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A B S T R A C T

Grass carp reovirus (GCRV) is an efficient pathogen causing high mortality in grass carp, meanwhile, fish in-
terferon (IFN) is a powerful cytokine enabling host cells to establish an antiviral state; therefore, the strategies
used by GCRV to escape the cellular IFN response need to be investigated. Here, we report that GCRV VP56
inhibits host IFN production by degrading the transcription factor IFN regulatory factor 7 (IRF7). First, over-
expression of VP56 inhibited the IFN production induced by the polyinosinic-polycytidylic acid (poly I:C) and
mitochondrial antiviral signaling protein (MAVS), while the capacity of IRF7 on IFN induction was unaffected.
Second, VP56 interacted with RLRs but did not affect the stabilization of the proteins in the normal state, while
the phosphorylated IRF7 activated by TBK1 was degraded by VP56 through K48-linked ubiquitination. Finally,
overexpression of VP56 remarkably reduced the host cellular ifn transcription and facilitated viral proliferation.
Taken together, our results demonstrate that GCRV VP56 suppresses the host IFN response by targeting phos-
phorylated IRF7 for ubiquitination and degradation.

1. Introduction

Grass carp reovirus (GCRV), which belongs to the genus
Aquareovirus of the family Reoviridae, has caused severe epidemic out-
breaks of hemorrhagic disease and has an extremely high mortality rate
among grass carp (Ctenopharyngodon idella) [1]. At present, known
GCRV strains can be divided into three distinct subtypes based on se-
quence comparisons and analysis. The representative strains of the
three groups are GCRV-873 (GCRV-I), GCRV-HZ08 (GCRV-II), and
GCRV-104 (GCRV-III) [2]. The most commonly isolated strain is GCRV-
Ⅱ [3]. GCRV is a double-stranded RNA (dsRNA) virus and the genome
consists of 11 segments (termed s1–s11) encased in a multilayered
icosahedral capsid shell [4,5]. The protein sequence comparison
showed that the similarity among the three groups is< 20%, so the
functions of the encoded proteins are likely diverse. For instance, s7 of
GCRV-I has been found to encode a non-structural protein (NS16,
NS31) [5,6]. S7 of both GCRV-II and GCRV-III are codified as a fiber
like protein, which are predicted to be 56 KDa (VP56) and 55 KDa
(VP55) [7,8]. In recent years, great progress has been made in the
pathogenesis of GCRV and the host response to GCRV infection. For

example, by using high-throughput methods such as transcriptomic and
proteomic analyses, many immune-related genes have been identified
as being involved in a GCRV infection [9]. Overexpression of Mxs
blocks the replication of GCRV and delays the CPE induced by GCRV
infection [10]. In crucian carp, viperin confers cells significant protec-
tion against GCRV infection [11].

Interferon (IFN) response plays an essential role in protecting the
host against virus infection [12,13]. The host possesses conserved pa-
thogen recognition receptors (PRRs) that can sense viral RNAs and
trigger multiple intracellular signaling pathways, including the retinoic
acid-inducible gene I (RIG-I)-like receptor (RLR) pathway, which
eventually results in the production of IFN to set up the antiviral state
[12,14–16]. The specific RLR pathway is as follows: upon binding with
viral RNA, the N-terminal caspase recruiting domain (CARD) of the RLR
family (including RIG-I and melanoma differentiation-associated gene 5
(MDA5), interacts with another CARD-containing protein, mitochon-
drial antiviral signaling protein (MAVS, also called VISA, IPS-1, and
Cardif) [17–20]. Then, the signal transmits to the downstream mediator
of IFN regulatory factor 3 (IRF3) activation (MITA, also known as
STING, ERIS, or MYPS) and TANK binding kinase 1 (TBK1) [21].
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Subsequently, activated TBK1 phosphorylates IRF3/7 are translocated
to the nucleus and trigger the transcription of IFN [22,23]. Similar to
mammals, fish also possess a conserved RLRs signaling pathway. For
example, MAVS or MITA plays an important role in IFN activation in
zebrafish (Danio rerio), which can significantly decrease the probability
of viral infection [24,25]. Overexpression of grass carp TBK1 induces
the expression of IRF7 and IFN-stimulated genes (ISGs), and inhibits the
replication of GCRV [26]. IRF7 in zebrafish and grass carp also exhibits
a critical role in IFN activation [27].

However, viruses have evolved a multitude of elaborate strategies to
escape the host immune response. One such mechanism is to blunt IFN
production. IRF7 is a key transcription factor that regulates IFN in-
duction in response to viral infection [28,29], most signals ultimately
converge on IRF7, so it is targeted by viruses as a major negative reg-
ulatory target to decrease the IFN response and facilitate viral re-
plication. For instance, porcine reproductive and respiratory syndrome
(PRRS) utilizes the nsp 7 protein to inhibit IRF7 expression, thereby
down-regulating IFN production and counteracting the host antiviral
state [30]. The 3Cpro of Seneca Valley Virus (SVV) reduces IRF3 and
IRF7 protein expression and phosphorylation via its protease activity,
thus blocking IFN transcription to escape the host immune response
[31]. Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded viral
interferon regulatory factor 4 (vIRF4) interacts with IRF7, resulting in
the inhibition of IRF7 dimerization and ultimately suppressing IFN
production [32].

As a highly virulent pathogen that causes severe hemorrhagic dis-
ease and tremendous mortality in fish, GCRV likely has strategies to
negatively regulate or evade the host immune response. In our previous
study, the GCRV VP41 attenuated MITA phosphorylation by acting as a
decoy substrate of TBK1, thus reducing IFN production and facilitating
viral replication. To further investigate the immune evasion strategies
of GCRV, we further revealed that GCRV VP56 is associated with IRF7
and promotes the K48-linked ubiquitination and degradation of IRF7,
thereby inhibiting IFN expression and accelerating viral proliferation.
These results will lay a foundation for further studying host-virus in-
teractions among lower vertebrates.

2. Materials and methods

2.1. Cells and viruses

Human embryonic kidney (HEK) 293T cells were provided by Dr.
Xing Liu (Institute of Hydrobiology, Chinese Academy of Sciences) and
were grown at 37 °C in 5% CO2 in Dulbecco's modified Eagle's medium
(DMEM; Invitrogen) supplemented with 10% fetal bovine serum (FBS,
Invitrogen). Epithelioma papulosum cyprini (EPC) cells and Grass carp
ovary (GCO) cells were maintained at 28 °C in 5% CO2 in medium 199
(Invitrogen) supplemented with 10% FBS. GCRV (strain 106, GCRV-II)
was a gift from Lingbing Zeng (Yangtze River Fisheries Research
Institute, Chinese Academy of Fishery Sciences). Because GCRV-II
cannot cause a cytopathic effect (CPE) but can propagate in GCO cells,
the cultured media with GCO cells infected with GCRV-II for 8 days
were harvested and stored at −80 °C until used.

2.2. Plasmid construction and reagents

The open reading frame (ORF) of GCRV VP56 (KC201172.1) was
generated by PCR and then cloned into pcDNA3.1 (+) (Invitrogen),
pCMV-Myc (Clontech), or pCMV-HA vectors (Clontech), respectively.
The ORFs of grass carp MAVS (KF366908.1), MITA (JN786909.1),
TBK1 (JN704345.1), IRF3 (KT347289.1), and IRF7 (KY613780.1) were
cloned using the vectors previously described [33] For subcellular lo-
calization, the ORF of VP56 was inserted into pEGFP-N3 vector
(Clontech). The ORFs of MAVS, MITA, TBK1, IRF3, and IRF7 were also
inserted into pCS2-mCherry vector (Clontech). The expression plasmids
for Flag-DrTBK1, HA-DrIRF3, HA-DrIRF7, and Myc- DrIRF7 were

described previously [33]. For promoter activity analysis, IFN1pro-Luc
construct was generated by insertion of corresponding 5′-flanking reg-
ulatory region of IFN1 promoter (GU139255.1) into pGL3-basic luci-
ferase reporter vector (Promega, Madison, WI). The ISRE-Luc plasmid
in the pGL3-basic luciferase reporter vector (Promega) was constructed
as described previously [34]. The Renilla luciferase internal control
vector (pRL-TK) was purchased from Promega. The primers including
the restriction enzyme cutting sites used for plasmid construction are
listed in Supplemental Table I. All constructs were confirmed by DNA
sequencing.

2.3. Luciferase activity assay

EPC cells were seeded into 24-well plates overnight and co-trans-
fected with various constructs at a ratio of 10:10:1 (MAVS/IRF7,
IFN1pro/ISRE-Luc, and pRL-TK expression vectors). The pRL-TK was
used to normalize the expression levels of the transfected plasmids. An
empty vector pcDNA3.1 (+) was used to maintain equivalent amounts
of DNA in each well. The transfection of poly I: C was performed at 24 h
after post-transfection, and cells were harvested at 24 h after poly I: C
transfection. At 48 h post transfection, the cells were washed with
phosphate-buffered saline (PBS) and lysed for measuring luciferase
activity by a dual-luciferase reporter assay system, according to the
manufacturer's instructions (Promega). The results are representative of
more than three independent experiments, each performed in triplicate.

2.4. Transient transfection and virus infection

Transient transfections were performed in EPC cells seeded in 6-well
or 24-well plates by using X-tremeGENE HP DNA Transfection Reagent
(Roche) according to the manufacturer's protocol. For the antiviral
assay using 24-well plates, EPC cells were transfected with 0.5 μg
pcDNA3.1 (+)-VP56 or the empty vector. At 24 h post-transfection,
cells were infected with SVCV at a multiplicity of infection
(MOI = 0.001). After 2 or 3 d, supernatant aliquots were harvested for
detection of virus titers, the cell monolayers were fixed by 4% paraf-
ormaldehyde (PFA) and stained with 1% crystal violet for visualizing
CPE. For virus titration, 200 μl of culture medium were collected at 48 h
post-infection, and used for plaque assay. The supernatants were sub-
jected to 3-fold serial dilutions and then added (100 μl) onto a mono-
layer of EPC cells cultured in a 96-well plate. After 48 or 72 h, the
medium was removed and the cells were washed with PBS, fixed by 4%
PFA and stained with 1% crystal violet. The virus titer was expressed as
50% tissue culture infective dose (TCID50/ml). Results are re-
presentative of three independent experiments.

2.5. RNA extraction, reverse transcription, and qPCR

Total RNAs were extracted using the Trizol reagent (Invitrogen).
cDNA was synthesized using a GoScript reverse transcription system
(Promega), according to the manufacturer's instructions. Quantitative
real-time PCR (qPCR) was performed with Fast SYBR Green PCR Master
Mix (Bio-Rad) on the CFX96 Real-Time System (Bio-Rad). PCR condi-
tions were as follows: 95 °C for 5 min and then 40 cycles of 95 °C for
20 s, 60 °C for 20 s, and 72 °C for 20 s. The β-actin gene was used as an
internal control. Primer sequences are listed in Supplemental Table I.
The relative fold changes or relative mRNA of level were calculated by
comparison to the corresponding controls using the 2−ΔΔCT method.
Three independent experiments were conducted for statistical analysis.

2.6. Co-immunoprecipitation (co-IP) assay

In transient transfection and co-IP experiments, we used HEK 293T
cells instead of EPC cells because of their high transfection efficiency.
The HEK 293T cells seeded in 10-cm2 dishes overnight were transfected
with 5 μg Flag-MAVS/TBK1/MITA/IRF3/IRF7 and 5 μg Myc-VP56. At
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24 h post transfection, the medium was removed carefully, and the cell
monolayer was washed twice with 10 ml of ice-cold PBS. Then the cells
were lysed in 1 ml of radioimmunoprecipitation lysis buffer (1%
Nonidet P-40, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA,
1 mM NaF, 1 mM sodium orthovanadate [Na3VO4], 1 mM PMSF, 0.25%
sodium deoxycholate) containing protease inhibitor mixture (Sigma-
Aldrich) at 4 °C for 1 h on a rocker platform. The cellular debris was
removed by centrifugation at 12,000×g for 15 min at 4 °C. The su-
pernatant was transferred to a fresh tube and incubated with 30 μl of
anti-hemagglutinin (HA)-agarose beads or anti-Flag affinity gel (Sigma-
Aldrich) overnight at 4 °C with constant agitation. These samples were
further analyzed by immunoblotting. Immunoprecipitated proteins
were collected by centrifugation at 5,000×g for 1 min at 4 °C, washed
three times with lysis buffer, and resuspended in 50 μl of 2 × SDS
sample buffer. The immunoprecipitates and whole-cell lysates (WCLs)
were analyzed by IB with the indicated Abs.

2.7. In vivo ubiquitination assay

The cells were lysed using a RIPA lysis buffer containing 1% SDS
and denatured by heating for 10 min. The supernatants were diluted
with lysis buffer until the concentration of SDS was decreased to 0.1%.
The diluted supernatants were incubated with 20 μl anti-Myc affinity
gel (Sigma-Aldrich) overnight at 4 °C with constant agitation. These
samples were further analyzed by immunoblotting (IB).
Immunoprecipitated proteins were collected by centrifugation at
5000×g for 1 min at 4 °C, washed three times with lysis buffer and
resuspended in 50 μl 2 × SDS sample buffer.

2.8. Immunoblot analysis

Immunoprecipitates or WCLs were separated by 10% SDS-PAGE and
transferred to polyvinylidene difluoride (PVDF) membrane (Bio-Rad).
The membranes were blocked for 1 h at room temperature in TBST
buffer (25 mM Tris- HCl, 150 mM NaCl, 0.1% Tween 20, pH 7.5)
containing 5% nonfat dry milk, probed with the primary Abs indicated
on the figures at an appropriate dilution overnight at 4 °C, washed three
times with TBST, and then incubated with secondary Abs for 1 h at
room temperature. After three additional washes with TBST, the
membranes were stained with the Immobilon Western chemilumines-
cent horseradish peroxidase (HRP) substrate (Millipore) and detected
by using an Image Quant LAS 4000 system (GE Healthcare). Abs were
diluted as follows: anti-β-actin (Cell Signaling Technology) at 1:1,000,
anti-Flag/HA (Sigma-Aldrich) at 1:3,000, anti-Myc (Santa Cruz
Biotechnology) at 1:3,000, and HRP-conjugated anti-rabbit IgG or anti-

mouse IgG (Thermo Scientific) at 1:5,000. Results are representative of
data from three independent experiments.

2.9. In vitro protein dephosphorylation assay

Transfected HEK 293T cells were lysed as described above, except
that the phosphatase inhibitors (Na3VO4 and EDTA) were omitted from
the lysis buffer. Protein dephosphorylation was carried out in 100 μl
reaction mixtures consisting of 100 μg of cell protein and 10 U of CIP
(Sigma-Aldrich). The reaction mixtures were incubated at 37 °C for
40 min, followed by immunoblot analysis.

2.10. Fluorescence microscopy

EPC cells were plated onto coverslips in six-well plates and trans-
fected with the indicated plasmids for 24 h. Then the cells were washed
twice with PBS and fixed with 4% paraformaldehyde (PFA) for 1 h.
After being washed three times with PBS, the cells were stained with 4′,
6-diamidino-2-phenylindole (DAPI) (1 μg/ml; Beyotime) for 8 min in
the dark at room temperature. Finally, the coverslips were washed and
observed with a confocal microscope under a × 63 oil immersion ob-
jective (SP8; Leica).

2.11. Statistics analysis

Luciferase and qPCR assay data are expressed as the mean ±
standard error of the mean (SEM). Error bars indicate the SEM (n = 3,
biologically independent samples). The p values were calculated by
one-way analysis of variance (ANOVA) with Dunnett's post hoc test
(SPSS Statistics, version 19; IBM). A p value < 0.05 was considered
statistically significant.

3. Results

3.1. GCRV VP56 inhibits poly I:C-induced IFN expression

Previously, our study has demonstrated that GCRV VP41 reduces
MITA phosphorylation and blocks IFN production, thus escaping the
host immune response. Given that one virus should possess multiple
strategies to elude host defense mechanisms, other immune escape
mechanisms of GCRV should be identified. Here, to further investigate
the other strategies used by GCRV to combat the host, other constructs
of GCRV segments were employed for luciferase experiments in vitro,
and the s7-encoded protein (VP56) exhibited the potential to inhibit
host IFN activation. Upon infection with GCRV, the viral s7 gene was

Fig. 1. VP56 is stimulated by virus infection. . (A) qPCR detection of the transcriptional levels of s7 on stimulation. GCO cells were seeded on 6-well plates overnight
and infected with GCRV (100 μl of the filtered virus-containing supernatant of frozen and thawed GCO cells, which was diluted 100 times with PBS) At the time
points 0, 1, 2, 3, 5 and 7 day, total RNA was extracted for further qPCR assays.(B and C) VP56 inhibits poly I:C-induced IFN expression. GCO cells seeded into 6-well
plates overnight were transfected with 2 μg Myc-VP56 or the empty vector and transfected with poly I:C (2 μg/ml) at 24 h post-transfection. At 24 h post transfection,
total RNAs were extracted to examine the transcriptional levels of cellular ifn and isg15 by qPCR. The relative transcription levels were normalized to the tran-
scription level of the β-actin gene and are represented as fold induction relative to the transcription level in control cells, which was set to 1. Data were expressed as
mean ± SEM, n = 3. Asterisks indicate significant differences from control (*, p < 0.05). All experiments were repeated for at least three times with similar result.
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increased significantly in GCO cells, which indicated that the cells were
successfully infected with GCRV (Fig. 1A). Four type I IFNs (IFN1-IFN4)
have been identified in grass carp, but only IFN1 can be significantly
activated by poly I:C, a mimic of viral RNA [35] (data not shown). Thus,
grass carp IFN1 was used in this study. As shown in Fig. 1B, poly I:C
stimulation induced the upregulation of IFN1 transcripts; however,
such induction was significantly impeded by the overexpression of
VP56. Moreover, VP56 also blocked the poly I:C-activated expression of
isg15 (Fig. 1C). These data indicate that GCRV VP56 serves as a nega-
tive regulator to interfere with host IFN production.

3.2. VP56 suppresses IFN1 activation mediated by MAVS

Fish RLR factors are efficient for triggering IFN production [14].
Consequently, grass carp RLR constructs and IFN1 promoter (IFN1pro)
were employed in the following studies. As shown in Fig. 2A, the
overexpression of MAVS and IRF7 upregulated the activation of
IFN1pro, and the activation of IFN1pro induced by MAVS was inhibited
by co-transfection with VP56. However, the ectopic expression of VP56
did not affect the IRF7-stimulated IFN1pro activity. In the host IFN
response, the ISRE motif is considered the binding site of ISGs that
responds to transcriptional factors. After co-transfection with VP56 and
ISRE-Luc and RLR factors, the upregulation of ISRE activity activated by
MAVS but not IRF7 was reduced by VP56 (Fig. 2B). Collectively, these
results suggest that VP56 decreases IFN production via negatively
regulating MAVS.

3.3. VP56 associates with the RLR axis and locates in the cytoplasm

To further explore the function of VP56, whether VP56 interacts
with RLRs at the protein level was investigated. HEK 293T cells were
co-transfected with Myc-VP56 and Flag-tagged RLR factors, including
MAVS, TBK1, MITA, IRF3, and IRF7. The results showed that most of
the anti-Flag Ab-immunoprecipitated protein complexes were re-
cognized by the anti-Myc Ab, which suggests that VP56 associates with
TBK1, MITA, IRF3, and IRF7 but not MAVS (Fig. 3A). Next, the sub-
cellular location of VP56 was monitored in EPC cells. Confocal micro-
scopy revealed that the VP56-EGFP signal was mainly distributed in the
cytoplasm (Fig. 3B). We co-transfected DsRed-MAVS, DsRed-MITA,
DsRed-TBK1, DsRed-IRF3, or DsRed- IRF7 with VP56-EGFP. A red
signal from TBK1, IRF3, and IRF7 was observed in the cytosol and al-
most overlapped with the green signal from VP56 (Fig. 3C–G). Taken
together, these data suggest that VP56 is located in the cytosol and
associates with RLR factors.

3.4. VP56 decreases the TBK1-mediated phosphorylation of IRF7

To investigate the regulatory mechanism of VP56 on the RLR axis,
we examined the effect of VP56 on RLR molecules at the protein level.
MAVS-, TBK1-, MITA-, IRF3-, and IRF7-HA expression vectors were co-
transfected with Myc-VP56 or an empty vector. As shown in Fig. 4A,
overexpressed VP56 did not cause any obvious change in RLR mole-
cules at the protein level. Given that IRF3/7 phosphorylation is indis-
pensable for mediating the IFN response, whether the phosphorylation
of IRF3/7 is influenced by VP56 needs to be clarified. First, the function
of grass carp TBK1 was investigated. As shown in Fig. 4B and C, both
IRF3 and IRF7 caused a band shift and exhibited higher mobilities when
they were co-transfected with TBK1-Flag in 293T cells. Subsequently,
the cell lysates were incubated with CIP. As expected, the band shifts
disappeared, demonstrating that IRF3 and IRF7 are also phosphorylated
by TBK1 in grass carp. Then, we evaluated whether IRF3/7 phosphor-
ylation would be impaired by the overexpression of VP56. As shown in
Fig. 4D and E, the amount of IRF7 was dramatically reduced by the
overexpression of VP56 in a dose-dependent manner; in contrast, VP56
had minimal effects on the IRF3 level. Similar results occur in zebrafish
(Fig. 4F and G). These results suggest that VP56 specifically promotes
the degradation of IRF7.

3.5. VP56 triggers the K48-linked ubiquitination and degradation of IRF7

Protein degradation is one of the main strategies involved in mod-
ulating protein functions in biological processes and there are two main
systems for protein degradation: ubiquitin proteasome and autopha-
gosome pathways. To identify the degradation pathway of IRF7, the
cells were treated with indicated inhibitors. The VP56-mediated de-
gradation of IRF7 was completely inhibited by the proteasome inhibitor
MG132 but not 3-MA, which is an autophagosome pathway inhibitor
(Fig. 5A). Since ubiquitination is an important process during protea-
some-dependent degradation, we further determined whether the de-
gradation of IRF7 was due to ubiquitination. HEK 293T cells were
transfected with Flag-TBK1, Myc-IRF7, HA-VP56, and HA-Ub in the
presence or absence of MG132. Following the immunoprecipitation of
Myc-IRF7, IB revealed that VP56 potentiated the ubiquitination of IRF7
(Fig. 5B). K48 and K63, the lysines at positions 48 and 63 of ubiquitin
linked with polyubiquitin chains, are two canonical polyubiquitin chain
linkages. Given that K48-linked polyubiquitin chain modification leads
to the targeting of proteins for proteasome recognition and degradation,
whereas K63-linked polyubiquitin chain modification enhances the
stability of target proteins [36–38], we chose to investigate whether

Fig. 2. VP56 inhibits MAVS-mediated IFN1 activation. (A and B) EPC cells were seeded on 24-well plates overnight and co-transfected with MAVS, IRF7, and
pcDNA3.1-VP56 or pcDNA3.1 (+) plus IFN1pro (A) or ISRE-Luc (B) at the ratio of 1:1:1 (0.5 μg for each). pRL-TK was used as a control. At 24 h post transfection,
cells were collected for detection of luciferase activities. The promoter activity is presented as relative light units normalized to Renilla luciferase activity. Data were
expressed as mean ± SEM, n = 3. Asterisks indicate significant differences from control (*, p < 0.05). All experiments were repeated for at least three times with
similar result.
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Fig. 3. VP56 locates in the cytoplasm and interacts with the RLRs. (A) HEK 293T cells seeded into 10-cm2 dishes were transfected with empty vector or Flag-MAVS/
TBK1/MITA/IRF3/IRF7 and Myc-VP56 (5 μg each). After 24 h, cell lysates were IP with anti-Flag affinity gel. The immunoprecipitates and WCLs were then analyzed
by IB with anti-Flag and anti-Myc Abs, respectively. (B) EPC cells seeded on microscopy cover glass in 6-well plates were transfected with 2 μg of VP56-EGFP and 2 μg
of empty vector or DsRed-MAVS/TBK1/MITA/IRF3/IRF7. After 24 h, the cells were fixed and subjected to confocal microscopy analysis. Green signals represent
overexpressed VP56 protein, red signals represent overexpressed MAVS, TBK1, MITA, IRF3, or IRF7, and blue staining indicates the nucleus region (a × 63 oil
immersion objective). Scale bar, 10 μm. All experiments were repeated at least three times with similar results. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)

Fig. 4. VP56 decreases the phosphorylation of IRF7 mediated by TBK1. (A) VP56 has no significant effect on RLR protein expression. HEK 293T cells were seeded in
6-well plates overnight and transfected with 2 μg of HA-RLRs and 2 μg of empty vector or Myc-VP56 for 24 h. The WCLs were subjected to IB with the anti-HA, anti-
Myc, and anti-β-actin Abs. (B and C) TBK1 mediates the phosphorylation of IRF3 and IRF7. HEK 293T cells were seeded into 6-well plates overnight and transfected
with Flag-TBK1 and HA-IRF3/IRF7 (2 μg for each) for 24 h. The cell lysates (100 μg) were treated with or without CIP (10 U) for 40 min at 37 °C. The lysates were
then detected by IB with anti-HA, anti-Flag and anti-β-actin Abs. (D and F) HEK 293T cells were seeded into 6-well plates overnight and co-transfected with 1 μg Flag-
TBK1 or Flag-DrTBK1 plus 1 μg empty vector or HA-VP56, together with 1 μg Myc-IRF7 or Myc-DrIRF7 for 24 h. The lysates were then subjected to IB with anti-Myc,
anti-Flag, anti-HA, and anti-β-actin Abs. (E and G)HEK 293T cells were seeded into 6-well plates overnight and co-transfected with 1 μg Flag-TBK1 or Flag-DrTBK1
plus various concentration of HA-VP56 (0.5 μg, or 1 μg, or 2 μg, empty vector was used to make up the rest), together with 1 μg Myc-IRF7 or Myc-DrIRF7 for 24 h.
The lysates were then subjected to IB with anti-Myc, anti-Flag, anti-HA and anti-β-actin Abs. All experiments were repeated at least three times with similar results.
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VP56 promoted the K48- or K63-linked ubiquitination of IRF7. To
achieve this goal, plasmids expressing ubiquitin mutants and retaining
only a single lysine residue either K48 (ubiquitin-K48) or K63 (ubi-
quitin-K63) were used. As shown in Fig. 5C, immunoprecipitation and
IB indicated that VP56 promoted IRF7 ubiquitination with wild-type
ubiquitin and ubiquitin-K48 but not with ubiquitin-K63. The above
results indicate that VP56 induces the K48-linked ubiquitination of
IRF7, which is recognized and subsequently degraded by the protea-
some pathway.

3.6. VP56 attenuates the cellular IFN response and facilitates SVCV
replication

To determine whether VP56 interferes with the cellular IFN re-
sponse to facilitate virus proliferation, EPC cells were transfected with
VP56 or the empty vector and infected with SVCV. Total RNAs were
extracted and monitored by qPCR. As shown in Fig. 6A and B, the ex-
pression of the ifn transcript in the cells that overexpress VP56 was
reduced compared to their levels in the control cells and the reduced
expression of host vig1 was also observed. Moreover, more CPE was
observed in the VP56 group at 2 d post-infection (Fig. 6C). This was
confirmed by the titer of SVCV, which had significantly increased
(5,800-fold) in the VP56-overexpressing cells compared to the control
cells (Fig. 6D). These data demonstrate that VP56 suppresses the cel-
lular IFN response and enhances the capacity of SVCV to replicate.

4. Discussion

As in mammals, fish IFN plays a critical role in the host immune
response when defending against viral infection. However, aquatic
viruses still cause high mortality in the cultured fish industries. The
immune evasion mechanisms involved in the pathogenesis of aquatic
viruses remain poorly understood. Here, we report that GCRV VP56
interacts with IRF7 and promotes the K48-linked ubiquitination and
degradation of IRF7, which suppresses the host IFN response.

GCRV, the first viral pathogen identified from aquatic animals in
China in 1983, causes a serious epidemic of hemorrhagic disease, which
results in extremely high mortality among grass carp [1]. The GCRV
virion consists of 11 dsRNA genome segments surrounded by multiple
concentric protein capsids [8]. The 11 segments encode seven structural
proteins and five nonstructural proteins. Five of these proteins (VP1-
VP4 and VP6) form the core layer [39]. The functional exploration of
non-structural proteins among the 11 segments remains unclear. We
have reported that VP41 prevents the fish IFN response by attenuating
the phosphorylation of MITA for viral evasion [40]. Further study in
this manuscript has revealed that VP56 interacts with IRF7 and pro-
motes the ubiquitination and degradation of IRF7. Many viruses have
evolved strategies to elude the host immune system and one or several
host immune molecules may be involved in this evasion because of
viruses' relatively limited genome capacity [41].

RLRs toll-like receptor (TLR)- and NOD-like receptor (NLR)-medi-
ated immune responses are the first line of defense against pathogenic
microbes [12]. The IFN system is a particularly critical component in
the host response, including the induction of IFN, IFN-mediated sig-
naling, and the amplification of the IFN response [42]. IRF7 is a critical
component of the intrinsic immune system [43]. Although various PRRs
activate different signal pathways, most signals transduction ultimately
converge on IRF7. In addition, IRF7 is induced by viral infection and is
essential for sustained transcriptional activation of IFN genes [44]. In
response to host defend mechanisms, viruses have evolved various
strategies to inhibit the activation of IRF7, including inhibiting IRF7
dimerization and altering IRF7 modification (sumoylation, phosphor-
ylation, or ubiquitination) [45–48]. In fish, antiviral effects of IRF7 has
been reported in crucian carp, zebrafish, and grass carp [49,50]. Fol-
lowing GCRV infection, host induces a series of antiviral immune re-
sponses, then stimulates the transcription of a broad range of ISGs in-
cluding irf7, which in turn establish an antiviral state within the cells to
eliminate viral infection [51]. However, viruses have established mul-
tiple mechanisms to counteract host antiviral state [52]. So far, the
relationships between fish viruses and IRF7 are not well known. In the

Fig. 5. VP56 promotes K48-linked ubiquitination and degradation of IRF7. (A) HEK 293T cells were seeded in 6-well plates overnight and transfected with 1 μg HA-
IRF7 and 1 μg empty vector, or Myc-VP56 and 1 μg Flag-TBK1. At 18 h post-transfection, the cells were treated with the indicated inhibitors for 6 h prior to being
harvested for IB analysis of WCLs with the anti-HA, anti-Myc, anti-Flag, and anti-β-actin Abs. (B) EPC cells were seeded in 10-cm2 dishes and transfected with 4 μg
Flag-TBK1, 4 μg Myc-IRF7, 4 μg HA-VP56 or empty vector, and 2 μg HA-Ub. At 18 h post transfection, the cells were treated with DMSO or MG132 for 6 h. Cell lysates
were IP with anti-Myc-affinity gels. Then the immunoprecipitates and WCLs were analyzed by IB with the Abs indicated. (C) EPC cells were seeded in 10-cm2 dishes
and transfected with 4 μg Flag-TBK1, 4 μg Myc-IRF7, 4 μg HA-VP56 or empty vector, and 2 μg HA-Ub-K48O or HA-Ub-K63O. At 18 h post-transfection, the cells were
treated with MG132 for 6 h. Cell lysates were IP with anti-Myc-affinity gels. Then the immunoprecipitates and WCLs were analyzed by IB with the indicated Abs. All
experiments were repeated for at least three times with similar results.
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present study, GCRV VP56 induced the degradation of IRF7, resulting in
the reduction of IFN expression. These results demonstrate that fish
virus also possesses the function to antagonize host IFN response.

Ubiquitination, which is a reversible covalent modification, plays an
important role in regulating the stability, activity, and localization of
target proteins [53]. Many viruses have taken advantage of ubiquiti-
nation to target host proteins and change the proteins’ original state in
immune signaling pathways. For example, the N-terminal protease
fragment (NPro) of the Bovine viral diarrhea virus (BVDV) blocks the
binding of IRF3 to DNA and targets IRF3 for proteasomal degradation,
thus blocking IFN production [54]; Severe acute respiratory syndrome
coronavirus (SARS-CoV) papain-like protease (PLPro) inhibits the
TLR7-mediated IFN induction by removing the polyubiquitination of
TRAF3 and TRAF6 [55]; the N protein of SVCV suppresses fish IFNϕ1
expression by degrading MAVS in an ubiquitination-proteasome
manner [34]. Here, our results reveal that GCRV VP56 represses IFN
production by inducing the K48-linked ubiquitination and degradation
of IRF7.

In conclusion, the current study reveals a potential vital mechanism
used by VP56 of GCRV to negatively regulate IRF7 through the ubi-
quitination-proteasome degradation pathway. These data shed light on
the novel manner of immune evasion utilized by GCRV. Further studies
are needed to ascertain the functions of other proteins of GCRV in
immune evasion, which will promote an in-depth understanding of
GCRV pathogenesis and provide ideas for preventive strategies.
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