
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Science of the Total Environment 409 (2011) 3325–3333

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r.com/ locate /sc i totenv
Fluctuation analysis-based risk assessment for respiratory virus activity and air
pollution associated asthma incidence

Chung-Min Liao ⁎, Nan-Hung Hsieh, Chia-Pin Chio
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
⁎ Corresponding author. Tel.: +886 2 2363 4512; fax
E-mail address: cmliao@ntu.edu.tw (C.-M. Liao).

0048-9697/$ – see front matter © 2011 Elsevier B.V. Al
doi:10.1016/j.scitotenv.2011.04.056
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 December 2010
Received in revised form 23 March 2011
Accepted 1 April 2011
Available online 12 June 2011

Keywords:
Asthma
Air pollution
Respiratory virus activity
Detrended fluctuation analysis
Risk assessment
Asthma is a growing epidemic worldwide. Exacerbations of asthma have been associated with bacterial and
viral respiratory tract infections and air pollution. We correlated the asthma admission rates with fluctuations
in respiratory virus activity and traffic-related air pollution, namely particulate matter with an aerodynamic
diameter ≤10 μm (PM10), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone
(O3). A probabilistic risk assessment framework was developed based on a detrended fluctuation analysis to
predict future respiratory virus and air pollutant associated asthma incidence. Results indicated a strong
association between asthma admission rate and influenza (r=0.80, pb0.05) and SO2 level (r=0.73, pb0.05)
in Taiwan in the period 2001–2008. No significant correlation was found for asthma admission and PM10, O3,
NO2, and CO. The proposed fluctuation analysis provides a simple correlation exponent describing the
complex interactions of respiratory viruses and air pollutants with asthma. This study revealed that there was
a 95% probability of having exceeded 2987 asthma admissions per 100,000 population. It was unlikely (30%
probability) that the asthma admission rate exceeded 3492 per 100,000 population. The probability of asthma
admission risk can be limited to below 50% by keeping the correlation exponent of influenza to below 0.9. We
concluded that fluctuation analysis based risk assessment provides a novel predictor of asthma incidence.
: +886 2 2362 6433.
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1. Introduction

Asthma is a growing epidemic worldwide and is themost common
chronic respiratory disease in developed countries affecting millions
of children and adults (Global Initiative for asthma (GINA) (2009)).
Asthma is primarily characterized by airflow obstruction resulting
from inflammation and remodeling of small airways. Asthma is a
multidimensional disease, with several systemic manifestations, and
it is associated with a number of co-morbid diseases (Pearce and
Douwes, 2006). It is clear that muchmore clinical and basic research is
needed to understand the complexity of asthma, so that more
effective management of asthma and its various co-morbidities are
possible in the future.

Asthma has been associated with exposure to traffic-related air
pollution and tobacco smoke (Pekkanen et al., 1999; Guo et al., 1999;
Lee et al., 2003; King et al., 2004; Huang et al., 2005; Barnett et al.,
2005; Chen et al., 2006; Tsai et al., 2006; Gilliland et al., 2006; Suglia et
al., 2008; Ko et al., 2007c; McConnell, 2007; Shankardass et al., 2009;
Weinmayr et al., 2010). Collectively, these studies found that
exposure to traffic-related outdoor air pollutants such as particulate
matter (PM) with an aerodynamic diameter≤10 μm (PM10), nitrogen
dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and
ozone (O3) increases the risk of asthma or asthma-like symptoms.
It is generally recognized that air pollution exacerbates asthma in
children (Schildcrout et al., 2006). Recent studies have shown that
both PM10 and NO2 have been associated with increases in the
frequency of asthma symptoms and with lung function decrements in
children (Ostro et al., 2001; Schildcrout et al., 2006; Jerrett et al., 2008;
Weinmayr et al., 2010). Current evidence indicates that PM10 increases
cough, lower respiratory symptoms, and lower peak expiratory flow
(PEF) (Ward and Ayres, 2004; Nel, 2005). Recently, Weinmayr et al.
(2010), using meta-analysis, provided strong evidence that PM10 may
be an aggravating factor of asthma in children.

Papi et al. (2006) indicated that chronic obstructive pulmonary
disease (COPD) was significantly exacerbated by respiratory viral
infections that caused reduction of forced expiratory volume in 1 s
(FEV1) and airway inflammation. On assessing the effects of a winter
influenza season on patients with COPD, Gorse et al. (2006) found that
laboratory-documented influenza-caused illness was associated sig-
nificantly with lower FEV1. Ko et al. (2007a) reported that the most
prevalent viruses detected during acute exacerbations of COPD in
Hong Kongwere the influenza A virus and coronavirus. They indicated
that among 196 patients with a mean age of 76 years, mean FEV1 was
40% of predicted normal and the FEV1/FVC (forced vital capacity) ratio
was reduced to 58% of normal. Singh and Busse (2006) and De Serres
et al. (2009) also suggested that the influenza virus frequently causes
acute exacerbations of asthma and COPD.

Furthermore, exacerbations of asthma have been associated with
bacterial and viral respiratory tract infections as well as exposure to
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airborne pollutants (Holt et al., 1999; Frey and Suki, 2008). Current
studies also indicated that asthma symptoms are exacerbated by air
pollutants such as diesel exhaust, PM10, NO2, SO2, and O3 and respiratory
virus such as adenovirus, influenza, parainfluenza, and respiratory
syncytial virus (RSV) (Jaspers et al., 2005; Murdoch and Jennings, 2009;
Wong et al., 2009). Murphy et al. (2000) reported that influenza in
patients with asthma can cause acute exacerbations. The strength of the
association is still notwell definedbecause of the small number of studies
of hospital admissions, and the complexity of time series modeling.

There are few studies that have been able to examine a range of
pollutants. When multiple pollutants have been examined, the
independent effect of each pollutant is usually addressed in multi-
pollutant models. However, these are sensitive to the assumptions
inherent in the time seriesmodeling. This suggests that an approach less
sensitive to model assumptions is desirable.

Recently, a method used in statistical physics called detrended
fluctuation analysis (DFA) was used to predict the risk of severe
asthma exacerbations based on temporal fluctuations in lung airway
function (Peng et al., 1993; 2002; Frey et al., 2005; Frey, 2007; Frey
and Suki, 2008). Frey et al. (2005) indicated that chronic asthma could
be treated as a dynamic disease of the respiratory system.

Frey et al. (2005) employed DFA to predict the risk of airflow
obstruction by calculating a conditional probability. They also revealed
that DFA could characterize long-range temporal patterns of lung-
function. Thus, Frey (2007) and Frey and Suki (2008) suggested that
correlations can be used to assess the risk of future asthma episodes and
to improve the assessment of asthma severity for children and adults.
On the other hand, DFA has also been applied to investigate the time-
scaling properties of air pollution time series includingNO2, SO2, O3, and
PM10 (Varotsos et al., 2005; Shi et al., 2008).

DFA has been applied to physiology, air pollution, and atmospher-
ics (Varotsos et al., 2005; Shi et al., 2008). The novel methodology of a
fluctuation analysis such as DFA can detect the intrinsic self-similarity
and unnoticed trends embedded in a seemingly non-stationary time
series. Frey and Suki (2008) suggested that a fluctuation analysis-
based risk assessment approach can improve predictions for chronic
diseases. Thus, we attempted to link disease incidence and risk factors.

The risk of exacerbations risk of asthma by respiratory virus activity
and environmental stimuli is challenging to calculate. Uncertainties can
bequantifiedbyconstraining risk-basedpredictivemodelparameters to
reproduce a temporal history of lung function fluctuations, asthma
severity and stability, and fluctuating environmental stimuli (e.g.,
allergens, infections, and pollutants) (Frey and Suki, 2008).

Little research has been done to link lung function to exacerbations
risk of chronic asthma by associating respiratory virus activity and
environmental stimuli. From the point of view of the health
surveillance of asthma, we hope that the proposed fluctuation
analysis-based risk assessment schemewill enable early identification
of risk factors, and that it will complement environmental monitoring
of hazards and risk assessment.

The purpose of this study was twofold: (1) to correlate the asthma
admission rate with fluctuations in respiratory virus activity and traffic-
related air pollution factors and (2) to provide a probabilistic risk
assessment framework from a DFA-based predictive model to predict
future respiratory virus and air pollutant associated asthma incidence.
This study used DFA to quantify virus activity and environmental
pollution data and to correlate these with incidence of asthma. We
conducted a risk-based study to assess whether respiratory viruses and
air pollution caused exacerbations of asthma cases.

2. Materials and methods

2.1. Study data

Annual virological surveillance data in Taiwan were obtained from
the Epidemiologic Bulletin reported by the Center for Disease Control,
Taiwan during the period 2001–2008 (CDC, Taiwan). The daily-based
positive rates of respiratory viral isolations were obtained from a
laboratory-based surveillance network, consisting of 10 clinical
virology contract laboratories distributed around Taiwan. The number
of laboratory-confirmed respiratory infections was obtained using
positive viral culture or direct immunofluorescence. A rate was
derived from the percentage of respiratory virus positives divided by
the total number of respiratory infection specimens.

Air pollution data in Taiwan were obtained from the Taiwan Air
Quality Monitoring Network in the period 2001–2008. More than
seventy monitoring stations have been established by the Taiwan
Environmental Protection Administration (EPA, Taiwan). We selected
major air monitoring stations in two urban cities: Taipei (five
stations) and Kaohsiung (four stations). Daily readings of the air
pollutants PM10, NO2, SO2, CO, and O3 were gathered. We also used
general monitoring stations located at local schools and government
organizations, representing common air pollutant variations and
densely populated areas.

The National Health Insurance (NHI) Program, which provides a
compulsory universal health insurance database, covers most of the
population. From the database, we selected patients on the basis of
the International Classification of Disease, Clinical Modification (ICD-
9-CM) code (DOH, Taiwan). Therefore, inpatient claims data for
all patients admitted in Taiwan during January 2001 to December
2008 with a principal diagnosis of asthma or asthmatic bronchitis
(ICD-9-CM code 493)were extracted from the NHI Research Database.
Admissions were categorized into five age groups: 0–4, 5–14, 15–44,
45–64, and ≥65 years (Chen et al., 2006). The data were recorded as
number of outpatients and hospitalizations of asthma per year, and
then converted into total asthma admission. The annual number of
cases was divided by the year-end population to obtain an asthma
admission rate per 100,000 population. Annual population data for
the period 2001–2008 was released by the Population Affairs
Administration, Ministry of Interior, Taiwan.

2.2. Fluctuation analysis

To detect the long-range correlations embedded in a nonsta-
tionary time series of respiratory virus activity and environmental
stimuli, this study applied a DFA for minimizing the effect of
nonstationary trends. DFA has been applied successfully to detect
long-range correlations in highly complex heart beat time series and
other physiological signals (Peng et al., 1993, 1995, 2002). The
detailed computational algorithm of DFA can be found elsewhere
(Peng et al., 1993, 1995, 2002).

Briefly, the time series was first integrated and then divided into
nonoverlapping windows of size n. The local trend in eachwindowwas
removed by fitting and subtracting a regression line from the integrated
data. The root-mean-square values of the detrended signal were
calculated for a given window length n to yield the detrended
fluctuation function (DFF, F(n)). This calculation was then repeated for
increasing n, and logF(n) was plotted against logn. Typically, a measure
of the fluctuations of F(n) increases with an increase in n. A linear
relationship between logF(n) and logn indicates the presence of scaling,
which can be characterized by the slope α of the fitted regression line.

Mathematically, the DFF F(n) can be described by a power law
functional form as:

F nð Þ≈ na
; ð1Þ

in that DFF F(n) can be characterized by a root-mean-square
fluctuation of the integrated and detrended time series as:

F nð Þ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

k=1
y kð Þ−yn kð Þ½ �2

s
; ð2Þ
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Where y(k)=∑ i=1
k [v(i)−vave] is the integrated time series data,

v(i) is the data value of respiratory virus activity and environmental
stimuli at time i, vave is the average data value, n is the window size of
the integrated time series, yn(k) is the fitted least-squared line in each
window size n representing the trend in that window,N is the number
of measurements, and y(k)−yn(k) represents the detrended inte-
grated time series. The exponent α characterizes the correlation
properties of the entire range of the time series of data. The properties
of α indicate that there is no correlation in the time series at α=0.5,
whereas for increasingly higher values of α it shows increasingly
stronger long-range correlations (Peng et al., 2002).

2.3. Probabilistic risk model

In 1910, Hill developed a model to describe the general dose–
response relationship (Hill, 1910). Thus, this study employed the Hill
model commonly used in pharmacodynamic modeling to describe the
effects of environmental stimuli on influenza virus activity. Thus, in
this study, a biologically based empirical four-parameter Hill equation
was used to associate the relationship between respiratory virus
activity and environmental stimuli represented by the DFA-derived
exponent α,

αv = ymin +
y max−y minð Þ
1 +

a
αe

� �nH
; ð3Þ

where αv is the DFA-derived exponent based on the time series data
of respiratory virus activity, ymin and ymax are the minimum and
maximum values of αv, αe is the DFA-derived exponent based on the
time series data of environmental stimuli, a is the fitted coefficient,
and the exponent nH is the fitted Hill coefficient. Alternatively, Eq. (3)
can also be used to represent a dose–response model. Therefore, the
cumulative distribution function (cdf) of the predicted dose–response
model in Eq. (3) describing the relationship of respiratory virus
activity (αv) with given environmental stimuli (αe) can be expressed
as the conditional cdf of P(αv|αe).

Risk characterization is the phase of risk assessment where the
results of the virus and environmental stimuli are associated with a
quantitative effect on asthma severity. This provides the risk
estimates of asthma episodes measured by fluctuations of respiratory
virus activity and environmental factors. The risk at a specific levels of
environmental stimuli can be calculated as the probability density
functions (pdfs) of DFA-derived αe multiplied by the conditional
probability P(αv|αe).

Therefore, a joint probability function (JPF) can be used to
calculate the risk probability and can be expressed as,

P Rav

� �
= P αeð Þ × P αv jαeð Þ; ð4Þ

Where P(Rav) represents the respiratory virus exponent αv-based
risk estimate based on the association of environmental stimuli and
respiratory virus activity given a known correlation property of day-
to-day air pollutant data. A risk profile was generated from the
cumulative distribution of simulation outcomes. Each point on the risk
curve represents both the probability that the chronic respiratory
disease will exacerbate and also the frequency by which that level of
effect would be exceeded. The x-axis of the risk curve can be
interpreted as a magnitude of effect (i.e., respiratory virus activity-
associated respiratory disease), and the y-axis can be interpreted as
the probability that an exacerbation effect of at least that magnitude
will occur. To assess the risk of asthma incidence, we corrected DFA-
derivedαv from respiratory virus activity and asthmaadmission rate to
construct a mechanistic relationship: asthma admission rate= f(αv).
Finally, the risk probability of respiratory virus and environmental
stimuli on asthma admission rate can then be established.
2.4. Uncertainty and data analysis

Optimal statistical models were selected on the basis of least
squared criteria from a set of generalized linear and nonlinear
autoregression models provided by TableCurve 2D package (AISN
Software Inc., Mapleton, OR, USA) fitted to the study data. A value of
pb0.05 was judged significant. To quantify the uncertainty and its
impact on the estimation of expected risk, a Monte Carlo (MC)
technique was implemented. The MC simulation algorithm depends
on the statistics of input parameter and all possible distributions of
parameters can be simulated considering random sampling of
probability outcomes. The Monte Carlo simulation was performed
with 10,000 iterations to generate 2.5- and 97.5-percentiles as the 95%
CI for all fitted models. The Crystal Ball® software (Version 2000.2,
Decisionerring, Inc., Denver, Colorado, USA) was employed to
implement the MC simulation. Fig. 1 illustrates the computational
algorithm implemented in this study.
3. Results

3.1. DFA of time series data

Fig. 2 demonstrates the time series of daily air pollution data for
PM10, CO, NO2, SO2, and O3 in Taipei and Kaohsiung located in
northern and southern Taiwan, respectively, from 2001 to 2008. Fig. 3
illustrates the daily positive rate data of total respiratory viruses
(including adenovirus, parainfluenza, influenza, and RSV) and
influenza in the Taiwan region from 2001 to 2008. We found that
Kaohsiung had relative higher annual mean values (8 years) of PM10

(~76 μg m−3), SO2 (~8 ppb), and O3 (~31 ppb) levels than Taipei
(~50 μg m−3 for PM10, ~4 ppb for SO2, and ~24 ppb for O3), whereas
there was no significant difference in CO (~0.7 ppm) and NO2

(~24 ppb) levels (Table 1, Fig. 2). The 8-year annual-average positive
rates of total virus and influenza were estimated to be 13.55±8.73%
(mean±sd) and 6.50±7.22%, respectively (Table 1, Fig. 3). Generally,
males had higher annual-average asthma admissions (ranging from
3406 to 3608 per 100,000) than females (ranging from 3186 to 3506
per 100,000) (Fig. 4A). Children, particularly children aged 0–4 years
had the highest asthma admissions during the study period (ranging
from 9928 to 11,600 per 100,000) (Fig. 4B).

The variability (coefficient of variation, COV) of the time series of
air pollution data ranged from 0.33 to 0.49, indicating that air
pollution data dispersion existed during the period 2001–2008
(Table 1). Variability was also found in respiratory viruses data with
higher dispersion than the time-series of air pollution (Table 1). To
assess the variability of respiratory viruses and environmental stimuli,
the detrended fluctuation function F(n) was calculated from time
series data as shown in Figs. 2 and 3. The fitted power law function
exponents for environmental stimuli (αe) were distributed among air
pollution data and ranged between 0.4 and 0.9 from 2001 to 2008
(Fig. 5A).

Our results show that the annual-average DFA-derived exponents
for environmental stimuli (αe), total viruses (αv), and influenza (αi)
ranged from 0.74 to 0.81, 0.83 to 0.94, and 0.86 to 0.95, respectively
(Table 1). The results show that there are strong correlations between
past and future air pollution and respiratory virus data, indicating that
past data have significant effects on the current and future data. To
demonstrate the potential variability of air pollution, the time course
of air pollution-specific αe was assembled into an annual-average
value for the period 2001–2008 (Fig. 5B). The dimensionless
exponents can be considered a normalizing process that provides us
a unique chance to combine all pollutants into one correlation
parameter. Similarly, the time courses of DFA-derived respiratory
virus αv and influenza αi are also shown for the period 2001–2008
(Fig. 5C).
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3.2. Risk estimate of asthma admission rate

To investigate the potential impact of environmental stimuli and
respiratory virus fluctuations on the asthma admission rate (Fig. 6A), a
linear regression model was used to correlate DFA-derived exponents
and asthmaadmission rates during theperiod2001–2008 (Fig. 6B, C and
D). Note, however, that the lowest and highest asthma admission rates
occurred in 2003 and 2005 with values of 3298 and 3648 per 100,000
population, respectively. Other years averaged 3430 per 100,000
population (Fig. 6A). Our results indicate that influenza αi correlates
more significantly with asthma admission rates (y=1960x+1661.5,
r2=0.64, pb0.05) than αe (y=2930.3x+1211.9, r2=0.49, p=0.05)
and αv (y=985.9x+2562.7, r2=0.18, p=0.05) (Fig. 6B, C and D).

Furthermore, to investigate the contribution of specific air pollutants
and influenza to asthma admission rate, a sensitivity analysis based on
the Pearson correlation was performed. Our results indicate that SO2

(r=0.73, pb0.05) and influenza (r=0.799, pb0.05) contributed
significantly to asthma incidence (Table 2). NO2 had a high degree of
correlation yet was not significantly correlated with asthma admission
(r=0.56, pN0.05). There were strong correlations of DFA-derived α
values between SO2 and influenza (r=0.95, pb0.01) and CO and NO2

(r=0.74, pb0.05), respectively (Table 2). The O3 level was negatively
correlatedwith themainly traffic-related pollutants and influenza virus
but positively correlated with CO.

To establish a conditional probability by which the DFA-derived
correlationexponent (α) canbeusedas apredictorof thepotential impact
of influenza- and environmental stimuli on asthma, the Hill model was
used to construct the relationships between environmental stimuliαe and
influenza αi. Our results indicate that the αI and αe relationship is well
described by a Hill-based regression equation y=a/(1+(b/x)nH) with
fitted parameters a=1.0 and b=0.5 and afittedHill coefficient nH=5.56
(r2=0.95, pb0.001) (Fig. 7A). Given the constructed Hill-based dose–
response profile (Fig. 7A) and a fitted ensemble distribution of
environmental stimuli αe (the distribution can be optimally fitted by a
lognormal distribution with a geometric mean of 0.73 and a geometric
standard deviation of 1.19, Fig. 7B), influenza αi-based risk estimates can
then be determined by the proposed riskmodel shown in Eq. (4) (Fig. 7C).

To demonstrate the potential impact of influenza and environ-
mental stimulus triggers on risk estimates of asthma admission rate,
we converted the influenza αi-based risk profile (Fig. 7C) into an
asthma admission rate-based risk profile (Fig. 7D). This was based on
a linear regression model describing the relationship between asthma
admission and influenza αi (Fig. 6D). We found that a 95% probability
of asthma admission rate was exceeded 2987 (95% CI 2829–3145) per
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100,000 population. It was likely (70% probability) to have exceeded
3319 (95% CI 3207–3430) per 100,000 population, yet it was unlikely
(30% probability) to have exceeded 3492 (95% CI 3419–3565) per
100,000 population (Fig. 7D).

4. Discussion

4.1. Association between air pollutants, influenza virus and asthma

Our study found a strong association among influenza (r=0.80,
pb0.05) and SO2 level (r=0.73, pb0.05) and asthma admission rate
based on the data from 2001 to 2008. SO2 is a respiratory tract irritant
that has been shown to cause acute respiratory health effects
including coughing, decreased lung function in controlled human
exposure, and significant airway injury at high concentration (Witek
et al., 1985; Chen et al., 2007). Kim et al. (1996) indicated that
influenza virus and SO2 had significant impacts on the occurrence of
pneumococcal disease in Houston. Chen et al. (2006) found that
seasonality in adult asthma admissions in Taiwan from 1998 to 2001
were significantly correlated with high levels of O3, CO, SO2, NO2, and
PM10. Ko et al. (2007b) reported that SO2, NO2, and O3 had a greater
effect than PM10 and PM2.5 on COPD in Hong Kong.

This study indicated that the correlation exponents of influenza
and SO2 have high correlation (r=0.947). There may be collinearity
between the two datasets. Compared with other air pollutants, the
embedded trends in the time series of daily records have low
correlations with influenza. This reveals that intrinsic variations
among time-varying risk factors are completely different.

In this study, no significant correlation was found between asthma
admission and PM10, O3, NO2, and CO. Generally, NO2 effects were often
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the strongest and appeared to be generally independent of the impact of
other pollutants on asthma or asthma-like symptoms (Guo et al., 1999;
Barnett et al., 2005;Gaudermanet al., 2005; Tsai et al., 2006; Jerrett et al.,
2008;Weinmayr et al., 2010). However, differences have been observed
among cities with different climates during short- or long-term
exposures (Bouhuys et al., 1978; Oftedal et al., 2009). Bouhuys et al.
(1978) found that, in US towns, high concentrations of SO2, NO2, and
total suspendedparticulateswere not associatedwith lung function loss
when sex, race, age, height, and weight were adequately taken into
account. Chen et al. (2007) observed no clear dose–response fashion
relationships between health risk response and increasing amounts of
air pollutants such as NO2, SO2, and CO. Oftedal et al. (2009) reported
that no positive associations were found between long-term NO2

exposures and asthma onset or respiratory symptoms in 9–10-year old
children in Oslo.

It has been suggested that airborne viral infections are a major risk
factor for exacerbations of chronic asthma and COPD (Mallia and
Table 1
Annual-average air pollution and respiratory virus (positive rate, %) data (mean±sd) a
adenovirus, parainfluenza, influenza, and RSV) (αv) and influenza (αi) during 2001–2008.

2000–2001 2001–2002 2002–2003 2003–2004 20

Air pollution
PM10 Tb 46.47±21.15 47.48±21.87 43.50±20.14 53.21±20.79 54
(μg m−3) Kc 73.95±36.45 64.06±30.17 72.19±33.49 79.52±36.81 83
CO T 0.86±0.08 0.78±0.27 0.77±0.25 0.70±0.24 0
(ppm) K 0.79±0.18 0.70±0.20 0.72±0.21 0.62±0.24 0
NO2 T 26.63±69.70 26.09±8.13 24.47±7.77 27.56±8.30 23
(ppb) K 26.67±9.18 23.57±9.48 24.12±9.93 25.68±9.62 23
SO2 T 2.87±2.29 2.85±1.59 2.62±1.46 3.46±1.61 4
(ppb) K 8.41±3.40 6.97±3.34 6.69±3.16 7.66±3.15 9
O3 T 21.80±8.71 23.02±9.14 24.40±9.59 25.28±8.70 22
(ppb) K 24.49±12.67 29.72±12.62 27.74±12.97 28.29±12.32 26
αe 0.77±0.12 0.74±0.10 0.77±0.11 0.76±0.12 0

Respiratory virus (positive rate,%)
Total viruses 7.21±6.15 14.82±6.72 8.50±7.94 11.72±7.03 16
Influenza 3.22±4.72 5.70±5.31 3.78±5.83 7.05±6.33 7
αv 0.91 0.94 0.84 0.92 0
αi 0.95 0.91 0.88 0.92 0

a Coefficient of variation (COV) = standard deviation/mean.
b T = Taipei.
c K = Kaohsiung.
Johnston, 2006; Varkey and Varkey, 2008). In addition, airborne virus
infections cause virus-induced damage and innate inflammation
(Cameron et al., 2006; Proud and Chow, 2006). Mallia and Johnston
(2006) indicated exacerbations were associated with virus-induced
airway diseases. In asthmatic subjects, virus isolation studies have
found that influenza infections have been detected in most cases of
hospitalization, resulting in near-fatal and acute exacerbations
(Teichtahl et al., 1997; Tan et al., 2003).
nd DFA-derived exponents of environmental stimuli (αe) and total virus (including

04–2005 2005–2006 2006–2007 2007–2008 Average COVa

.36±2.77 51.59±23.41 52.57±14.49 50.36±21.38 49.95±21.46 0.43

.89±38.82 78.53±36.56 75.60±36.85 77.26±36.30 75.63±36.15 0.48

.77±0.32 0.72±0.24 0.72±0.25 0.66±0.23 0.75±0.27 0.39

.61±0.22 0.59±0.21 0.59±0.20 0.54±0.18 0.64±0.22 0.46

.37±9.63 25.98±7.44 25.90±8.23 20.19±6.38 25.40±8.34 0.33

.55±9.13 22.57±9.10 22.47±8.77 21.28±8.47 23.74±9.36 0.39

.83±1.81 4.57±1.56 4.34±1.76 4.07±1.62 3.70±1.81 0.49

.55±3.10 8.53±2.96 8.10±2.75 7.44±2.74 7.92±3.20 0.40

.15±7.72 25.08±8.80 24.80±9.14 24.62±9.21 23.89±9.21 0.36

.90±12.42 28.60±12.89 30.73±12.96 42.98±16.39 30.56±14.06 0.34

.81±0.11 0.74±0.17 0.79±0.07 0.74±0.15

.75±9.02 16.38±9.94 18.44±8.74 14.62±6.72 13.55±8.73 0.64

.94±7.95 9.25±9.80 8.77±8.57 6.24±5.12 6.50±7.22 1.11

.91 0.94 0.83 0.94

.97 0.86 0.95 0.86
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Table 2
Sensitivity analysis showing the relative contributions (represented as Pearson
correlation coefficient) of influenza and air pollutants to asthma incidence.

Influenza PM10 O3 NO2 SO2 CO Asthma
admission
rate

Influenza 1.000 0.050 −0.487 0.535 0.947⁎⁎ 0.223 0.799⁎

PM10 1.000 −0.210 −0.164 0.045 −0.706 −0.408
O3 1.000 −0.308 −0.360 0.011 −0.086
NO2 1.000 0.420 0.744⁎ 0.557
SO2 1.000 0.236 0.730⁎

CO 1.000 0.488
Asthma 1.000

⁎ pb0.05.
⁎⁎ pb0.01.
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4.2. DFA-based risk model

Our study showed that fluctuation analysis can provide a simple
parameter, α, that measures the complex correlation of day-to-day
data of respiratory viruses and air pollutants. The present study
provided further evidence that influenza virus is related to asthma
admission rate. Currently, most epidemiological studies use statistical
analyses such as the auto-regressive integrated moving average
(ARIMA), to correlate environmental triggers and allergic asthma
(Chen et al. 2006). This general methodology can only point to the
trigger-specific risk factors associated with disease incidence. In this
study, we constructed a fluctuation analysis-based probabilistic risk
assessment framework that can completely describe the multiple
triggers related to asthma incidence.

By focusing on long-range correlations in time-series fluctuations
of air pollution and respiratory virus data, and their influence on
asthma incidence, this study built an integrated risk assessment
approach. Using a DFA-based risk assessment approach, we con-
structed the conditional probability describing a relationship between
influenza and environmental stimuli. Thereafter, the environmental
stimuli-associated and influenza-associated asthma incidence risks
could be estimated. We used the pharmacodynamic Hill equation to
construct the relationship between influenza virus and air pollutants
because it is a biologically based dose–response model. Compared
with linear regression, the nonlinear model can describe the
relationship between αe and αi. We showed that the conditional
probability functions of P(asthma admission rate|α) are robust in-
dicators of the probability that asthma incidence will occur for en-
vironmental stimuli-associated and influenza-associated asthmatics.

A multidimensional approach that includes a combination of
several clinical and physiological parameters such as symptoms,
behavioral factors, lung function, and inflammatorymarkers is useful
for describing future asthma events (Frey and Suki, 2008). Frey and
Suki (2008) suggested that the fluctuation analysis approach can be
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used to identify the dynamic patterns of clinical symptoms of
complex chronic diseases. To improve risk assessment of asthma
severity, the fluctuation analysis approach can be applied to analyze
the long-term temporal fluctuations of clinical and physiological
markers.
4.3. Limitations of this study

In asthma admission, this study used all patient admission data in
the year. The study data included all possible reason for asthma
admission. Although most asthma cases are caused by air pollution
and virus infection, they are also major risk factors for asthma
exacerbation and incidence (Chen et al., 2006; Xirsagar et al., 2006).
Secondly, the reported data that we used were combined arbitrarily.
They were used here to analyze observational data which have not
been analyzed before. Finally, determining the probabilistic of future
asthma episodes caused by influenza virus infection and air pollutants
is challenging. It requires a synthesis of uncertainties along the cause-
effect chain from viral infection and specific air pollutants to lung
function variations. Velthove et al. (2010) further indicated that using
hospital admissions as a measurement to estimate asthma incidence
might lead to an underestimation of disease exacerbations because of
a trend towards outpatient care. Therefore, they suggested that other
markers of exacerbations should be taken into account.

In view of the current knowledge of multiple domains of asthma
and asthma control, no single measurement can adequately assess
asthma control (Reddel et al., 2009). Therefore, uncertainties in future
predictions of environmental stimuli-associated and influenza-asso-
ciated asthma incidence can be quantified by constraining the present
risk-based predictive model parameters to reproduce the temporal
history of lung function fluctuations, asthma severity and stability,
and fluctuating environmental stimuli (e.g., allergens, infections, and
pollutants) (Frey and Suki, 2008). In addition, the result shows that
asthma incidences were most likely in children aged 0–4 years.
Therefore, age-specific asthma incidence should be considered in
future studies. We think there is room for further improvement,
especially by including experimental analysis of airborne virus
infection on respiratory symptoms (Holt et al., 1999), the effect of
respiratory virus infection on lung function in asthmatics (Frey and
Suki, 2008), a DFA of airborne pollutants with climatic factors (Chen et
al., 2006; Wong et al., 2009; Murdoch and Jennings, 2009), and
socioeconomic status (Shankardass et al., 2009).

In conclusion, we emulated the detrended fluctuation approach by
combining respiratory virus activity with air pollution data, and
compared these to asthma admission data for the period 2001–2008.
We also found that the probability of asthma admission can be limited
to below 50% by keeping the correlation exponent of influenza (αi)
below ~0.90. If the acceptable probability of exceedance were 50%,
this would limit the annual asthma admission rate to 3425 per
100,000 populations or lower. We concluded that fluctuation
analysis-based risk assessment provides a novel predictor for
assessing the potential incidence of asthma.
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