, and thus, any regulatory ele-
ments that function in nuclease inaccessible regions will be
missed. Such elements may be discovered by further studies on in-
accessible regions that are bound by transcription factors. Given
the absence of comprehensive reference sets of known regulatory
elements, neither the completeness nor the specificity of the
cCRE collections can be evaluated rigorously. Future work evaluat-
ing experimentally the impact of cCREs on gene expression will
provide a more complete assessment of the quality of the registry.

Each cCRE has been annotated with its epigenetic state in
each cell type and an initial estimate of the eRP score for regulating
candidate target genes. These initial eRP scores for cCREs, derived
from a multivariate regression and subselection procedure, can ex-
plain a substantial portion of variance in gene expression, but a
considerable amount of expression variance remains unexplained.
Estimates for regulatory output could be improved by incorporat-
ing transcription factor binding site motifs (Weirauch et al.
2014), transcription factor occupancy (Dogan et al. 2015), and pat-
terns in multispecies genome sequence alignments (Taylor et al.
2006). The target gene assignments can be refined by inclusion
of data on chromatin interaction frequencies, for example, by re-
stricting cCRE-gene pairs to those within a TAD (Oudelaar et al.
2017). The VISION project has analyzed Hi-C data in G1E-ER4 cells
(Hsu et al. 2017) and HPC7 cells (Wilson et al. 2016) to provide co-
ordinates of TADs (An et al. 2019) and compartments (Zheng and
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Zheng 2018), and our query interface allows users to use this infor-
mation to refine choices of cCREs for specific genes.

The IDEAS segmentation results across cell types revealed
some known transitions between states, such as poised enhancers
in multilineage progenitor cells either shifting to active enhancers
or losing their preactivation signatures to become repressed or qui-
escent in more differentiated cells. However, one of the most com-
mon transitions has not been described previously (to our
knowledge). Of the CTCF-bound sites in LSK that were also acces-
sible to nuclease, a substantial proportion became much less
nuclease accessible while retaining CTCF occupancy in differenti-
ated cells. The reduction in accessibility reflects a change in the
chromatin structure to a more closed state, but unexpectedly,
the CTCF protein remains bound. Initial studies suggested that
the CTCF-bound-but-inaccessible sites were associated with re-
pressed, gene-poor regions, whereas the CTCF-bound-and-accessi-
ble sites were enriched at constitutive TAD boundaries. However,
further studies are needed to more fully investigate the functions
of different categories of CTCF-bound sites.

We found a substantially larger number of cCREs in hemato-
poietic progenitor cells than in mature cells, with the notable ex-
ception of megakaryocytic cells. The reduction in numbers of
cCREs coincides with the decrease in the size of the nucleus during
differentiation and maturation after commitment to a single line-
age (Baron and Barminko 2016) and a decrease in the number of
genes being expressed (Fig. 4D). Although this reduction in num-
bers of active genes and regulatory elements appears to occur in
most lineages of blood cells, it was not observed in megakaryocytic
cells, which retain aspects of the regulatory landscape and tran-
scriptomes of multilineage progenitor cells. Similarity of MK to
multilineage progenitor cells has been discerned previously from
phenotypic similarities (Huang and Cantor 2009), transcriptome
data (Sanjuan-Pla et al. 2013; Psaila et al. 2016), and global epige-
netic profiles (Heuston et al. 2018). Recent studies have shown that
MK cells can be derived from multiple stages of progenitor cells, in-
cluding HSC, CMP, and MEP (Sanjuan-Pla et al. 2013; Psaila et al.
2016). Itis intriguing to speculate that the similarity of MK to mul-
tilineage progenitor cells may indicate that multiple stages of pro-
genitor cells could differentiate into MK without substantial
changes to the regulatory landscape. Such a conservative process
differs from other lineage commitment and maturation processes
that involved substantial changes to the epigenome and reduction
in numbers of genes expressed.

The systematic integration of 150 tracks of epigenetic data on
mouse hematopoietic cells has produced an easily interpretable
representation of the regulatory landscapes across these cell types
along with predictions of and annotations of candidate regulatory
elements. Similar systematic integration of epigenetic data in hu-
man blood cells is ongoing, which will generate equivalent re-
sources. Such resources should provide guidance on many
important problems, such as suggesting specific hypotheses for
mechanisms by which genetic variants in noncoding regions
can be associated with complex traits and diseases (Ulirsch et al.
2016; Bao et al. 2019).

Methods
Cell populations and sources of epigenomic and transcriptomic
data

Detailed information about the cell populations and cell lines an-
alyzed is in the Supplemental Material, section 1. The ChIP-seq

and ATAC-seq procedures followed previously published methods
(Wilson et al. 2010; Buenrostro et al. 2013; Wu et al. 2014; Heuston
et al. 2018). Detailed information about the experimental meth-
ods, sources of data sets, bioinformatic pipelines, and quality as-
sessments are in the Supplemental Material, section 2, and the
Supplemental Tables.

Data normalization and comparison

A novel method for normalization, called S3norm (Xiang et al.
2020), was used to produce comparable peaks signals without in-
flating background regions. This method is described in more de-
tail in sections 3 and S of the Supplemental Material, and the
pipeline is deposited at GitHub (https://github.com/guanjue/
S3norm). The methods for comparing epigenetic signals across
cell types are described in section 4 of the Supplemental Material.

Integrative analysis and cCRE calls

The implementation of IDEAS (Zhang and Hardison 2017; Zhang
et al. 2016) for the mouse hematopoietic cell data sets is described
in the Supplemental Material, section 6, and the software is avail-
able from GitHub (https://github.com/guanjue/IDEAS_2018). The
method for calling cCREs is in the Supplemental Material, section
8. The methods for comparing signals in peaks of nuclease sensitiv-
ity and in transcriptomes across cell types are in section 10 of the
Supplemental Material.

Estimating impact of cCREs on candidate target genes

The methodology for estimating the output of individual cCREs
based on their epigenetic states and correlations with expression
of candidate target genes is presented in section 16 of the
Supplemental Material.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession
number GSE143271 and to the NCBI BioProject database (https
://www.ncbi.nlm.nih.gov/bioproject/) under accession number
PRJNA599438. Data and servers for visualization also are available
at the VISION Project website (http://usevision.org). All scripts
for data analyses and data visualization can be found at GitHub
(https://github.com/rosshardison/VISION_mouseHem_code) and
as Supplemental Code.
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