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ing the high incidence of steatosis and lack of approved 
treatments for ALD, a better understanding of the mecha-
nisms by which steatosis develops is essential to identify 
early biomarkers and develop ALD therapeutics, especially 
for those who have been unable to achieve abstinence.

The liver is the major organ responsible for metaboliz-
ing ingested alcohol to the toxic metabolite acetaldehyde 
(5), and most data support that it is alcohol’s metabolism 
per se that is required for hepatic lipid dysregulation. Once 
metabolized, alcohol exerts a myriad of effects on hepatic 
lipid regulation that promote steatosis (Fig. 1). In this re-
view, we focus predominantly on alcohol’s dysregulation of 
triglyceride metabolism, the predominant lipids implicated 
in the development of steatosis. From effects on the pro-
duction of triglyceride to effects on fatty acid uptake and 
oxidation, lipophagy, triglyceride export, and hepatocellu-
lar lipid storage, alcohol impacts cellular lipid homeostasis, 
which in turn has implications for cellular dysmetabolic 
stress and inflammation pathways thought to spur liver 
disease progression. In addition, we explore the role of 
bioactive lipids in alcohol-induced lipid accumulation, an 
emerging area of study that has broad implications for the 
transition from steatosis to more advanced stages of ALD.

EFFECTS OF ALCOHOL ON HEPATIC FATTY ACID 
UPTAKE

As triglycerides are the predominant hepatic neutral lip-
ids that accumulate in ALD, significant attention has been 
paid to alcohol’s effects on fatty acids whose esterification 
results in triglyceride synthesis. Exogenous sources of he-
patocyte fatty acids include the uptake of circulating  
NEFAs from adipose tissue lipolysis and intestinally derived 
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Globally, approximately two billion people consume al-
coholic beverages, and alcohol abuse is a leading cause of 
liver-associated morbidity and mortality (1). The spectrum 
of alcoholic liver disease (ALD) ranges from simple steato-
sis to alcoholic steatohepatitis, progressive fibrosis, and cir-
rhosis. Currently, there are no accepted therapeutics to 
halt or reverse ALD in patients, despite the profound eco-
nomic and health impacts of ALD. The earliest and most 
common hepatic response to alcohol is excess fat accumu-
lation (steatosis). Alcoholic fatty liver is diagnosed when 
alcohol consumption results in hepatic fat exceeding 5% 
of the liver weight. Nearly all alcohol consumers develop 
steatosis (2), widely considered to be a less injurious stage 
than advanced stages of liver disease but whose severity is 
highly linked to the development of later stages of ALD (3) 
and that results from alcohol’s toxic effects on hepatic lipid 
metabolism. In contradistinction, alcohol intake alone is 
insufficient to cause significant liver disease in the majority 
of consumers, although the amount of alcohol consumed 
is highly associated with the severity of ALD (4). Consider-
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chylomicrons. Chronic alcohol consumption exacerbates 
adipose tissue lipolysis in large part through inciting adi-
pose tissue insulin resistance (6), although other mecha-
nisms, such as alcohol-induced catecholamine release, play 
a role (7, 8). Indeed, in alcohol-fed rodents (9, 10), periph-
eral adipose depots are reduced compared with controls. 
This is in line with our own data demonstrating that alco-
hol worsens insulin sensitivity in part by inhibiting the lipo-
genic response of adipocytes to insulin (11), a finding that 
correlates with observations in clinical studies showing that 
patients with alcohol addiction have less fat mass and in-
creased NEFA levels (12, 13). In rodents, these effects on 
adipose tissue lipolysis and subsequent hepatic fatty acid 
uptake take place as early as within 2 weeks of chronic alco-
hol ingestion based on high resolution mass spectrometry 
and in vivo deuterium labeling (10).

Alcohol consumption can also increase the supply of in-
testine-derived fatty acids from chylomicrons (14). Chylo-
microns are formed by intestinal enterocytes and are taken 
up by hepatocytes as chylomicron remnants via the LDL 
receptor and the LDL receptor-related protein after un-
dergoing lipolysis by lipases (15, 16). Although this is an 
established chylomicron clearance pathway, chylomicron-
derived fatty acids are not major sources of alcohol-induced 
hepatic neutral lipid accumulation (17), unlike what is ob-
served with white adipose tissue-derived fatty acids (18).

Upon circulating to the liver, NEFAs enter hepatocytes 
via hepatic fatty acid transporters. Hepatic plasma mem-
brane fatty acid transporters include fatty acid transporter 
proteins (FATPs) and fatty acid translocase/CD36. Among 
six isoforms of FATPs, FATP2 and FATP5 are highly ex-

pressed in the liver, while CD36 expression is normally low 
(19). Although CD36 does not play a significant role in 
fatty acid transport in normal liver, CD36 is highly induc-
ible and contributes to hepatic steatosis under pathological 
conditions such as excessive alcohol consumption (20). In 
fact, chronic alcohol upregulates the expression of CD36 
while there is no clear consensus on the expression of 
FATP2 and FATP5 in the liver (9, 21, 22). Furthermore, 
CD36 ablation alleviates ethanol-induced hepatic lipid ac-
cumulation, corroborating the participation of CD36 in 
the development of alcoholic steatosis (22). As a conse-
quence of the increased expression of hepatic fatty acid 
transporters, alcohol consumption increases the hepatic 
capacity for exogenous fatty acid uptake. Indeed, fatty acid 
uptake is increased in primary cultured hepatocytes from 
alcohol-fed rats (23). Together, these alcohol-induced al-
terations in both hepatic fatty acid delivery and capacity for 
uptake contribute to increased hepatic lipid accumulation 
and resultant hepatic steatosis.

EFFECTS OF ALCOHOL ON HEPATIC FATTY ACID 
OXIDATION

Excessive alcohol consumption impairs fatty acid catabo-
lism predominantly through inhibition of mitochondrial 
-oxidation, which we and others have determined is the 
most significant contribution to alcohol-induced hepatic 
lipid accumulation (24–28). In addition to the direct toxic 
effects of alcohol on mitochondria (29), alcohol oxidation 
increases the NADH:NAD+ ratio, thus promoting alcohol 

Fig.  1.  Mechanisms of alcohol-induced hepatic lipid accumulation.
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oxidation at the expense of fatty acid oxidation (12, 30, 31). 
Alcohol also inhibits carnitine palmitoyltransferase (CPT)1 
activity, a rate-limiting step in fatty acid translocation for 
mitochondrial -oxidation, by reducing AMP-activated 
protein kinase (AMPK) activity and increasing acetyl-CoA 
carboxylase (ACC) activity and malonyl-CoA levels (32). 
Considering that carnitine is an essential cofactor for CPT1, 
alcohol-induced carnitine deficiency is another plausible 
mechanism of mitochondrial -oxidation inhibition. In-
deed, lower concentrations of plasma carnitine have been 
reported in alcoholic patients and chronically alcohol-fed 
animals (33, 34). In addition to effects on CPT1, ethanol 
closes voltage-dependent anion channels (VDACs) in the 
mitochondrial outer membrane (35–37). VDACs are re-
sponsible for outer membrane permeability for metabo-
lites including long-chain fatty acyl-CoA, which can lead to 
suppressed -oxidation. In cultured rat hepatocytes, etha-
nol and acetaldehyde inhibit VDAC conductance (36, 37).

PPAR

PPAR is a key transcriptional regulator of many genes 
involved in mitochondrial oxidation and whose ligands in-
clude free fatty acids and fatty acid derivatives (38). On 
forming a heterodimer with retinoid-X receptor, activated 
PPAR binds DNA recognition sites to regulate the tran-
scription of target genes. Even with the increased free fatty 
acids released from adipose tissue, alcohol is able to sup-
press PPAR signaling by decreasing PPAR binding activ-
ity, decreasing protein levels of retinoid-X receptor, and 
downregulating AMPK. In mice, PPAR agonists (Wy14643 
and clofibrate) override these effects of alcohol on PPAR 
signaling and prevent hepatic steatosis (39). Despite the 
potential utility of PPAR agonism in alcoholic steatosis, 
there have been no clinical studies to examine its efficacy 
in humans with ALD.

SIRT1-AMPK axis
AMPK is a serine-threonine kinase protein complex that 

helps maintain cellular energy homeostasis. Once activated 
by allosteric binding of AMP and by phosphorylation via 
one of its upstream kinases, AMPK rewires metabolism to 
inhibit anabolic processes and augment catabolism (40). 
Activated AMPK inhibits lipid synthesis via inhibitory phos-
phorylation of ACC. Inactivation of ACC leads to decreased 
levels of malonyl-CoA, an inhibitor of CPT1, which promotes 
fatty acid oxidation. AMPK also inhibits lipogenesis by in-
hibiting SREBP-1c and carbohydrate response element-
binding protein (ChREBP) as discussed later. In ethanol-fed 
rodents, AMPK activity is decreased, which increases hepa-
tocellular lipid accumulation through the activation of 
ACC, SREBP-1c, and ChREBP (41).

Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase that 
acts as a master sensor of NAD+ and modulates cellular me-
tabolism. In the liver, SIRT1 plays a pivotal role in the regu-
lation of lipid metabolism by modifying the acetylation 
status of various targets (42). The interdependent regula-
tion between SIRT1 and AMPK in hepatic lipid metabolism 
is well established (43). SIRT1 stimulates AMPK by modu-
lating liver kinase B1 (LKB1), an upstream AMPK kinase; 

conversely, AMPK increases cellular NAD+ levels, which 
subsequently activates SIRT1. Hence, the SIRT1-AMPK axis 
is a central signaling system that controls lipid metabolism. 
Chronic ethanol administration impairs the hepatic SIRT1-
AMPK axis in several animal models (32, 44), thus stimulat-
ing lipogenesis. Resveratrol, an agonist of both SIRT1 and 
AMPK, shows its protective action against hepatic lipid ac-
cumulation by stimulating the hepatic SIRT1-AMPK axis in 
alcohol-fed mice (45).

EFFECTS OF ALCOHOL ON HEPATIC DE NOVO 
LIPOGENESIS

Besides uptake of fatty acids from extrahepatic sources, 
hepatocytes can synthesize fatty acids from nonlipid pre-
cursors such as sugars and proteins (46). De novo lipogen-
esis employs several lipogenic enzymes including ACC, 
FAS, and stearoyl-CoA desaturase 1 (SCD1) that are con-
trolled coordinately by transcriptional factors and meta-
bolic regulators including clock genes (47). In addition, a 
series of key enzymes including phosphatidyl phosphatases 
(PAPs) (e.g., lipin) and acyltransferases [e.g., diacylglyc-
erol acyltransferase (DGAT)] are involved in glycerolipid 
synthesis, which further contribute to triglyceride and 
phospholipid production (48). Alcohol exposure modulates 
many of the lipid regulatory factors and lipogenic enzymes 
and, in doing so, augments hepatic triglyceride accumula-
tion as reviewed below.

SREBP-1c
SREBP-1c is a transcription factor that regulates expres-

sion of ACC, FAS, and SCD1 (49). SREBP-1c is implicated 
in the pathogenesis of alcohol-induced steatosis, as SREBP-
1c knockout mice are protected from alcohol-induced he-
patic steatosis (50). SREBP-1c protein and its transcripts 
are increased in the livers of acutely and chronically ethanol-
fed mice (51, 52), but unlike the lipogenic genes it regulates 
(i.e., ACC and FAS), SREBP-1c does not appear to be influ-
enced by alcohol-specific effects on circadian genes (47). 
The activation of SREBP-1c in ALD is mediated through 
several pathways. Acetaldehyde directly induces the matu-
ration of SREBP-1c (52). Alcohol also indirectly activates 
SREBP-1c via multiple factors, including ER stress, adenos-
ine, and endocannabinoid production (53–56). SREBP-1c 
is also activated by lipopolysaccharide and TNF, both of 
which are elevated in ALD patients (57, 58). Finally, alco-
hol downregulates AMPK, SIRT1, and signal transducer 
and activator of transcription 3 (STAT3), factors that sup-
press SREBP-1c expression (32, 44, 59).

ChREBP
ChREBP is a key transcription factor that acts similarly to 

SREBP-1c, regulating lipogenic target genes (i.e., FAS, SCD1, 
elongase 6, glycerol phosphate acyltransferase). ChREBP is 
activated in mice fed chronically with alcohol by a mecha-
nism that involves dephosphorylation of ChREBP through 
the inhibition of AMPK and protein phosphatase 2A (PP2A) 
(60). Acute alcohol feeding also increases ChREBP activity 
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via acetylation by SIRT1 (61). In addition, ChREBP silenc-
ing prevents ethanol-induced hepatic steatosis in mice, in-
dicating an important role of ChREBP in steatosis under 
binge drinking conditions.

PPAR

PPAR, a member of the nuclear hormone receptor su-
perfamily involved in lipid metabolism (62), also contrib-
utes to the pathogenesis of ALD. The role of PPAR in 
ALD is less established than the contributions of other 
pathways. Namely, ethanol upregulates protein expression 
of both PPAR1 and PPAR2 isoforms in the steatotic 
livers of mice (63) and knockdown of hepatic PPAR 
alleviates alcohol-induced lipid accumulation in mouse 
livers by blunting SREBP-1c and lipogenic genes such 
as Fas, Dgat1, and Dgat2. However, pioglitazone, a systemic 
PPAR agonist that promotes adipocyte lipogenesis, allevi-
ates hepatic lipid accumulation in alcohol-fed rodents (64, 
65). These data demonstrate that there are likely tissue-
specific effects of alcohol on PPAR that merit further 
investigation before modulation of this pathway can be 
recommended as a therapeutic strategy in alcoholic 
steatosis.

EFFECTS OF ALCOHOL ON GLYCEROLIPID 
SYNTHESIS

Among a series of enzymes involved in glycerolipid syn-
thesis, lipin-1 has gained attention as one key enzyme ex-
plaining the pathogenesis of ALD. Lipin-1 plays dual 
functions in lipid metabolism as a PAP enzyme and as a 
transcriptional coactivator depending on its subcellular 
localization (66). When in the cytoplasm, lipin-1 can tran-
siently translocate to the ER, interact with substrates, and 
generate diacylglycerol, a precursor of triglycerides and 
phospholipids. In the nucleus, lipin-1 functions as a tran-
scriptional coactivator to increase fatty acid oxidation by 
activating PPAR and PPAR coactivator-1 and suppressing 
SREBP-1c. Lipin-1 subcellular localization can be modu-
lated by an alternative mRNA splicing process that pro-
duces two lipin-1 isoforms ( and ) and posttranslational 
modifications (e.g., phosphorylation, sumoylation, and 
acetylation) (66).

Accumulating evidence suggests that lipin-1 plays a piv-
otal role in the development of ALD. Ethanol exposure 
upregulates total hepatic lipin-1 expression in cultured he-
patocytes and mouse livers (67, 68). In particular, ethanol 
increases cytosolic localization of lipin-1, resultant PAP ac-
tivity, and triglyceride synthesis, whereas ethanol reduces 
its nuclear entry and disturbs fatty acid oxidation and 
VLDL secretion in mouse liver. The expression and local-
ization of lipin-1 are modulated by multiple signaling mol-
ecules including miR-217, SIRT1-AMPK, SREBP-1c, and 
adiponectin in ALD models (67, 69–71). The underlying 
mechanisms of altered subcellular localization of lipin-1 in 
response to ethanol involve the increased hepatic ratio of 
lipin-1/ as well as disturbed posttranslational modifica-
tions (67, 72).

The final step of triglyceride biosynthesis is catalyzed by 
DGAT enzymes, whose gene is encoded by DGAT1 and 
DGAT2. To catalyze the esterification reaction between a 
fatty-acyl CoA and diacylglycerol, DGAT1 preferentially tar-
gets exogenous fatty acids while DGAT2 utilizes mostly de 
novo synthesized fatty acids (73, 74). Chronic alcohol ex-
posure upregulates hepatic expression of both DGAT1 and 
DGAT2 in mice (75, 76); however, the specific mechanistic 
role of DGAT in alcohol-induced triglyceride formation is 
unknown.

EFFECTS OF ALCOHOL ON HEPATIC LIPID EXPORT

Hepatocytes export neutral lipids by packaging them 
into VLDL, which prevents intrahepatic triglyceride accu-
mulation. VLDL secretion depends on the availability of 
hepatic lipids and the hepatocytes’ capacity for VLDL as-
sembly. VLDL particles are generated in the ER upon 
apoB100 lipidation, which is facilitated by microsomal tri-
glyceride transfer protein. Nascent VLDL is then transferred 
to the Golgi apparatus where mature VLDL is formed.

Alcohol impairs VLDL assembly and secretion. Ethanol-
fed rodents have decreased apoB synthesis and hepatic 
microsomal triglyceride transfer protein expression and 
activity, effects reversed by pharmacological hepatocyte 
growth factor administration and PPAR agonism, respec-
tively (77–79). Alcohol’s alteration of methionine metabo-
lism is an additional mechanism by which VLDL secretion 
is impaired. Namely, ethanol reduces S-adenosyl methio-
nine (SAM) levels. The SAM-dependent enzyme phospha-
tidylethanolamine methyltransferase (PEMT) is responsible 
for the production of the VLDL lipid phosphatidylcholine 
(PC), and PEMT inhibition causes steatosis in mice (80, 
81). Consequently, alcohol’s inhibitory effects on SAM im-
pair VLDL production indirectly through PEMT inhibition 
and PC reduction (82).

EFFECTS OF ALCOHOL ON NEUTRAL LIPID 
STORAGE IN LIPID DROPLETS

In the liver, neutral lipids (triglycerides and cholesterol 
esters) are stored in lipid droplets (LDs) (83). Compared 
with the effects on triglyceride metabolism, the effect of 
alcohol on hepatic cholesterol esters is less well established 
but may be increased (84). Nascent LDs are thought to 
form from budding of the outer membrane of the ER, and 
as such, nascent LDs and outer ER membrane have several 
membrane proteins in common. The triglyceride synthetic 
enzyme DGAT is noteworthy (85, 86). The core of hepato-
cyte LD lipids is enveloped by a phospholipid monolayer of 
proteins involved in lipid and glucose homeostasis (83, 
85). The major hepatocyte LD family of proteins is the per-
ilipin (PLIN) family. In addition to PLINs, LD membranes 
incorporate a diverse set of surface proteins including pro-
teins involved in LD growth and triglyceride synthesis, the 
cell death-inducing DNA fragmentation factor--like effec-
tor (CIDE) protein family (87, 88), and DGAT enzymes (48), 
respectively. Alcohol’s regulation of these LD proteins and 
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the contribution of LD-associated genetic factors are dis-
cussed below.

PLINs
PLIN proteins (formerly PAT proteins, named for perili-

pin adipocyte differentiation-related protein and tail-inter-
acting protein of 47 kDa) are an ancient family of LD 
binding proteins whose regulation is important for LD for-
mation and degradation (89). In mammals, there are five 
isoforms of PLINs (PLIN1–5) with shared sequence homol-
ogy but with unique tissue-specific roles in LD biology. 
PLIN1 and PLIN2 are constitutively bound to the LD mem-
brane while PLINs 3–5 are considered exchangeable pro-
teins that can attach to and detach from the LD membrane. 
Normal liver expresses PLIN2, -3, and -5 (90–94), while 
there is increased expression of PLIN1, -2, -3, and -5 in fatty 
liver (93–96). Among the PLIN family proteins, only PLIN2 
and PLIN3 have been implicated in alcohol-induced he-
patic lipid accumulation. Namely, we and others demon-
strated that PLIN2 upregulation occurs in alcohol-fed 
rodents and humans (93, 97, 98). Our laboratory addition-
ally observed that hepatic PLIN2 upregulation coincides 
with the onset of steatosis and insulin resistance in an ex-
perimental rodent model of chronic alcohol consumption 
(11) and conversely, that alcohol-fed PLIN2-null mice are 
refractory to hepatic steatosis and glucose intolerance (98). 
These findings establish a critical role of PLIN2 in alco-
holic steatosis development and alcohol-induced glucose 
dysregulation, the latter of which is associated with the risk 
of progressive ALD (6, 99).

In contrast to the constitutively bound PLIN2, PLIN3 is 
an exchangeable protein, which is stable in the cytosol in 
the quiescent state and able to be recruited to nascent LDs 
(100, 101). Although some rodent models have not dem-
onstrated a significant role of PLIN3 in ALD pathogenesis 
(11, 98), other investigations point to an inhibitory role of 
alcohol in PLIN3-mediated lipid export from the ER and 
resultant ER lipotoxic stress (102). These data may suggest 
a potentially protective role of PLIN3 against ALD, but fur-
ther studies are warranted to clarify this relationship.

CIDEC
Once nascent LDs form, they can expand via local tri-

glyceride synthesis. So-called macrosteatosis results from 
the coalescence of smaller LDs, thought to be mediated by 
the CIDE family of proteins (103). Hepatic expression of 
Fsp27/Cidec (but not Cidea and Cideb) is upregulated in 
chronic-plus-binge ethanol-fed mice. Moreover, hepatic 
expression of FSP27/CIDEC correlates with the degree of 
steatosis in human alcoholic hepatitis patients (104).

LD-associated genetic factors
Emerging evidence suggests that LD-associated genetic 

factors account for the susceptibility of alcoholic patients 
to ALD. Several genome-wide association studies demon-
strated that patatin-like phospholipase domain-containing 
protein 3 (PNPLA3), transmembrane 6 superfamily mem-
ber 2 (TM6SF2), and membrane bound O-acyltransferase 
domain-containing 7 (MBOAT7) are important genetic de-

terminants of the risk and severity of ALD (105–107). Of 
these, the PNPLA3 missense I148M mutation is considered 
the most important risk allele for the development of ALD 
and the related condition, nonalcoholic fatty liver disease 
(108). PNPLA3 has been shown to have triglyceride hydro-
lase and transacylase activity, but its physiological role is 
not completely understood due to discordant findings in 
mouse models (109–111). The risk variant of PNPLA3 
accumulates on LDs in mice (112) and, in vitro, impairs 
lipophagy (113).

Like polymorphisms in PNPLA3, the rs641738 C>T variant 
in MBOAT7 is linked to an increased risk of alcohol-related 
cirrhosis (108). This MBOAT variant is also associated with 
an increased risk of steatosis and fibrosis (114). MBOAT7 is 
a multi-spanning transmembrane protein and works in the 
remodeling cycle of phospholipids, involved in the transfer 
of fatty acids between phospholipids and lysophospholipids 
(115, 116), but the precise role of MBOAT7 in hepatic 
lipid accumulation remains unclear.

A polymorphism of the PLIN2 gene has been reported 
(117). A minor allele of this missense polymorphism, Ser-
251Pro, impairs formation of a PLIN2 -helix, causing re-
duced plasma triglyceride and VLDL levels in humans. 
Although there is a plausible impact of the PLIN2 polymor-
phism on alcoholic fatty liver, its role, like those of the 
aforementioned polymorphisms, remains unclear.

EFFECTS OF ALCOHOL ON LD CATABOLISM

Catabolism of LDs takes two forms: lipolysis by cytosolic 
lipases such as ATGL and autophagy-mediated mobiliza-
tion. Autophagy is a recycling process by which cellular 
components are sequestered within vesicles and fuse with 
lysosomes for degradation. Autophagic degradation of LDs 
is referred to as lipophagy (118). Lipophagy has been es-
tablished to play an important role in experimental alco-
holic steatosis (119); however, acute alcohol feeding and 
chronic alcohol feeding have differential effects on lipo-
phagy. Namely, acute ethanol administration induces au-
tophagy in animal models (120–122), while chronic alcohol 
inhibits lipophagy. This inhibition of lipophagy by chronic 
alcohol results from lysosomal damage, suppression of lyso-
somal proteolytic activity, and inhibition of autolysosome 
formation (123, 124). These data emphasize the impor-
tance of differentiating the acute versus chronic effects of 
alcohol on lipid metabolism and tailoring potential thera-
pies accordingly.

EFFECTS OF ALCOHOL ON BIOACTIVE LIPIDS

Lipidomics analysis has demonstrated that chronic alco-
hol consumption promotes the accumulation of both neu-
tral and bioactive lipids within hepatocytes (125–128). 
Neutral lipids such as cholesterol esters and triglycerides 
(discussed above) lack a charge, have no signaling proper-
ties, and are often enclosed within LDs (129, 130). Bioac-
tive lipids are signaling lipid mediators that effect cellular 
homeostatic and immune pathways (131). Examples include 
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fatty acids, ceramides, and phospholipids, all of which have 
been implicated in ALD pathogenesis.

Fatty acids
Increased hepatic fatty acids are one notable feature in 

ALD, reported by many lipidomic studies in experimental 
ALD rodent models (126, 132–135). As mentioned above, 
there are multiple mechanisms to increase hepatic fatty acids 
in ALD. Interestingly, alcohol exposure alters not only the 
quantity but also the composition of fatty acids in the liver. 
Alcohol shifts the fatty acid composition from saturated 
fatty acids toward unsaturated (mono- and polyunsatu-
rated) fatty acids in alcohol-fed rodents (126–128, 136). In 
addition, 18-carbon fatty acids with different degrees of 
saturation (C18:0, C18:1, C18:2, and C18:3) as well as doco-
sahexaenoic acid (C22:6) are notably elevated in alcohol-
exposed livers (126, 132, 133). Even with these consistent 
findings in hepatic fatty acid composition in ALD animal 
models and several studies demonstrating efficacy of a satu-
rated fatty acid diet in experimental ALD (137–139), data 
in humans are lacking and limit progress toward applying 
dietary strategies to human ALD.

Ceramides
Altered sphingolipid metabolism is an emerging area of 

ALD pathogenesis. In particular, the bioactive lipid ce-
ramide accumulates in the livers of patients with ALD and 
in animal models of ALD (140, 141). Ceramides are bioac-
tive lipids that can impair insulin signaling, induce oxida-
tive stress, impair fat oxidation, and increase lipoprotein 
aggregation (142–144), all of which are linked to the 
pathogenesis of ALD as discussed above. Ceramide de novo 
synthesis is modulated by alcohol exposure, and the mRNA 
levels of three ceramide synthases (CERS1, CERS5, and 
CERS6) and the major subunit of serine palmitoyl transfer-
ase (SPT) are increased in human livers with advanced 
ALD (141). In addition, we have demonstrated that CERS6 
positively regulates LD accumulation and is upregulated in 
experimental in vivo and in vitro models of ALD as well as 
in humans with alcoholic steatosis (145). We and others 
have demonstrated further that pharmacologic inhibition 
of ceramide synthesis blunts ethanol-induced steatosis and 
improves glucose tolerance (145–149). Together, these in-
vestigations demonstrate that dysregulated sphingolipid 
metabolism plays a critical role in alcoholic steatosis and 
ALD pathogenesis and present a novel therapeutic oppor-
tunity for ALD management.

Phospholipids
Alcohol exposure disturbs phospholipid metabolism in 

the livers of ALD patients and animal models (127, 150). 
Among various phospholipids, PC and phosphatidyletha-
nolamine (PE) are two major phospholipids that are dis-
tributed in the plasma membrane. Hepatic PC is made 
from choline catalyzed by the CDP-choline pathway and is 
also made by PEMT that converts PE to PC via three se-
quential steps of methylation (151, 152). Alcohol exposure 
decreases hepatic PC as well as the ratio of PC/PE in ALD 
patients and animal models (127, 150). Alcohol-induced 

reduction in hepatic PC levels occurs by choline deficiency, 
decreased PEMT activity, and reduced availability of the 
methyl groups (153–156). Dietary PC supplementation at-
tenuates ethanol-induced fibrosis in baboons (157, 158); 
dietary betaine administration also attenuates alcoholic ste-
atosis by promoting PEMT activity in mice (82). Given that 
the PC/PE ratio determines cellular membrane integrity 
and plays a role in the development of steatosis and steato-
hepatitis (159), the ethanol-induced perturbations in phos-
pholipid metabolism are likely to promote the development 
of ALD.

CONCLUSIONS

In summary, alcohol dysregulates many aspects of he-
patic lipid metabolism. Alcohol-induced hepatic fatty acid 
uptake, impairment of fatty acid oxidation, promotion of 
de novo lipid synthesis and neutral lipid storage, and inhi-
bition of lipid export and LD catabolism are all pathways 
that converge to cause hepatocellular LD accumulation. In 
addition to these relatively well-established mechanisms, 
several emerging areas of alcohol-induced hepatocellular 
LD regulation have gained attention. In particular, the role 
of bioactive lipids, such as sphingolipids, and genetics are 
likely to unveil novel biomarkers and create opportunities 
for early therapeutic intervention for those at risk of ad-
vanced disease.
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