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a b s t r a c t

Houttuynia cordata Thunb. is an edible herb with a variety of pharmacological activities, but only limited
information is available about its response towards potassium supplementation. Sterile plantlets were
cultured in media with different potassium levels, and parameters related to growth, foliar potassium,
water and chlorophyll contents, photosynthesis, transpiration, H2O2 contents and antioxidative enzyme
activities were determined after a month. Results showed that 1.28 mM potassium was the optimum
for H. cordata as highest values of dry weight, shoot height, root length and number were obtained at
this concentration. The optimum potassium concentration resulted in the maximum net photosynthetic
rate which could be associated with the highest chlorophyll content rather than limited stomatal con-
rowth
hotosynthesis
ranspiration
xidative stress

ductance. The supply of surplus potassium resulted in higher content of foliar potassium, but negatively
correlated with the biomass. Both potassium starvation (0 mM) and high potassium (>1.28 mM) could
lead to water loss through high transpiration rate and low water absorption, respectively, and resulted
in H2O2 accumulation and increased activities of catalase and peroxidase, which suggested induction of
oxidative stress. Moreover, H. cordata showed the minimum of H2O2 content and the maximum of super-
oxide dismutase activity on 1.28 mM potassium, implying its role in inducing tolerance against oxidative

stress.

. Introduction

Potassium (K) as quality element is one of the major nutrients
or plant growth and development (Besford and Maw, 1975). It is
he most abundant cation in plant cells and plays important roles
n metabolisms like enzyme activities, water and assimilate trans-
ort, and protein synthesis (Yin and Vyn, 2002, 2003; Véry and
entenac, 2003; Pettigrew, 2008). Different potassium supplement
evels significantly affect physiological and biochemical characters
f plants (Chartzoulakis et al., 2006). Appropriate potassium con-
entrations effectively improve plant productivity (Yurtseven et al.,
005), while its deficiency leads to a decrease in chlorophyll content

nd photosynthetic rate (Zhao et al., 2001; Gerardeaux et al., 2010),
nd inhibits root and shoot elongation (Drew, 1975; Bednarz et al.,
998; Shin et al., 2005; Kanai et al., 2007). Inappropriate potas-
ium levels may also induce stress responses, and many stresses can

Abbreviations: CAT, catalase; GAP, Good Agricultural Practices; H2O2, hydrogen
eroxide; K, potassium; •O2

–, superoxide radicals; POD, peroxidase; ROS, reactive
xygen species; SOD, superoxide dismutase.
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result in the accumulation of reactive oxygen species (ROS), such
as superoxide radicals (•O2

–) and hydrogen peroxide (H2O2) (Shin
and Schachtman, 2004). Plants have evolved antioxidant enzyme
system including superoxide dismutase (SOD), catalase (CAT) and
peroxidase (POD) to prevent damage from ROS (Bowler et al., 1992;
Nayyar and Chander, 2004). SOD scavenges •O2

–, resulting in H2O2
and O2 formation (Amor et al., 2006). CAT and POD are the main
enzymes to eliminate H2O2 (León et al., 2002; Passardi et al., 2005).

Houttuynia cordata Thunb. is a pungent, heart-like leafed peren-
nial herb and constitutes a single species of the genus Houttuynia
in the ancient Saururaceae and in Chinese is known as ‘Yuxing-
cao’, which means ‘producing unique fishy smell’. It belongs to
thermophilic and hygrophilous species, native to Eastern Asia,
especially distributed in middle, southeastern and southwestern
provinces and regions in China. It can often be found in ravines,
streamsides, forests, wet meadows, slopes, thicket and field mar-
gins, trailsides, roadsides or ditch banks in these regions (Wu et al.,
2005a).

H. cordata has been identified as one of the most potential

medical and edible wild plant resources (Wu et al., 2005a). Its
young plants are popularly used as wild vegetable, while its mature
plants are commonly used as a traditional medical herb in some
Asian countries, such as China (Wu et al., 2005b), Korea (Kim
et al., 2001), India (Chakraborti et al., 2006), Vietnam (Ogle et al.,

dx.doi.org/10.1016/j.envexpbot.2010.12.015
http://www.sciencedirect.com/science/journal/00988472
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H2O2 (Rout and Shaw, 2001). Decrease in the absorbance due to
decomposition of H2O2 was measured at 240 nm. Absorbance val-
Y.W. Xu et al. / Environmental and

003) and Thailand (Nuengchamnong et al., 2009). H. cordata con-
ains six major effective chemical components, namely essential
ils, flavonoids, alkaloids, fatty acids, sterols and polyphenolic
cids, and these compounds exhibit a variety of pharmacological
ctivities like anti-cancer, anti-oxidative, anti-hypertension, anti-
nflammatory, anti-mutagenic, anti-bacterial, and anti-purulent.
t is effective in treating pneumonia, severe acute respiratory
yndrome, human immunodeficiency virus and influenza virus
nd refractory hemoptysis (Lu et al., 2006; Lau et al., 2008;
uengchamnong et al., 2009).

Due to these advantages the requirement of H. cordata has been
ncreasing in the last several years. However, the wild resources
n China cannot meet such huge demands. In recent years farmers
re trying to increase its production by artificial cultivation. Being
ifferent from field crop plants such as cotton, wheat, maize and
ice (Koch and Estes, 1975; Bednarz et al., 1998; Weng et al., 2007;
ettigrew, 2008; Gerardeaux et al., 2010), only limited informa-
ion is available about its response towards fertilization formulae.
herefore, it is necessary to establish an efficient fertilization sys-
em for its commercial cultivation. However, the effects of different
otassium supplement levels on its growth and physiology are

argely unknown. Therefore, the main objective of the present study
as to filter out the optimal supplement level of potassium for H.

ordata growth by investigating its effects on growth, plant K con-
entrations, water contents, chlorophyll contents, photosynthesis,
ranspiration, H2O2 contents and antioxidative enzyme activities.

. Materials and methods

.1. Plant materials and growth conditions

H. cordata new line w01-100 with desirable traits like disease
esistance, high-quality and yield, was selected out from a collec-
ion of more than one hundred H. cordata accessions present in
hina. The line belongs to chemotype myrcene (Chen et al., 2008)
nd has chromosome number 90 (Wu et al., 2003). It has been
lanted for commercial purposes for years in Good Agricultural
ractices (GAP) base of 999 Pharmaceutical Group (China).

Sterile plantlets with three leaves were used in this experi-
ent. The uniform plantlets were selected and cultured on MS

Murashige and Skoog, 1962) media, having five different potas-
ium levels (0, 1.28, 2.56, 5.31 and 10.26 mM). The treatment with
mM K was negative control. Each treatment consisted of three

eplicates with at least 30 plants. The control culture conditions
ere maintained at 24 ± 2 ◦C under 12 h photoperiod with light

ntensity of 30 �mol m−2 s−1 provided by cool-white fluorescent
amps (Philips, China). Plants were harvested after a month to
etermine water contents, growth parameters, foliar K concen-
rations, chlorophyll contents, photosynthesis parameters, H2O2
ontents and antioxidative enzyme activities.

.2. Growth parameters and water contents

Water content and growth parameters including dry weight,
hoot height, root length and number were measured. Shoot height
nd root length were determined using a vernier caliper. The shoot
eight indicates the value between the top of plantlet and stem
ase. The length of taproot of individual plantlet represents the
oot length.

.3. K concentrations
The second fully expanded leaves were used for determination
f K concentrations. Samples were dried as following: firstly, fresh
eaves were fixed quickly at 105 ◦C for 30 min, and then oven-dried
t 70 ◦C for 48 h. The dried material was milled to pass a 0.5 mm
mental Botany 71 (2011) 292–297 293

sieve. The powder (0.01 g) soaked in 1 mM hydrochloric acid for
5 h, vibrated for 30 min, and filtered, and then settled to the con-
stant volume of 10 mL using 1 mM hydrochloric acid. The extraction
solution was used to determine K concentration by atomic emis-
sion spectrophotometry. Foliar K content was calculated in terms
of U g−1 dry weight (DW).

2.4. Chlorophyll contents

Chlorophyll contents were estimated by a portable chlorophyll
meter (SPAD-502, Konica Minolta, Tokyo, Japan) from the second
fully expanded leaves from the top of individual plants. SPAD value
was an indicator of chlorophyll content. The average SPAD value
of three points per leaf at upper, middle and lower positions was
used.

2.5. Photosynthesis and transpiration parameters

The second fully expanded leaves were used for determina-
tion of net photosynthetic rate (Pn), stomatal conductance (Cond),
transpiration rate (Tr) and intercellular CO2 concentration (Ci).
These parameters were measured by a portable photosynthesis
system (LI-6400, Li-Cor, Lincoln, NE, USA) with the air tempera-
ture, relative humidity, CO2 concentration and light intensity inside
the leaf chamber controlled at 25 ◦C, 55%, 450 �mol CO2 mol−1,
1000 �mol m−2 s−1, respectively.

2.6. Antioxidative enzyme assays

The second fully expanded leaves were used for determination
of antioxidative enzyme assays. Leaves (0.5 g) were homogenized
with mortar and pestle in 10 mL 50 mM sodium phosphate buffer
(pH 7.8 for SOD, pH 6.0 for POD and 7.0 for CAT) containing 1%
polyvinylpyrrolidone (w/v). The homogenate was centrifuged at
15,000 × G for 10 min and the supernatant as enzyme extract was
used for antioxidative enzyme assays. The whole extraction proce-
dure was carried out at 4 ◦C.

SOD activity was determined by monitoring its ability to
inhibit photochemical reduction of nitroblue tetrazolium (NBT) at
560 nm (Beauchamp and Fridovich, 1971). Absorbance values were
recorded on an ultraviolet and visible (UV-Vis) spectrophotome-
ter (UV-2450, Shimazu Co., Kyoto, Japan). One unit (U) of SOD was
defined as the amount of enzyme necessary to inhibit the reduc-
tion of NBT by 50%. Enzyme activity was calculated in terms of
U g−1 fresh weight (FW). The reaction mixture contained of 50 mM
sodium phosphate buffer (pH 7.8), 13 mM l-methionine, 75 �M
NBT, 10 �M ethylene diamine tetraacetic acid (EDTA) -Na2, 2 �M
riboflavin, 0.1 mL enzyme extract.

POD activity was determined based on guaiacol oxidation
(Hassan et al., 2005). Increase in the absorbance due to guaia-
col oxidation was measured at 470 nm. Absorbance values were
recorded on the UV-Vis spectrophotometer. One unit of activity
was determined by the variety of 0.01 min−1. Enzyme activity was
expressed as U g−1 FW. The reaction mixture contained of 50 mM
sodium phosphate buffer (pH 6.0), 5 mM guaiacol, 10 mM H2O2,
and 0.05 mL enzyme extract.

CAT activity was determined by monitoring the destruction of
ues were recorded on the UV-Vis spectrophotometer. One unit
of activity was determined by the variety of 0.01 min−1. Enzyme
activity was calculated in terms of U g−1 FW. The reaction mix-
ture consisted of 200 mM sodium phosphate buffer (pH 7.0), 10 mM
H2O2, 0.1 mL enzyme extract.
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ig. 1. H. cordata plantlets cultured in MS medium with different potassium supplie

.7. H2O2 contents

H2O2 content was determined as titanium complex (Brennan
nd Frenkel, 1977). Leaf samples (0.5 g) were homogenized in 10 mL
old (4 ◦C) acetone. The homogenate was centrifuged (15,000 × G)
t 4 ◦C for 5 min. Subsequently, the supernatant (1 mL) was mixed
ith 0.1 mL titanium reagent (20% titanic tetrachloride in concen-

rated hydrochloric acid, v/v), followed by the addition of 0.2 mL
oncentrated ammonia to precipitate the peroxide–titanium com-
lex. The mixture was then centrifuged at 15,000 × G for 5 min. The
recipitate was washed with acetone repeatedly and then solubi-

ized in 5 mL of 2 M sulphuric acid. The intensity of yellow color of
upernatant was measured at 415 nm by UV-Vis spectrophotome-
er. The concentration of H2O2 in the supernatant was calculated
y comparing its absorbance to a standard calibration curve repre-
enting H2O2–titanium complex from 0 to 1 mM and expressed as
mol g−1 FW.

.8. Statistical analysis

Values were presented as means ± standard errors (SE) from
hree independent treatments. These data were subjected to anal-
sis of variance, correlation and Duncan’s multiple range test
P < 0.05) using SAS version 9.1 (SAS Institute Inc., Cary, NC, USA).

. Results
.1. Growth parameters

H. cordata growth was significantly influenced by potassium
oncentrations (Fig. 1). The four growth parameters including dry
month. (a)–(e) represent 0, 1.28, 2.56, 5.31 and 10.26 mM potassium, respectively.

weight, shoot height, root length and number showed significant
differences with treatments (Table 1). Treatment of 1.28 mM K rep-
resented the highest values of these four growth parameters, while
potassium starvation (0 mM) severely inhibited the growth of H.
cordata. Similarly high potassium concentrations (>1.28 mM) also
caused severe reduction in these parameters. The shortest root and
least root number were both found in the treatment of the highest
potassium level (10.26 mM).

3.2. Leaf K, water and chlorophyll contents

Foliar K contents were significantly affected by the supple-
mental levels of potassium (Table 1). The maximum of leaf K
concentrations was recorded in the treatment of 2.56 mM K, while
higher potassium supplementation led to a decrease of potassium
absorption as compared to 2.56 mM K. However, the maximum of
potassium absorption did not represent the maximum of dry matter
(Table 1).

Plant water contents were also significantly different between
treatments (Table 1). The water content was maximum on 1.28 mM
K while both no potassium and high potassium resulted in water
loss in plant. Coarse small shrinkage of blade was observed
in the treatments of potassium starvation and high potassium
(Fig. 1).

Maximum chlorophyll content was recorded on 1.28 mM K

(Table 1), and represented the darker hue in green leaves (Fig. 1),
while the least was observed on no potassium treatment. Sur-
prisingly the chlorophyll content dropped to the next minimum
at 2.56 mM and then again showed a slight increase with higher
potassium levels (>2.56 mM).
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Table 1
Effects of different potassium supplies on foliar K, water and chlorophyll contents and growth parameters of H. cordata.

K1 K2 K3 K4 K5

Dry weight (mg plant−1) 4.87 ± 0.39 (c) 7.45 ± 0.50 (a) 6.13 ± 0.11 (b) 5.73 ± 0.19 (bc) 5.56 ± 0.44 (bc)
Shoot height (cm) 0.50 ± 0.03 (d) 0.95 ± 0.01 (a) 0.75 ± 0.04 (b) 0.64 ± 0.07 (c) 0.67 ± 0.09 (bc)
Root length (cm) 0.51 ± 0.01 (c) 1.16 ± 0.11 (a) 0.70 ± 0.07 (b) 0.53 ± 0.08 (c) 0.19 ± 0.01 (d)
Root number 2.13 ± 0.13 (c) 4.13 ± 0.30 (a) 2.82 ± 0.07 (b) 2.95 ± 0.25 (b) 1.72 ± 0.25 (d)
Foliar K (mg g−1 DW) 13.50 ± 0.71 (d) 20.00 ± 1.00 (c) 34.00 ± 3.46 (a) 26.33 ± 0.58 (b) 22.00 ± 1.73 (bc)
Water content (g 100 g−1) 92.08 ± 0.18 (c) 94.09 ± 0.16 (a) 93.46 ± 0.25 (b) 93.42 ± 0.15 (b) 92.52 ± 0.31 (c)
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Chlorophyll content 23.80 ± 0.60 (e) 33.01 ± 0.78 (a)

ote: Each value is mean ± SE (n = 3). Values followed by the different letter in the s
1, K2, K3, K4 and K5 indicate 0, 1.28, 2.56, 5.13 and 10.26 mM K, respectively. Chlo

.3. Photosynthesis and transpiration parameters

The net photosynthetic rate was maximum on 1.28 mM K, while
t dropped dramatically on all other treatments, which were almost
t par with each other (Table 2). The plants on this treatment had
he minimum intercellular CO2 concentration (Table 2), thereby
epresenting the maximum of carbon assimilation too, which could
irectly contribute to dry matter production. However, the maxi-
um of net photosynthetic rate seemed to be not correlated with

imited stomatal conductance (Table 2). But there was a positive
orrelation between the net photosynthetic rates and chlorophyll
ontents, and the Pearson correlation coefficient was 0.75.

Transpiration rates were significantly different between potas-
ium starvation and the other four treatments with potassium,
hich were found at par with each other (Table 2). Similar trend
as observed for stomatal conductance, which is usually associ-

ted with transpiration (Table 2). This suggested that potassium
tarvation strongly stimulated stomatal opening and then transpi-
ation, and stomatal conductance was limited in the treatments
ith potassium.

.4. H2O2 contents and antioxidative enzyme activities

H2O2 productions were significantly affected by potassium
reatments (Fig. 2a). The minimum of H2O2 contents was recorded
n the treatment of 1.28 mM K. H2O2 contents showed a continuous
ncrement in the treatments of high potassium levels (>1.28 mM).
t suggested that the absence of potassium and high potassium
timulated H2O2 accumulation, leading to oxidative stress.

The activities of antioxidative enzymes got significantly affected
y potassium concentrations. Both CAT and POD activities were low
n 1.28 mM K, and both absence of potassium as well as high potas-
ium stimulated their activities (Fig. 2b and c). The increases in
AT and POD activities might play a H2O2-scavenging role against

nduced oxidative stress. Interestingly, SOD activity reached maxi-
um on 1.28 mM K, while it showed significantly reduced activity

n potassium starvation as well as potassium surplus conditions
Fig. 2d).
. Discussion

Potassium, at optimum concentration, is essential for H. cordata
rowth. Many studies have demonstrated an obvious increment

able 2
ffects of different potassium supplies on net photosynthetic rate (Pn), intercellular CO2

eaves of H. cordata.

K1 K2

Pn (�mol CO2 m−2 s−1) 1.92 ± 0.14 (b) 9.52 ± 0.72 (a)
Ci (�mol CO2 mol−1) 433.98 ± 2.05 (a) 383.87 ± 2.83 (b)
Tr (mmol H2O m−2 s−1) 6.33 ± 1.06 (a) 2.42 ± 0.26 (b)
Cond (mol H2O m−2 s−1) 0.57 ± 0.03 (a) 0.36 ± 0.04 (b)

ote: Each value is means ± SE (n = 3). Values followed by the different letter in the same
1, K2, K3, K4 and K5 indicate 0, 1.28, 2.56, 5.13 and 10.26 mM K, respectively.
25.13 ± 0.35 (d) 27.25 ± 0.84 (c) 31.10 ± 0.70 (b)

ines are significantly different according to Duncan’s multiple range test (P < 0.05).
ll contents are expressed as SPAD value.

in plant stature and yield with proper supply of potassium
(Mullins et al., 1994; Heckman and Kamprath, 1995; Pettigrew and
Meredith, 1997; Buah et al., 2000; Vyn and Janovicek, 2001). In
the present study, H. cordata plants acquired highest values of dry
weight, shoot height, root length and number on 1.28 mM K, and as
such represented the most favourable treatment for its growth and
development. Potassium starvation, as well as its surplus, caused
severe reduction in its growth and development. The length and
surface area of root affected the range of nutrient absorption, having
direct negative consequences on plant productivity (Cakmak, 2005;
Hermans et al., 2006; Pettigrew, 2008). Therefore, the decreases in
dry weight and shoot height of H. cordata were partly due to similar
changes of root length and number. Moreover, although the supply
of surplus potassium resulted in higher contents of foliar potassium
as compared to 1.28 mM K, the higher leaf K did not improve the
biomass. This might contribute to a hypothesis that plant proba-
bly needs critical cytoplasmic concentration of K in a certain range
(Leigh and Wyn Jones, 1984).

Photosynthesis was significantly affected by potassium concen-
trations, determining yield. It is well known that photosynthesis is
related to carbon assimilation and dry matter production (Gifford
and Evans, 1981; Kramer, 1981; Zelitch, 1982) and that chlorophyll
content, chloroplast ultrastructure and stomatal conductance are
the major factors in photosynthetic rate (Farquhar and Sharkey,
1982; Zhao et al., 2001), However, the optimum concentration
of potassium in the present study did not show an increase in
the stomatal conductance, and wrinkled leaves as observed in the
treatments of potassium starvation and high potassium might be
due to water loss and therefore represent poor chloroplast ultra-
structure (not measured in this study). Many studies have shown
that appropriate potassium concentration can enhance chlorophyll
content and photophosphorylase activity and maintain chloroplast
inner membrane and proton gradient of thylakoid membranes,
promoting photosynthetic phosphorylation (Véry and Sentenac,
2003; Yurtseven et al., 2005; Chartzoulakis et al., 2006; Hermans
et al., 2006). Therefore the maximum of net photosynthetic rate on
1.28 mM K may be mainly associated with high chlorophyll content
and stable chloroplast ultrastructure, rather than limited stomata

conductance.

Appropriate potassium concentration could maintain a critical
water content in H. cordata. It is well known that potassium plays
an important role in controlling stomatal aperture because con-
centration gradient of potassium between inside and outside of

concentration (Ci), transpiration rate (Tr) and stomatal conductance (Cond) in the

K3 K4 K5

0.37 ± 0.06 (c) 1.45 ± 0.39 (b) 2.17 ± 0.40 (b)
438.74 ± 2.54 (a) 428.73 ± 5.82 (a) 429.20 ± 4.38 (a)

2.68 ± 0.35 (b) 2.30 ± 0.11 (b) 3.37 ± 0.68 (b)
0.39 ± 0.03 (b) 0.36 ± 0.10 (b) 0.42 ± 0.08 (b)

lines are significantly different according to Duncan’s multiple range test (P < 0.05).
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ig. 2. Effects of different potassium supplies on H2O2 contents and antioxidative en
n = 3). Vertical line on top of the bars means SE. Bars carrying different letters are s

tomatal guard cells affects solute potential (Fischer, 1968; Fischer
nd Hsiao, 1968). In the present study the optimum concentration
f potassium showed lower stomatal conductance and transpi-
ation rate than potassium starvation, resulting in higher water
ontent, which is important for cell functions. However, although
he stomata conductance and transpiration rate of the four treat-

ents with potassium were found at par with each other, high
otassium resulted in lower water content as compared to 1.28 mM
. This suggested that high potassium reduced water absorption.

Oxidative stress could be induced by potassium starvation and
igh potassium according to the increase in H2O2 content (Fig. 2a).
his result is well in accordance with some other studies (Cakmak,
994, 2005; Shin and Schachtman, 2004). Excess H2O2 is harmful
rimarily due to reaction with lipids, proteins, and nucleic acids
hus resulting in lipid peroxidation, membrane leakage, enzyme
nactivation, and DNA breaks or mutations (Romero-Puertas et al.,
007), chlorophyll destruction (Cakmak, 1994) and growth reduc-
ion (Molassiotis et al., 2006). The increased activity of CAT and POD
s observed in the present study might be to protect biomolecules
rom being attacked by H2O2. However, SOD activity did not
how an increase with potassium starvation and high potassium.
revious studies have demonstrated that oxygen-dependence pho-
osynthesis may be “leaking” energy to molecular oxygen, forming
OS such as •O2

– (Wise and Naylor, 1987; Ort and Baker, 2002).
t therefore was suggested that accumulation of •O2

– might be
artially suppressed by the low photosynthesis rates in these treat-
ents. All of these implied that potassium starvation and high
otassium might not result in an increase of •O2
– and excess H2O2

hould have accumulated from other sources rather than from the
onversion of •O2

– to H2O2. Moreover, the minimum of H2O2 con-
ent and the maximum of SOD activity at 1.28 mM K suggested that
he optimal level of potassium resulted in lower oxidative stress
activities in H. cordata. (a) H2O2, (b) CAT, (c) POD and (d) SOD. Values are means ± SE
antly different at P < 0.05.

and endowed plants with the resistance against oxidative stress,
respectively.
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