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Abstract

Purpose of Review—Fibrosis is a pathological feature of many human diseases that affect
multiple organs. The development of anti-fibrotic therapies has been a difficult endeavor due to the
complexity of signaling pathways associated with fibrogenic processes, complicating the
identification and modulation of specific targets. Evidence suggests that ephrin ligands and Eph
receptors are crucial signaling molecules that contribute to physiological wound repair and the
development of tissue fibrosis. Here, we discuss recent advances in the understanding of ephrin
and Eph signaling in tissue repair and fibrosis.

Recent Findings—Ephrin-B2 is implicated in fibrosis of multiple organs. Intercepting its
signaling may help counteract fibrosis.

Summary—Ephrins and Eph receptors are candidate mediators of fibrosis. Ephrin-B2, in
particular, promotes fibrogenic processes in multiple organs. Thus, therapeutic strategies targeting
Ephrin-B2 signaling could yield new ways to treat organ fibrosis.
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Introduction

An appropriate wound repair response is necessary to return injured tissues to homeostasis.
However, maladaptive wound healing in response to chronic tissue injury can lead to
fibrosis, a process characterized by excessive deposition of extracellular matrix (ECM)
proteins including collagens. Fibrosis is a pathological feature of many human diseases and
can occur in most organs including the lung, heart, brain, kidney, and skin. Fibrosis involves
the impairment of multiple steps in the normal tissue repair response, including
dysregulation of inflammation, angiogenesis, cell matrix deposition, cell migration,
fibroblast activation, and persistence [1]. If left unchecked, the turnover of functional tissue
towards an acellular fibrous connective tissue can result in organ failure [1]. For instance,
lung fibrosis is a common and lethal complication of the autoimmune multi-organ fibrotic
disorder systemic sclerosis (SSc) and is the hallmark feature of idiopathic pulmonary
fibrosis (IPF) [1, 2]. In SSc, maladaptive tissue repair responses in the lung manifest as SSc-
related interstitial lung disease (SSc-I1LD) and pulmonary arterial hypertension (PAH). These
pathologies contribute to a decline in lung function and increased mortality in patients with
SSc [1, 3].

Fibrosis is ultimately a maladaptive response to organ damage; here, we briefly introduce
the various stages of wound repair and discuss how dysregulation of these processes may
contribute to organ fibrosis. Hemostasis, the vasoconstriction and clotting of damaged
vessels, is initiated following an injury to reduce blood loss. In addition to regulating blood
clot formation, thrombocytes release growth factors and cytokines that initiate tissue repair
and recruit circulating white blood cells as part of the inflammatory response. During the
proliferation phase, granulation tissue generation and epithelial cell proliferation aid in
wound closure. Fibroblasts recruited to the injury niche transition into activated
myofibroblasts, characterized by the expression of alpha smooth muscle actin (a-SMA),
which confers a hypercontractile phenotype important for wound closure. Myofibroblasts
are also responsible for ECM production at the site of injury. Meanwhile, angiogenesis is
promoted to vascularize the newly formed tissue to provide nutrients and a route for cell
infiltration [4, 5]. Wound maturation follows wound closure, wherein tissue remodeling is
required to reorganize collagen structure, decrease inflammation, and promote the resolution
of the wound healing response. Aberrant regulation at any of these stages can disrupt the
normal wound repair program and may contribute to fibrosis [4, 6].

The intertwined nature of fibrotic signaling pathways has posed a real challenge in the
identification of therapeutic targets to effectively attenuate fibrosis. Extensive research has
shown that the cytokine transforming growth factor-beta (TGF-) is a key mediator of
fibrosis [7]. However, targeting TGF-p signaling in fibrosis has been complicated given the
pleiotropic effects of TGF-B in multiple cell types [7]. Alternatively, targeting TGF-f-
dependent pro-fibrotic effects in myofibroblasts is a safe strategy to mitigate organ fibrosis.
Thus, targeting downstream mediators of TGF- pro-fibrotic effects could selectively treat
fibrosis without affecting homeostatic TGF-f functions. In this regard, recent studies have
shown that the erythropoietin-producing human hepatocellular carcinoma (Eph) receptors
and their Eph receptor-interacting (Ephrins) family of ligands may act downstream of TGF-
B during tissue fibrogenesis. This review will discuss the contributions of ephrins and Eph
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receptors to various aspects of wound repair and fibrosis including inflammation,
angiogenesis, fibroblast activation, and matrix deposition. In particular, Ephrin-B2 ligand
will be highlighted as an important mediator of tissue fibrosis and a potential therapeutic
target for anti-fibrotic therapy.

Ephrin/Eph Signaling

Ephrins are a diverse family of cell surface ligands classified by the manner in which they
associate with the plasma membrane. Ephrin-A family members are attached by
glycosylphosphatidylinositol anchors, whereas Ephrin-B ligands are single-pass
transmembrane proteins (Fig. 1) [8]. Eph receptors, the largest subclass of receptor tyrosine
kinases (RTK), are subdivided into EphA and EphB subclasses based on their ephrin ligand
interactions [8]. Of note, ephrins and Ephs have the ability of modulate the activity of one
another; however, interactions within the same subclasses are more common than between
subclasses [9, 10].

Ephrin-Eph interactions are unique due to the bidirectional signaling that follows, where
ephrin binding initiates signaling cascades downstream of both the receptor (forward
signaling) and ligand (reverse signaling) (Fig. 1) [8]. Ephrins and their receptors are capable
of both frans (cell-cell interaction) and ¢/s signaling (autocrine, within the same cell) [11].
As seen in classic RTK signaling, ephrin binding to Eph receptors mediates
transautophosphorylation and downstream activation of multiple effectors that modulate
cellular functions such as migration, repulsion, and morphogenesis [8].

Interestingly, Eph receptors are not limited to classic ligand-binding phosphorylation-
dependent signaling. They also interact with other receptors at the plasma membrane to
promote phosphorylation-independent signaling that results in distinct outcomes [11]. Both
ephrins and Ephs have been shown to mediate signaling independently of one another [12],
including by interacting with other receptors. For instance, Ephrin-B2 mediates endocytosis
of members of the vascular endothelial growth factor receptor (VEGFR) and platelet-derived
growth factor receptor (PDGFR) families [8, 13, 14], receptors involved in angiogenesis and
wound repair (discussed below).

Ephrin/Eph receptor signaling was initially discovered to be essential for prenatal
developmental processes including vasculogenesis, neurogenesis, and intestinal epithelial
development [8]. Mouse knockouts of various individual Ephrin-B and EphB receptors are
embryonically lethal, indicating their necessity for development and morphogenesis [15,
16]. However, inducible knockouts have been used to investigate the involvement of ephrins
and Eph receptors in both postnatal tissue homeostasis and disease contexts, including their
roles during wound repair and fibrosis [17].

Ephrin/Eph Signaling During Tissue Injury and Repair

Signaling by ephrin/Eph family members regulates cellular responses to tissue injury,
helping to coordinate appropriate repair. Here, we describe the wound repair processes
influenced by ephrin/Eph signaling in the context of various tissues and associated cells
(summarized in Table 1).
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Regulation of Vascular Permeability and Inflammation

Inflammation is a core component to the wound healing response and is necessary for
wound resolution; however, chronic inflammation exacerbates disease pathology and
contributes to the development and progression of fibrosis. In the wound healing program,
inflammation is a tightly regulated process characterized by the accumulation of
inflammatory cells and release of inflammatory mediators at the injury site. Previous studies
show that EphA2 receptor signaling activated by Ephrin-Al ligand regulates the secretion of
inflammatory factors via the pulmonary endothelium in response to tissue injury [18, 19,
32-34]. Intratracheal instillation of either lipopolysaccharide (LPS) or bleomycin can induce
lung injury and transient fibrosis in mice [35-37], albeit their inflammatory responses prior
to the development of fibrosis are distinct. Lung injury induced by LPS or bleomycin rapidly
elevates levels of both EphA2 receptor and Ephrin-Al ligand in mouse lung tissue 24-48 h
post-challenge [18, 19]. One probable source of Ephrin-Al is the vascular endothelium, as
levels of these ligands are increased in human aortic endothelial cells (HAECs), human
coronary artery endothelial cell (HCAECs), and human umbilical vein endothelial cells
(HUVECS) following pro-inflammatory stimulation with tumor necrosis factor alpha (TNF-
a), interleukin (IL)-1p, or low-density lipoprotein (LDL) [34]. In the endothelium, Ephrin-
A1/EphAZ2 signaling regulates the secretion of pro-inflammatory factors, such as monocyte
chemoattractant protein 1 (MCP-1) and C-X-C motif chemokine ligand 1 (CXCL1) in vitro
[19]. Accordingly, neutralizing EphA2 antibodies reduce neutrophil infiltration in a LPS-
induced lung injury model [18]. EphA2 signaling also regulates inflammatory cell
infiltration by modulating the expression of the endothelial adhesion proteins vascular cell
adhesion molecule 1 (VCAML1) and E-selectin, both of which promote monocyte attachment
and infiltration [34]. Together, Ephrin-A1l/EphA2 signaling links endothelial barrier
dysfunction to inflammation during lung injury and repair.

While the inflammatory effects of the Ephrin-A family of ligands have been well explored in
vitro and in vivo, the role of Ephrin-B family ligands in regulating inflammation during
tissue injury is poorly understood. Cultured intestinal epithelial cell-6 (IEC-6) cells express
high levels of Ephrin-B1 and Ephrin-B2 ligands, and stimulation of reverse Ephrin-B
signaling induces expression of pro-inflammatory effectors, including MCP-1 and
cyclooxygenase-2 (COX-2), which regulate inflammation during intestinal repair [29].
Further studies investigating the role of Ephrin-B family ligands on inflammation during
tissue repair are required.

Regulation of Tissue Re-epithelialization

During tissue repair, migration of epithelial cells from the wound edge over the denuded
surface is required to close the wound, ultimately resulting in tissue re-epithelialization.
Recent work demonstrates the important role for ephrin ligands and Eph receptors during
this process. Mice subjected to skin punch biopsy have increased expression of Ephrin-B1
and multiple Eph receptors (Eph-B2, -B4, -A2, -A5) within the injured epidermis [25]. The
exact role of the subclasses of ephrin ligands and Eph receptors in wound healing has yet to
be deciphered, but evidence suggests that Ephrin-B1/EphB receptor signaling plays an
important role in this cutaneous wound healing model. Ephrin-B1 transiently localizes to
keratinocytes, a specialized skin epithelial cell, along the leading edge of the wound,
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whereas Ephrin-B2 expression remains diffuse throughout the epidermis before and after
wounding [25]. In order to migrate, epithelial cells decrease expression of adhesion proteins
enabling them to detach [25].

During tissue repair, increased Ephrin-B1 expression coincides with the loosening of
epithelial cell tight junctions and adherens junctions, in addition to the downregulation of
adhesion proteins E-cadherin and claudin-1 [25]. During intestinal repair, the cell surface
protease a disintegrin and metalloproteinase 10 (ADAM10) mediates E-cadherin shedding to
promote epithelial cell migration during intestinal repair [26]. In this mechanism, ADAM10
and EphB3 receptors interact within the intestinal epithelium, and activation of EphB3 by
Ephrin-B1 ligands /n trans increases ADAM10 activity to promote cleavage of E-Cadherin
[26]. Accordingly, epithelial-specific double knockout of £/fmb1and Efnb2in mice leads to
sustained adhesion protein expression that interferes with the loosening of the epithelial
cells, resulting in severe failure of re-epithelization during wound repair; however, total
cellularity in wound tissue is not affected, suggesting that Ephrin-B1 and -B2 play a major
role in cell migration but not proliferation [25].

Signaling of additional ephrin family members also positively regulates epithelial cell
migration in vitro [20, 29, 38, 39]. For instance, treatment with soluble Ephrin-A1 mimetic
leads to reduction in EphA2 receptor expression and epithelial cell migration in a scratch
wound assay, indicating that an overabundance of Ephrin-Al could interfere with wound
closure [20]. Similarly, treating keratinocytes with recombinant Ephrin-Al also decreases
their migration in an EphA2-dependent manner [39]. However, cultured epithelial cells
overexpressing Ephrin-B1 or Ephrin-B2 exhibit impaired E-cadherin and cell-cell contact,
suggesting that expression of ephrin ligands and Eph receptors is fine-tuned to regulate
wound healing [25]. While it is evident that epithelial expression of ephrin ligands and Eph
receptors is crucial for epithelial function and may have a prominent role in wound healing,
further research is required to clarify exact signaling pathways and functions of ephrins and
Ephs in this regard.

Regulation of ECM Synthesis and Remodeling

The secretion of newly synthesized ECM proteins, such as proteoglycans and collagens, is
an essential component of wound healing. ECM deposition by activated myofibroblasts in
the wound bed provides a provisional matrix that not only provides structural integrity but
also regulates multiple biological processes and cellular functions such as angiogenesis,
inflammation, and re-epithelization [40]. During the remodeling phase of wound healing,
myofibroblasts contract this provisional matrix to close the wound, leading to their apoptosis
and subsequent termination of the tissue repair program [41]. Recent studies show that Eph/
ephrin signaling plays a role in ECM deposition and remodeling during tissue repair. Of
note, mice lacking Ephrin-A2 or Ephrin-A5 ligands show no wound healing phenotype and a
normal rate of wound closure. While fibroblasts isolated from £fna2and Efna5 knockout
mice proliferate and migrate, an increased collagen density within the dermis in a surgical
excision model of wound healing is observed, a phenotype absent in EfnaZand Efnab
double knockout mice [24]. Furthermore, both £/naZ knockout and EfnaZl Efna5 double
knockout mice exhibit changes in scar morphology following wounding [24]. Currently,

Curr Rheumatol Rep. Author manuscript; available in PMC 2020 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wu et al.

Page 6

there is scarce evidence implicating ephrin participation in the secretion of ECM molecules
within the context of normal wound healing; thus, further research is needed to better
understand how ephrin or Eph signaling mediates tissue remodeling processes under these
circumstances.

Regulation of Angiogenesis

Angiogenesis is required for vascularization of granulation tissue to deliver nutrients and
oxygen and permit inflammatory cell infiltration [42]. During this process, endothelial cells
interact with cytokines and growth factors released at the injury site, and with the ECM to
promote vessel growth [42]. Ephrin ligands and Eph receptor interactions, in particular
Ephrin-A1/EphA2 and Ephrin-B2/EphB4, have prominent roles in angiogenesis [43].
Ephrin-A1/EphA2 signaling promotes VEGF-dependent angiogenesis by supporting vessel
sprouting, vessel formation, and vessel survival [21]. Blockade of Ephrin-A1/EphA2
signaling with EphA2-Fc chimeric receptors abrogates corneal angiogenesis in vivo [21].
Evidence also suggests that Ephrin-Al supports in vitro endothelial cell assembly and
microvessel formation [22, 23]. However, the role of Ephrin-A1/EphA2 signaling in
angiogenesis during tissue repair remains unknown.

On the contrary, Ephrin-B2/EphB4 signaling has been the dominant focus of studies
investigating roles of ephrin/Eph signaling in angiogenesis. During injury, hypoxia drives
angiogenesis through hypoxia-inducible factor (HIF)-1a activation and subsequent VEGF
secretion [27]. In arteries, endothelial Ephrin-B2 expression is increased in response to
hypoxia, driving angiogenesis and promoting arterial differentiation [27]. While VEGF is a
master regulatory protein for angiogenesis, Ephrin-B2 is also crucial for both angiogenesis
and VEGF signaling [13, 28, 30, 31]. Ephrin-B2 mediates the endocytosis and activation of
VEGFR2 and VEGFRS, a significant event as VEGFR2 requires internalization to mediate
endothelial wound healing [13, 28, 44, 45]. Thus, Ephrin-B2/EphB4 signaling is essential
for angiogenesis.

The roles of ephrin and Eph receptors in the different stages of the normal wound healing
response highlight the need for a better understanding of the contribution of ephrins and Eph
receptors in pathological healing responses. Interest in dysregulated ephrin/Eph signaling is
growing, particularly with respect to fibrosis, and various disease models highlight how
ephrins contribute to pathology.

Ephrin/Eph Signaling in Tissue Fibrosis

Given the major role of ephrin/Eph receptor signaling during physiological tissue repair, it is
not surprising that dysregulation in ephrin/Eph receptor signaling is implicated in the
development of tissue fibrosis [46—49]. The role of ephrin/Eph signaling in tissue
fibrogenesis has been studied in multiple mouse models using genetic and pharmacologic
approaches, and targeting ephrin/Eph receptor signaling has recently emerged as a novel
therapeutic strategy to combat tissue fibrosis. This section will highlight the role of
ephrin/Eph receptor signaling in organ fibrosis and potential therapeutic strategies to
mitigate fibrosis based on ephrin/Eph inhibition (Table 2).

Curr Rheumatol Rep. Author manuscript; available in PMC 2020 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Wu et al.

Page 7

Vascular fibrosis, characterized by reduced lumen diameter and arterial wall thickening, is
prevalent in advanced stages of patients with atherosclerosis [34]. In this context,
pathological EphA2 receptor signaling activated by Ephrin-Al ligand in endothelial cells
lining atherosclerotic plaques induces pro-inflammatory gene expression (VCAM-1, E-
selectin) and stimulates monocyte adhesion [34]. In vivo, genetic deletion of EphA2 receptor
in ApoE null mice fed a high fat diet have smaller atherosclerotic plaques and reduced
plaque formation [50e¢]. In addition, the advanced plagues of these knockout mice have
reduced total ECM, including collagen and fibronectin, indicating that genetic blockade of
EphA2 receptor decreases matrix deposition and vascular fibrosis [50e¢]. However, targeting
of EphA2 for anti-fibrotic therapy may require caution, as evidence suggests that £EphaZ2
knockout mice are more prone to hyperglycemia-induced injury and show worse myocardial
infarction and decreased survival [51]. Interestingly, while the myocardial infarct size of
hyperglycemic EphaZknockout mice is increased compared with wild-type mice, fibrosis
within the mouse heart is reduced nearly two-fold. Although EphA2 has the potential to
modulate fibrosis, consideration of patient comorbidities must be taken into consideration
when developing therapies to inhibit EphA2. EphA2 receptor signaling has also been studied
in lung injury. Epha2 knockout mice are protected from bleomycin-induced lung injury.
Mechanistically, Ephrin-A1/EphA2 receptor signaling in the endothelium not only regulates
vascular permeability but also the expression of pro-inflammatory cytokines such as CXCL1
and CCL2 in bleomycin-injured lungs [19].

In the lungs, epithelial cells surrounding fibroblastic foci of lung tissue explants from
patients with IPF overexpress EphA3 receptor [52]. Further, infusion of EphA3-positive
epithelial cells from IPF patients into immunodeficient mice is sufficient to drive a fibrotic
response and increase the total hydroxyproline content of lung tissue, a surrogate marker of
collagen deposition [52]. A clinical trial testing KB004, a neutralizing antibody of EphA3
receptor, for the treatment of glioblastoma shows therapeutic promise [56, 57]. In addition,
administration of KB004 to a 78-year-old patient with relapsed acute myeloid leukemia
(AML) gradually reduced reticulin and collagen deposition within the bone marrow [56].
Currently, an ongoing phase | clinical trial may shed further light into the safety and efficacy
of anti-EphA3 therapy [58].

In the liver, fibrosis occurs after acute or chronic liver injury due to alcohol abuse, non-
alcoholic steatohepatitis (NASH), or infection (hepatitis C virus or malaria). In mice,
malaria infection increases EphB receptor mMRNA and protein expression in hepatic stellate
cells, Kupffer cells, inflammatory monocytes, and neutrophils [55]. Ep/ib2 knockout mice
have decreased inflammation and collagen deposition within the liver of infected mice [55].
Mechanistically, EphB2 receptor signaling is required for activation of pro-fibrotic
macrophages/Kupffer cells, which are the principal source of TGF-B and other profibrotic
mediators [55]. This protective phenotype against fibrosis in EpAb2knockout mice is
replicated in the chemical-induced CCL4 model of liver fibrosis [55].

Among the ephrin/Eph family members, Ephrin-B2 ligand is a potent fibrogenic factor
across multiple organs. Several recent studies implicate Ephrin-B2 in human fibrotic
diseases such as scleroderma, IPF, and cardiac and liver fibrosis, suggesting a major role for
Ephrin-B2 in tissue fibrogenesis, as discussed in detail below.
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Ephrin-B2 as a Novel Target for Anti-Fibrotic Therapy

Ephrin-B2 in Cardiac Fibrosis

Increased expression of Ephrin-B2 is observed in the myocardium of patients with advanced
heart failure, as well as in mouse models of myocardial infarction and cardiac hypertrophy
induced by angiotensin Il infusion, which is accompanied by myofibroblast activation and
collagen fiber deposition [53¢¢]. Of note, in vivo silencing of Ephrin-B2 in mice using a
lentiviral vector ameliorates cardiac fibrosis and improves cardiac function [53ee]. In vitro
overexpression of Ephrin-B2 promotes cardiac fibroblast to myofibroblast activation,
demonstrated by increased fibroblast proliferation, migration, and a-SMA expression, while
Ephrin-B2 knockdown provides protection against hypoxia-mediated cardiac myofibroblast
activation [53+¢]. Mechanistically, Ephrin-B2 signaling promotes activation of Stat3 and
TGF-B/SMADS3 signaling pathways. Overall, Ephrin-B2 appears to have a prominent role in
the development of cardiac fibrosis.

Ephrin-B2 in Skin Fibrosis

Both Ephrin-B2 ligand and EphB4 receptor are increased in the skin of patients with SSc
[49]. Within the context of SSc skin, Ephrin-B2 largely localizes to small vessels and
vascular smooth muscle layers, with a marked increase in endothelial cells; however, the
exact roles of Ephrin-B2 and EphB4 in SSc progression remain unknown [49]. More
recently, Ephrin-B2/EphB4 receptor signaling was shown to be required for the development
of fibrosis in SSc by promoting myofibroblast activation and ECM deposition. In vivo,
fibroblast-specific £/nb2knockout mice are protected from skin fibrosis in a mouse model
of SSc [17]. Together, Ephrin-B2 appears to drive fibrogenic responses during the
development of skin fibrosis.

Ephrin-B2 in Lung Fibrosis

Ephrin-B2/EphB4 receptor signaling also contributes to fibrosis in lung disease. Blockade of
Ephrin-B2 forward signaling reduces collagen deposition in fibroblasts isolated from
patients with IPF. ADAM10 regulates the proteolytic shedding of the Ephrin-B2 ectodomain
generating a soluble Ephrin-B2 (sEphrin-B2), which promotes myofibroblast activation and
lung fibrosis via EphB4 receptor signaling. Mice genetically lacking fibroblast expression of
Ephrin-B2 also exhibit significant protection from bleomycin-induced lung fibrosis.
Interestingly, the small molecule ADAM10 inhibitor GX254023X also decreases the amount
of sEphrin-B2 in mouse lung tissue and BAL and reduces bleomycin-induced lung fibrosis
[17]. Increased sEphrin-B2 levels can also be detected in the BAL fluid and plasma of IPF
patients compared healthy controls, suggesting ADAM10-sEphrin-B2 cleavage is likely
upregulated in patients with IPF [17].

Ephrin-B2 in Kidney Fibrosis

While Ephrin-B2 ectodomain binding to EphB4 is required to activate “forward signaling”,
Ephrin-B2 also signals through its intracellular domain via “reverse signaling”. In this
regard, Ephrin-B2 reverse signaling has anti-fibrotic effects, and genetic inhibition of
Ephrin-B2 reverse signaling results in augmented Kidney fibrosis in the unilateral ureteral
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obstruction model [54]. The intracellular PDZ domain of Ephrin-B2 is activated in response
to kidney injury and mice with dysfunctional PDZ-dependent Ephrin-B2 signaling (Ephrin-
B2 AV mice) exhibit increased kidney fibrosis, demonstrated through increased
myofibroblast proliferation and collagen deposition, while also impairing VEGFR2
internalization [54]. Thus, Ephrin-B2 forward and reverse signaling appear to have opposite
effects during tissue fibrogenesis; however, the precise molecular mechanisms explaining
this paradox remain poorly understood.

Ephrin-B2 in Liver Fibrosis

Hepatic stellate cells (HSCs) play major roles in the initiation and progression of liver
fibrosis by secreting a myriad of fibrogenic molecules that drive ECM deposition and
intrahepatic angiogenesis [59]. Thus, chronic activation of HSCs induces an aberrant
architecture of the hepatic microvasculature in the cirrhotic liver. Ephrin-B2 signaling
modulates HSC activation as well as their interaction with sinusoidal endothelial cells in
vitro [46]. In this mechanism, PDGF signaling upregulates Ephrin-B2 expression in HSCs,
which is required for HSC-induced capillary-tube formation. In vivo blockade of PDGF-
Ephrin-B2 signaling with imatinib reduces pathological sinusoidal remodeling and portal
hypertension in a BDL model of liver injury [46]. Further, Ephrin-B2 signaling has been
shown to control angiogenesis by stimulation of VEGF production in HSCs [60]. Thus,
Ephrin-B2 represents a novel target for the treatment of portal hypertension, a frequent and
severe complication of liver cirrhosis.

Conclusions

Ephrin ligands and Eph receptors regulate fundamental biological processes involved in
tissue fibrosis including cell migration, myofibroblast activation, angiogenesis, and tissue
remodeling. A growing body of evidence has highlighted Ephrin-B2 as a key fibrogenic
factor of the liver, skin, lungs, and heart in both diseased human tissues and in associated
animal models. There is convincing evidence to suggest that Ephrin-B2 signaling plays a
crucial role in promoting fibrogenic responses by inducing myofibroblast activation. Thus,
interfering with the Ephrin-B2 signaling (including sEphrin-B2, Ephrin-B2 sheddase
ADAMLI0, or its receptor EphB4) could represent a novel therapeutic strategy to mitigate
organ fibrosis. Therapeutic strategies aimed at blocking Ephrin-B2 signaling have been
developed for cancer treatment; however, their anti-fibrotic effects are yet to be explored.
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Fig. 1.

Er?hrin/Eph receptor signaling. Schematic diagram showing an Ephrin-A- and Ephrin-B-
expressing cell (top, blue) in contact with an Eph-expressing cell (bottom, green). Ephrin-A
ligands have a short cytoplasmic tail and are glycosylphosphatidylinositol (GPI)-anchored to
the cell membrane. Ephrin-B ligands have a long cytoplasmic region characterized by a
PDZ-binding motif. Both Ephrin-A and Ephrin-B ligands express receptor-binding domains
(RBD) at the N-terminal domain. EphA and -B receptors are characterized by an
extracellular region that contains the ligand-binding domain (LBD) at the N-terminus. The
LBD is connected to a cysteine-rich domain followed by two fibronectin type-111 domains.

Curr Rheumatol Rep. Author manuscript; available in PMC 2020 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Wu et al.

Page 15

The kinase domain is located intracellularly and is connected to the sterile-alpha motif
(SAM) domain, followed by a PDZ-binding motif. Bidirectional signaling occurs between
an ephrin-expressing cell and an Eph receptor-expressing cell. Forward signaling is initiated
from ephrins and propagated into the Eph receptor-expressing cell. Reverse signaling is
initiated by Eph receptors and is propagated into the ephrin-expressing cell
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