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alkenylphosphatidylcholine species (rg: 0.45–0.74). Overall, 
51% of the 4,768 lipid species-CVD trait genetic correlations 
were statistically significant after correction for multiple 
comparisons.  This is the largest lipidomic study to address 
the heritability of lipids and their genetic correlation with 
CVD traits. Future work includes identifying putative causal 
genetic variants for lipid species and CVD using genome-
wide SNP and whole-genome sequencing data.—Cadby, G., 
P. E. Melton, N. S. McCarthy, C. Giles, N. A. Mellett, K. 
Huynh, J. Hung, J. Beilby, M-P. Dubé, G. F. Watts, J. Blangero, 
P. J. Meikle, and E. K. Moses. Heritability of 596 lipid species 
and genetic correlation with cardiovascular traits in the Bus-
selton Family Heart Study. J. Lipid Res. 2020. 61: 537–545.
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CVD is the leading cause of death globally, accounting 
for approximately 31% of all deaths in 2015 (1). Cardio-
metabolic traits associated with CVD include the standard 
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lipid profile (“clinical lipids”), such as elevated LDL-C and 
triglycerides, and lowered HDL-C, and other factors such 
as elevated BMI, systolic blood pressure (SBP), and dia-
stolic blood pressure (DBP) (2). These traits are heritable, 
with the heritability of each trait dependent on the study 
type and sample used to measure heritability (3). Typical 
reported heritabilities for clinical lipid traits are in the 
range of 0.30 to 0.70 (4–9), while blood pressure and obesity-
related traits tend to vary between 0.20 and 0.50 (4–8, 10).

Clinical lipid measures such as total cholesterol, LDL-C, 
and HDL-C reflect the cholesterol component of the lipo-
protein particles, which are complex mixtures of phospho-
lipids, sphingolipids, free cholesterol, cholesteryl esters, 
and triglycerides (referred to as triacylglycerol (TG) spe-
cies in the mass spectrometric measurements), together 
with a range of proteins (11). These lipid classes contain 
potentially thousands of individual molecular species that 
make up the human lipidome, which can now be measured 
using established low-cost high-throughput methods (12). 
Lipids are transported through plasma as lipoproteins for 
exchange between the liver, intestine, and peripheral tis-
sues. Their composition and abundance are likely to re-
flect underlying metabolic processes influenced by the 
environment, diet, and genetics (11). The individual spe-
cies comprising the lipidome may represent novel predic-
tors of CVD risk, particularly if measured in longitudinal 
cohort studies where causality may potentially be inferred 
(11, 13). Owing to their close proximity to an individual’s 
metabolic state, genetic investigations into these lipid spe-
cies may provide insight into CVD risk and prediction, 
above that already identified through the genetic analysis 
of the composite clinical lipid measures. This is particularly 
the case for lipid species that are genetically correlated 
with disease-related traits, as the search for pleotropic clues 
can be restricted to the more informative species (i.e., 
those that are heritable and genetically correlated).

Associations between the circulating lipidome and CVD 
traits have provided insight into CVD etiology and identi-
fied novel biomarkers. Meikle et al. (14) identified 13 lipid 
classes and 102 lipids associated with stable coronary artery 
disease (CAD) compared with healthy controls. In a more 
recent study, nine lipid classes/subclasses and 113 lipid 
species from the apoA fraction, and seven classes/sub-
classes and 113 lipid species from plasma were associated 
with unstable CAD (compared with stable CAD) (15). In 
the Malmo Diet and Cancer study, incident cardiovascular 
events were marginally associated with lipid species belong-
ing to the lysophosphatidylcholine (LPC), SM, and TG 
lipid classes (16). Ganna et al. (17) found significant asso-
ciations between incident coronary heart disease and 32 
metabolites, five of which were also associated in an inde-
pendent cohort. After adjustment for traditional CVD risk 
factors, the addition of lipid species to a base model pre-
dicting CVD events marginally improved for CVD events 
(C-statistic increased from 0.68 to 0.70) and CVD deaths 
(C-statistic increased from 0.74 to 0.76) (13). Similar re-
sults were seen in a study of 5,991 individuals from a popu-
lation-based study, with the inclusion of seven lipid species 
in a traditional risk factor model improving the C-statistic 

by 0.025 and 0.054 for CVD events and CVD death, respec-
tively (18).

Numerous studies have estimated the heritability of the 
lipidome and its association and/or genetic correlation 
with CVD traits. In a study of Mexican Americans from the 
San Antonio Family Heart Study (19), all 319 lipid species 
were significantly heritable, with a median heritability of 
0.37. This study also identified lipid species clustered asso-
ciated with risk of cardiovascular death, and other CVD-
related risk factors, such as obesity, type 2 diabetes, and 
higher triglycerides. In a more recent study of 2,181 indi-
viduals, Tabassum et al. (20) estimated SNP-based herita-
bilities of 141 lipid species ranging between 0.10 and 0.54. 
Strong genetic correlations were observed between TG and 
diacylglycerol (DG) lipid classes and the clinical lipid measure 
of triglycerides (average rg = 0.88). Most recently, Demirkan 
et al. (21) examined the genetic correlation between 90 lipid 
species from TG, SM, phosphatidylcholine (PC), alkylphos-
phatidylcholine [PC(O)], LPC, phosphatidylethanolamine 
(PE), and alkylphosphatidylethanolamine [PE(O)] classes 
and identified genetic correlations between lipid species and 
clinical lipids (i.e., triglycerides, LDL-C, HDL-C), total body 
fat percentage, and BMI. These studies indicate that the 
human lipidome is heritable and highlight the genetic plei-
otropy that exists between the plasma lipidome and CVD traits.

The aim of this study was to estimate the heritability of 
the human lipidome and the genetic correlation between 
lipid classes and species with CVD traits using our ex-
panded lipidomic profile (with more specific lipid species 
and new lipid classes) of the Busselton Family Heart Study.

MATERIALS AND METHODS

Study population
Participants (n = 4,492) studied were taken from the 1994/95 

survey of the original participants of the long-running epidemio-
logical study, the Busselton Health Study, for whom genome-wide 
SNP data, extensive phenotype data, and blood serum were avail-
able. The Busselton Health Study is a community-based study in 
Western Australia that includes both related and unrelated indi-
viduals (predominantly of European ancestry), and has been de-
scribed in more detail elsewhere (22–24). Informed consent was 
obtained from all participants and the 1994/95 health survey was 
approved by the University of Western Australia Human Research 
Ethics Committee (UWA HREC). The current study, the Busselton 
Family Heart Study, was approved by the UWA HREC. This study 
was conducted in accordance with the ethical principles of the 
Declaration of Helsinki.

Serum lipidomic profiling
Targeted lipidomic profiling was performed in positive-ion 

mode using electrospray ionization-tandem mass spectrometry to 
quantify the major fatty acids of 596 lipid species from 33 lipid 
classes, from blood serum. Positive-ion mode only was selected to 
minimize the time required for analysis of each sample, while still 
providing good coverage of the lipidome (25). Profiling was per-
formed at the Metabolomics Laboratory, Baker Heart and Diabe-
tes Institute, Melbourne, Victoria, Australia. Serum lipids were 
isolated using a single phase butanol:methanol extraction (26) and 
quantified by liquid chromatography-tandem mass spectrometry 
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as previously described (25). Briefly, serum samples (10 ul) were 
placed into a randomized order, with blank and pooled quality 
control samples placed every 20 and 10 serum samples, respec-
tively. Serum aliquots were extracted in a single-phase extraction 
with the addition of 100 ul of butanol:methanol (1:1), containing 
a mix of 18 nonphysiological or stable isotope-labeled lipid stan-
dards between 10 and 10,000 pmol each. Lipid analysis was per-
formed by liquid chromatography electrospray ionization-tandem 
mass spectrometry using an Agilent 1290 HPLC coupled to an 
Agilent 6490 triple quadrupole mass spectrometer. The ion 
source was operated in positive ionization mode, with conditions: 
gas temperature 150°C, gas flow 17 liters/min, nozzle pressure 20 
psi, sheath gas temperature 200°C, sheath gas flow 10 liters/min, 
capillary voltage 3,500 V, nozzle voltage 1,000 V. Liquid chroma-
tography was performed on a Zorbax Eclipse Plus C18, 1.8 um, 
100 × 2.1 mm column (Agilent Technologies). Solvents consisted 
of water:acetonitrile:isopropanol containing 10 mM ammonium 
formate (solvent A, 50:30:20; solvent B, 1:9:90). The column was 
heated to 60°C and the autosampler regulated to 25°C. Lipid ex-
tracts (1 ul) were injected and separated under gradient condi-
tions using a flow rate of 400 ul/min: 0 min, 10% B; 2.7 min, 45% 
B; 2.8 min, 53% B; 9 min, 65% B; 9.1 min, 89% B; 11 min, 92% B; 
11.1 min, 100% B; 11.9 min, 100% B; 12.8 min, 10% B; 12.9 min, 
10% B (flow rate 600 ul/min); 13.9 min, 10% B (flow rate 600 ul/
min); 14 min, 10% B (flow rate 400 ul/min); held at 10% B and 
400 ul/min until the next injection at 16.2 min. The first minute 
and last 3 min of each analytical run were diverted to waste.

A total of 497 transitions, representing 596 lipid species, were 
measured using dynamic multiple reaction monitoring, where 
data were collected during a retention time window specific to each 
lipid species. Raw mass spectrometry data were analyzed using 
Mass Hunter Quant B08 (Agilent Technologies). Lipid concentra-
tions were calculated by relating the area under the chromato-
graphic peak for each lipid species to the corresponding internal 
standard. Correction factors were applied to adjust for differences 
in response factors, where these were known (25).

Phenotypic variables
Details of the Busselton Health Study data collection have been 

published previously (27). For this study, we examined eight CVD 
phenotypic variables: HDL-C, LDL-C, triglycerides, total choles-
terol, SBP, DBP, BMI, and waist-hip ratio (WHR). Serum choles-
terol and triglycerides were calculated by standard enzymatic 
methods on a Hitachi 747 (Roche Diagnostics, Sydney, Australia) 
from fasting blood collected in 1994/95. HDL-C was determined 
on a serum supernatant after polyethylene glycol precipitation us-
ing an enzymatic cholesterol assay and LDL-C was estimated using 
the Friedewald formula (28). Five minute resting SBP and DBP 
were used. Height and weight (used to calculate BMI) were col-
lected from participants at the time of interview (1994/95). WHR 
was calculated as waist circumference (centimeters) / hip circum-
ference (centimeters). Use of antihypertensive and lipid-lowering 
medications was collected at interview (1994/95).

Genotype data
Genotyping was performed on the Illumina Human 610K 

Quad-Bead Chip (Illumina Inc., San Diego, CA) at the Centre 
National de Genotypage in Paris, France (n = 1,468), and on the 
Illumina 660 W Quad Array Bead Chip (Illumina Inc.) at the 
PathWest Laboratory Medicine WA (Nedlands, Western Australia, 
Australia) (n = 3,428). Complete linkage clustering based on pair-
wise identity by state distance in PLINK (29) showed no batch 
effects, therefore the batches were merged.

Standard genotype data quality control was performed [de-
scribed in further detail elsewhere (24)]. Briefly, we excluded 
SNPs with: call rates <95%, minor allele count <10, and deviations 

from Hardy-Weinberg equilibrium (P < 5.0 × 104). Individuals 
were excluded if: >3% of SNP data were missing (n = 11), reported 
sex did not match genotyped sex (n = 48), duplicates (n = 123), 
missing phenotype data (n = 11), or >5 standard deviations above/
below mean heterozygosity (n = 28). Individuals with non-Euro-
pean ancestry (n = 4) were also excluded.

Statistical analyses
We first used the general linear mixed effects model incorpo-

rated in the Sequential Oligogenic Linkage Analysis Routines 
(SOLAR) (30) to estimate the narrow-sense heritabilities of lipid 
classes (n = 33), lipid species (n = 596), and eight CVD traits: 
HDL-C, LDL-C, triglycerides, total cholesterol, SBP, DBP, BMI, 
and WHR. SOLAR uses a variance-component method to parti-
tion observed covariance between individuals into genetic and 
environmental components. Heritability is defined as the vari-
ance in the trait due to additive genetic effects divided by the sum 
of the additive genetic effects and the random (unmeasured) en-
vironmental effects. The null hypothesis of no heritability (h2 = 0) 
was tested by comparing the log likelihood for the full model 
[with the genetic relatedness matrix (GRM)] and the reduced 
model (without the GRM), using likelihood ratio tests. Twice the 
difference in log-likelihoods of these models was distributed as a 


2 random variable with 1 degree of freedom.
Genetic correlations between lipid classes/species and eight 

CVD traits were calculated in SOLAR. Lipid classes were defined 
as the sum of the lipids within each class (i.e., total lipid abun-
dance for each class). Genetic correlations were estimated using a 
variance components model to partition the phenotypic correla-
tion between the traits into proportion of variability due to shared 
genetic effects (g) and the proportion of variability due to shared 
environmental effects. The null hypothesis of no genetic correla-
tion (rg = 0) was tested by comparing the log likelihood for the full 
model (with the GRM) and the reduced model (without the 
GRM), using likelihood ratio tests.

All heritability and genetic correlation analyses included a 
GRM, to exploit both known and unknown relatedness in the 
sample. We estimated empirical kinship probabilities between 
pairs of individuals from all genome-wide SNP data using Linkage 
Disequilibrium Adjusted Kinships (LDAK) software (31), as de-
scribed previously (24), to form the GRM. Any value of kinship in 
the GRM less than 0.05 was set to zero to minimize potential bias 
from using both closely and distantly related individuals. Using this 
method, heritability estimates derived from SNP data have been 
shown to be similar to those obtained from using identity-by-descent 
measures from pedigrees with known pedigree structures (9).

Rank-based inverse normal transformed residuals were used in 
all analyses. All analyses included adjustments for age, sex, age2, 
and their interactions, age × sex and age2 × sex. Adjustment for 
age and sex were included in heritability and genetic correlation 
analyses to estimate the additive genetic effects of lipid classes/
species and CVD traits after accounting for these covariates. In 
addition, interaction terms were included as the relationship be-
tween outcomes (lipid classes/species and CVD traits) and age 
was different between men and women (age × sex interaction). 
We also identified that the relationship between outcomes and 
age was not linear, hence the inclusion of age2 and the age2 × sex 
interaction. In our heritability and genetic correlation analyses, 
these interactions consistently showed P-values <0.05. For indi-
viduals taking antihypertensive medications (n = 507), their SBP 
and DBP measures were increased by 10 mmHg and 5 mmHg, 
respectively. In addition, lipid measures were corrected by the use 
of lipid-lowering medications, by matching individuals taking 
lipid-lowering medication (n = 108) and individuals not taking 
medication on age, sex, and BMI, and calculating a multiplica-
tive correction factor. The resulting correction factors were as 
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follows: HDL-C (1.068), LDL-C (1.123), total cholesterol (1.059), 
triglycerides (1.138), and lipid species (1.234). Sensitivity analysis 
(results not shown) indicated no marked change in heritability or 
genetic correlation estimates compared with excluding either these 
108 individuals or using unadjusted measures. Only individuals 
with genotype, lipidomic, and phenotype data were included for 
analysis (n = 4,492). Manipulation of data and creation of residu-
als was performed in R 3.5.1 (32).

The false discovery rate (33) was used to correct for multiple 
testing, with q < 0.05 considered statistically significant.

RESULTS

Heritability
Table 1 shows the study characteristics for the full cohort 

(n = 4,492). The average age of the study participants was 
50.8 years, with mean BMI of 26.04. All CVD traits were 
significantly heritable (all q < 0.05) (Table 1). The most 
heritable CVD trait was HDL-C (h2 = 0.59, q = 7.2 × 1061) 
and the least heritable was WHR (h2 = 0.25, q = 2.0 × 1015).

TABLE  1.  Characteristics of study population and heritability of CVD traits

Mean (SD), n = 4,492 h2 (SE) P q-Value

Age, years 50.83 (17.37) — — —
BMI,a kg/m2 26.04 (4.23) 0.46 (0.04) 5.9 × 1042 1.2 × 1041

WHRa 0.85 (0.07) 0.25 (0.03) 2.0 × 1015 2.0 × 1015

HDL-C,b mmol/l 1.39 (0.39) 0.59 (0.03) 1.8 × 1061 7.2 × 1061

LDL-C,b mmol/l 3.60 (1.00) 0.52 (0.04) 5.6 × 1055 1.5 × 1054

Triglycerides,b mmol/l 1.32 (0.93) 0.37 (0.03) 9.4 × 1033 1.5 × 1032

Total cholesterol,b mmol/l 5.59 (1.11) 0.57 (0.03) 9.4 × 1064 7.5 × 1063

SBP,c mmHg 124.6 (19.33) 0.32 (0.04) 2.0 × 1019 2.7 × 1019

DBP,c mmHg 75.09 (10.72) 0.26 (0.04) 8.1 × 1016 9.3 × 1016

h2, narrow-sense heritability.
a Heritability estimates for BMI; adjusted by age, age2, sex, sex × age, and sex × age2.
b Heritability estimates for HDL-C, LDL-C, triglycerides, and total cholesterol adjusted by age, age2, sex, sex × 

age, sex × age2 using lipid-lowering medication-adjusted values.
c Heritability estimates for SBP and DBP adjusted by age, age2, sex, sex × age, sex × age2 using blood-pressure-

lowering medication-adjusted values.

TABLE  2.  Heritabilities of lipid classes

Lipid Class (Abbreviated Name) Lipid Class (Full Name) n h2 (SE)a P q-Value

dhCer Dihydroceramide 6 0.35 (0.04) 9.5 × 1027 2.4 × 1026

Cer(d) Ceramide 40 0.34 (0.04) 3.6 × 1025 7.0 × 1025

HexCer Monohexosylceramide 14 0.50 (0.04) 7.2 × 1047 1.2 × 1045

Hex2Cer Dihexosylceramide 10 0.45 (0.04) 3.1 × 1042 3.4 × 1041

Hex3Cer Trihexosylceramide 6 0.43 (0.04) 2.5 × 1035 2.0 × 1034

SM Sphingomyelin 36 0.36 (0.04) 4.4 × 1027 1.2 × 1026

GM1 GM1 ganglioside 1 0.28 (0.04) 2.5 × 1018 3.2 × 1018

GM3 GM3 ganglioside 7 0.40 (0.04) 2.7 × 1029 1.0 × 1028

Sulf Sulfatide 6 0.40 (0.04) 1.8 × 1032 1.2 × 1031

PC Phosphatidylcholine 68 0.36 (0.04) 8.1 × 1026 1.7 × 1025

PC(O) Alkylphosphatidylcholine 21 0.34 (0.04) 5.5 × 1025 1.0 x 1024

PC(P) Alkenylphosphatidylcholine 24 0.40 (0.04) 1.1 × 1031 6.1 × 1031

LPC Lysophosphatidylcholine 56 0.29 (0.04) 3.4 × 1017 3.9 × 1017

LPC(O) Lysoalkylphosphatidylcholine 10 0.31 (0.04) 1.5 × 1019 2.0 × 1019

LPC(P) Lysoalkenylphosphatidylcholine 4 0.33 (0.04) 4.2 × 1024 6.9 × 1024

PE Phosphatidylethanolamine 36 0.34 (0.04) 7.3 × 1026 1.6 × 1025

PE(O) Alkylphosphatidylethanolamine 14 0.27 (0.04) 1.7 × 1017 2.0 × 1017

PE(P) Alkenylphosphatidylethanolamine 54 0.29 (0.04) 1.4 × 1018 1.9 × 1018

LPE Lysophosphatidylethanolamine 14 0.38 (0.04) 8.1 × 1030 3.3 × 1029

LPE(P) Lysoalkenylphosphatidylethanolamine 4 0.31 (0.04) 2.2 × 1021 3.2 × 1021

PG Phosphatidylglycerol 4 0.36 (0.03) 3.7 × 1031 1.7 × 1030

PI Phosphatidylinositol 27 0.35 (0.04) 3.5 × 1026 8.1 × 1026

LPI Lysophosphatidylinositol 8 0.27 (0.04) 3.4 × 1016 3.8 × 1016

PS Phosphatidylserine 7 0.16 (0.03) 4.0 × 107 4.1 × 107

COH Cholesterol 1 0.26 (0.04) 5.9 × 1015 6.3 × 1015

CE Cholesteryl ester 28 0.38 (0.04) 7.2 × 1029 2.2 × 1028

DE Dehydrocholesterol ester 6 0.28 (0.04) 1.2 × 1017 1.5 × 1017

oxCE Oxidized cholesteryl esters 2 0.14 (0.04) 7.1 × 106 7.1 × 106

AC Acylcarnitine 14 0.48 (0.03) 2.0 × 1050 6.6 × 1049

DG Diacylglycerol 20 0.31 (0.03) 1.3 × 1022 2.1 × 1022

TG Triacylglycerol 44 0.32 (0.03) 1.6 × 1024 2.7 × 1024

TG(O) Alkyl-diacylglycerol 3 0.37 (0.04) 6.4 × 1029 2.1 × 1028

CoQ10 Ubiquinone 1 0.29 (0.04) 1.7 × 1020 2.5 × 1020

Total 596

Lipid classes presented in this table were calculated by summing the lipid species within each class. n, number 
of lipid species within class; h2, heritability.

a Heritability estimates adjusted by age, age2, sex, sex × age, sex × age2, and using lipid-lowering medication-
adjusted values.
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All lipid classes were significantly heritable (q < 0.05; 
Table 2). Heritabilities ranged from 0.14 [oxidized cho-
lesteryl esters (oxCEs)] to 0.50 [monohexosylceramide 
(HexCer)]. The estimates of these class totals and their 
concentration are shown in Fig. 1. The median heritability 
was 0.34.

Over 99% of lipid species were significantly heritable (q 
< 0.05; supplemental Table S1). Significant heritabilities 
ranged from 0.06 [PE(36:0); SE = 0.03; q = 0.04] to 0.50 

[AC(16:1); SE = 0.03; q = 2.3 × 1052]. The median herita-
bility was 0.31 (interquartile range = 0.09). Overall, the 
classes acylcarnitine (AC) and HexCer had the highest me-
dian lipid species heritability of 0.43, and phosphatidylser-
ine (PS) had the lowest median lipid species heritability of 
0.16 (Fig. 2).

Genetic correlation
Genetic correlations between the lipid classes (sum of 

the lipid species within each class) and CVD traits are pre-
sented in Fig. 3 (see supplemental Table S2 for further de-
tail). Approximately 57% of genetic correlations were 
statistically significant (q < 0.05). The largest genetic cor-
relation was observed between the clinical lipid triglycer-
ides and DG (rg = 0.89, SE = 0.02; q = 3.9 × 1022). DG and 
PC(O) were genetically correlated with all CVD traits, and 
alkenylphosphatidylcholine [PC(P)] was genetically corre-
lated with all CVD traits, except for DBP. LDL-C was geneti-
cally correlated with all lipid classes (rg range: 0.13–0.82), 
apart from PS. In fact, PS was not genetically correlated 
with any CVD trait. Similarly, HDL-C was genetically corre-
lated (rg range: 0.42 to 0.69) with all lipid classes, besides 
PS and AC.

We also investigated the genetic correlations between 
individual lipid species and CVD traits, identifying where 
class correlations were driven by specific lipid species 
(Fig. 4). Overall, 51% of the 4,768 pairwise lipid species-
CVD trait genetic correlations were statistically signifi-
cant (q < 0.05; supplemental Table S3). All lipid classes 
had at least one species significantly genetically corre-
lated with one CVD trait. Additionally, we observed large 
heterogeneity in genetic correlations within each class. 
The largest genetic correlations were between triglycer-
ides and members of the DG class (rg range: 0.47–0.89; 
q < 4.1 × 109). Three PS lipid species showed significant 
genetic correlations with LDL-C [PS(40:6), rg = 0.32], 

Fig.  1.  Heritability of the 33 lipid classes plotted against lipid class 
concentration (picomoles per milliliter). Circles show the heritabil-
ity estimates, with standard error bars. CE, cholesteryl ester; COH, 
cholesterol; CoQ10, ubiquinone; DE, dehydrocholesteryl ester; dh-
Cer, dihydroceramide; GM1, GM1 ganglioside; GM3, GM3 ganglio-
side; Hex2Cer, dihexosylceramide; Hex3Cer, trihexosylceramide; 
LPC(P), lysoalkenylphosphatidylcholine; LPE, lysophosphatidyl-
ethanolamine; LPE(P), lysoalkenylphosphatidylethanolamine; LPI, 
lysophosphatidylinositol; PE(P), alkenylphosphatidylethanolamine; 
PI, phosphatidylinositol; TG(O), alkyl-diacylglycerol.

Fig.  2.  Heritability of the 596 lipid species stratified 
by class, presented as a boxplot, indicating the median 
and 25th and 75th centiles with whiskers representing 
the upper and lower limits. Full heritability estimates 
are shown in supplemental Table S1. For lipids, please 
refer to the abbreviations used in Fig. 1.
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total cholesterol [PS(40:6), rg = 0.37; PS(40:5), rg = 0.28; 
PS(36:1), rg = 0.37], and BMI [PS(36:1), rg = 0.22], while 
the class total showed no significant genetic correla-
tions with any trait. Overall, the clinical lipids, total cho-
lesterol and LDL-C, were the most consistently genetically 
correlated CVD traits, showing significant genetic cor-
relations with 565 (94.8%) and 554 (92.9%) lipid spe-
cies, respectively.

DISCUSSION

The current study provides evidence to support the role 
of additive genetic effects (significant heritabilities) in lipid 
species concentrations and the presence of genetic pleiot-
ropy (shared genes) between these lipid species and CVD 
traits. This is the largest lipidomic study to address the heri-
tability of lipids. The fine detail of our lipidomic profiling 

Fig.  3.  Genetic correlation between 33 lipid classes and eight CVD traits. Circles represent the genetic correlation, with bars indicating SEs. 
Genetic correlations that are different from zero at a false discovery rate (FDR) of 0.05 are shown in black, and those not different from zero 
are shown in gray. Full genetic correlation estimates are shown in supplemental Table S2. For lipids, please refer to abbreviations used in Fig. 
1. TRIGS, triglycerides; TOTAL CHOL, total cholesterol.
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provides the opportunity to assess heritability not only at 
the lipid class level, but also to assess how the fatty acid 
composition affects heritability and genetic correlations 
with CVD risk factors. These data will become an important 
resource as we seek to better understand the relationship 
between genetic and environmental risk with CVD, both of 
which are partially mediated through lipid metabolism. In 
this work, we report three important findings: first, we have 
shown that the human lipidome (both lipid species and 
lipid classes) is significantly heritable. Herein, we report 
the heritabilities for the largest number of lipid species to 
date (596 species from 33 lipid classes) in the largest sample 
of individuals (n = 4,492) to date. Second, we have identi-
fied lipid classes and lipid species genetically correlated 
with CVD traits. Third, we have replicated previous studies 
showing CVD traits are heritable.

The range of lipid species heritabilities (h2: 0.06–0.50) 
observed in this study for lipid species and classes was com-
parable to that of earlier studies with estimates ranging 
from 0.09 to 0.60 (19, 20). This highlights and supports the 
role of additive genetic effects on lipid species levels, rather 
than only the effect of dietary intake or environmental 
factors.

Strong positive genetic correlations between the clinical 
measure of triglycerides and the mass spectrometric mea-
sure of TG and DG lipid classes were similar to those identi-
fied previously (20, 21). In addition, we also observed a 
novel strong positive genetic correlation between the clini-
cal lipid triglycerides and phosphatidylglycerol (PG) species 

(rg: 0.64–0.82). A novel strong positive genetic correlation 
was also observed between HDL-C and species within the 
PC(P) class. Interestingly, HDL-C showed stronger positive 
correlations with lipid classes containing ether (O) or vinyl-
ether (P) bonds. Genetic correlations between the less un-
saturated/shorter chain species and HDL-C were stronger 
than those with the highly unsaturated species. For exam-
ple, the median genetic correlation with HDL-C within the 
PC(P) class was 0.57, compared with 0.46 in the PC(O) 
class and 0.42 in the PC class. Similarly, the median genetic 
correlation with HDL-C within the alkenylphosphatidyl-
ethanolamine [PE(P)] class was 0.45, compared with 0.43 
in the PE(O) class and 0.17 in the PE class. We also ob-
served marked differences in genetic correlations between 
lipids in the phospholipid classes, PC and SM. For exam-
ple, the median genetic correlation between LDL-C and 
lipid species in the SM class was 0.47 (range: 0.30–0.67), 
compared with 0.27 (range: 0.14–0.63) in the PC class; the 
significant genetic correlations were always positive. How-
ever, 96% (25/26) of significant genetic correlations be-
tween lipids in the SM class and triglycerides were negative, 
while only 35% (6/17) of significant genetic correlations 
between PC lipids and triglycerides were negative. This is in-
teresting as structurally these lipid classes are similar, in that 
they both contain a phosphorylcholine head group. How-
ever, unlike the SMs that contain only saturated and mono-
unsaturated acyl chains, the PCs contain many species of 
polyunsaturated acyl chains and it appears that these spe-
cies may drive the positive association with triglycerides.

Fig.  4.  Heat map of genetic correlations between lipid species and CVD traits. Red, negative genetic correlation; blue, positive genetic correla-
tion. Only genetic correlations that are different from zero at a false discovery rate (FDR) of 0.05 are shown in the plot. Full genetic correlation 
estimates are shown in supplemental Table S3. For lipids and cardiovascular risk factors, please refer to abbreviations used in Figs. 1 and 3.
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While genetic correlations between the human lipidome 
and lipid concentrations may not be surprising, we also 
identified genetic correlations between lipid classes and in-
dividual lipid species and measures of obesity (WHR and 
BMI) and blood pressures. A recent study of 5,537 partici-
pants from three Dutch population-based cohorts exam-
ined 90 plasma lipids and failed to identify any significant 
genetic correlations between blood pressure or WHR, but 
did observe several associations with BMI (21). In the cur-
rent study, lipid species within the DG, PC, PC(O), PC(P), 
SM, and TG classes showed the most consistent genetic cor-
relations with WHR and BMI (supplemental Fig. S1), with 
some species from PC and SM classes genetically correlated 
with BMI in an earlier study (21). Compared with the previ-
ous study, the lipidomic methodology in the current study 
allowed greater specificity of individual lipid species. In ad-
dition, Linkage Disequilibrium Score Regression is known 
to be less powerful than variance-component methods 
used in the current study (34). In general, species within 
classes showed consistent directions of genetic correlations 
with BMI and WHR [for example, all significant genetic 
correlations between sulfatide (Sulf) species and BMI and 
WHR were negative, while all significant genetic correla-
tions between AC species were positive].

However, in the current study some lipid species within 
the SM, PC, LPC, lysoalkylphosphatidylcholine [LPC(O)], 
PE, and ceramide [Cer(d)] classes were positively geneti-
cally correlated with BMI/WHR, while others were nega-
tively genetically correlated with WHR/BMI, although no 
lipid species within any class was positively genetically cor-
related with WHR, and negatively genetically correlated 
with BMI, or vice versa (supplemental Fig. S2). These dif-
ferences are interesting, as they highlight that even within 
lipid classes, lipid species are genetically diverse, and may 
not share genes consistently with both WHR and BMI 
(both correlated traits). These genetic correlations be-
tween lipid species and non-lipid CVD traits indicate there 
are potentially pleiotropic genes that effect both lipid spe-
cies and non-lipid CVD traits.

Finally, we have replicated previous studies showing CVD 
traits are heritable with our heritability estimates (h2: 0.25–
0.59) comparable to those published previously in a larger 
sample of the Busselton Family Heart Study (24) and in 
earlier independent studies of CVD traits (4–10).

Limitations of the study
There are several potential limitations in our study. First, 

our study cohort comprised individuals with European an-
cestry and therefore these findings may not be generaliz-
able to other ethnic populations. However, the heritability 
estimates observed in this study are comparable to an ear-
lier study of Mexican-Americans (19). Second, lipid mea-
sures used within this study were measured only once, and 
therefore the lipid levels analyzed represent a snapshot in 
time and as such may be influenced by environmental fac-
tors that may also cluster within families, such as seasonal 
variations, illness, diet, and other lifestyle factors, that we 
were unable to take into account (35). Repeated lipid mea-
sures may result in less within-person variability; however, 

these are not available for this cohort. Third, serum sam-
ples were collected during the 1994/95 BHS survey and 
kept at 80°C until processing. Although the stability of 
lipid metabolites has generally been shown to be robust to 
long-term storage, minor alterations have been previously 
reported (36, 37). However, as samples were collected at 
the same time point, any changes should be consistent be-
tween the serum samples and so will likely have minimal 
effect on our analyses. Finally, while we have identified the 
possibility of pleiotropic genes associated with the human 
serum lipidome and CVD traits, we have not identified spe-
cific genetic variants or genes, which is a logical next step 
in attempting to understand the shared genetic etiology 
between the human lipidome and CVD traits. This will be 
the subject of future analyses.

In summary, we have shown that the human lipidome is 
heritable and genetically correlated with CVD traits. We 
have identified novel intermediate lipid endophenotypes 
that are genetically correlated with CVD traits and, due to 
their shared genetic etiology, genetic dissection of these 
lipidome endophenotypes may help to identify causal ge-
netic variants for CVD. Future work involves the analysis of 
genome-wide SNP and whole-genome sequence data in 
this cohort.

The authors acknowledge the numerous Busselton community 
volunteers who assisted with data collection and the study 
participants from the Shire of Busselton.
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