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This paper deals with the numerical study of population model based on the epidemics of
Severe Acute Respiratory Syndrome (SARS). SEIJR (susceptible, exposed, infected, diag-
nosed, recovered) model of SARS epidemic is considered with net in flow of individuals into
a region. Transmission of disease is analyzed by solving the system of differential equations
using numerical methods with different initial population distributions. The effect of diffu-
sion on the spread of disease is examined. Stability is established for the numerical solu-
tions. Effects of interventions (medical and non medical) are also analyzed.

Crown Copyright � 2013 Published by Elsevier Inc. All rights reserved.
1. Introduction

Epidemiological models are considered as one of the most powerful tools to analyze and understand the spread and con-
trol of infectious diseases. Analysis of transmission dynamics of infectious diseases can lead to the better methodologies to
slow their transmission. Since the start of twentieth century, a lot of work has been done on construction of epidemic models
for infectious diseases such as chicken pox, diphtheria, gonorrhea, influenza, malaria, rabies, rubella, whooping cough and
SARS. Models have also been developed for sexually transmitted diseases like syphilis, HIV=AIDS, and child diseases like
measles and polio. These models ranges from simple curve fitting models to standard compartmental models [1]
(MSEIR; MSEIRS; SEIJR; SIR; SIRS, SEIR; SEIS; SI, and SIS etc.) to complex stochastic models. Fast computer systems and
the availability of huge data bases has made it possible to use complex mathematical models to analyze the data.

Daniel Bernoulli is considered to be the first who tried to evaluate the effectiveness of vaccination on healthy people with
the smallpox virus in 1690. In 1906, Hamer constructed and analyzed a discrete time model in order to understand the reoc-
currence of measles epidemics. His model was probably the first to assume that the incidence (number of new cases per unit
time) depends on the product of the densities of the susceptibles and infectives [9]. Ross [9] was interested in the prevalence
and control of malaria and he developed deterministic model for malaria as a host-vector disease in 1911. Other determin-
istic epidemiological models were then developed by Ross, Ross and Hudson, Martini and Lotka [9]. Kermack and
McKendrick are considered as the pioneers in mathematical modeling in epidemiology with the publication of a series of
papers in 1926. In their work they calculated the epidemic threshold and showed that an outbreak of an epidemic could
-coccur only if the number of susceptible individuals exceed the critical value called the reproduction number. Mathematical
epidemiology seems to have grown rapidly since then as a large variety of models have been formulated, mathematically
analyzed and applied to infectious diseases [9]. The first edition of Bailey’s book, which appeared in 1957, is an important
landmark in the history of mathematical biology [9].
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mailto:anaheed@swin.edu.au
http://dx.doi.org/10.1016/j.amc.2013.12.062
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


A. Naheed et al. / Applied Mathematics and Computation 229 (2014) 480–498 481
Severe Acute Respiratory Syndrome (SARS) is one of the recently emerged infectious diseases. This is a viral respiratory
illness caused by a coronavirus, called SARS-associated coronavirus (SARS–CoV). It was in November 2002, when the first case
of SARS was diagnosed in the Chinese province of Guangdong. At the end of February 2003, the SARS epidemic spread around
the world, when a medical doctor from Guangdong infected several persons in a hotel in Kowloon. SARS also spread globally
through air travel. According to the estimates of WHO;8450 people were infected and 810 deaths were recorded due to SARS
in 33 countries on 5 continents [15]. Although this outbreak of the disease was brought under control at the end of 2003,
many separate outbreaks of SARS appeared in Singapore, Taiwan and China. The main reason for this was the release of
SARS–CoV accidently from laboratories [15]. The animals infected by the SARS–CoV strain also infected humans and at the
start of 2004 some new cases of this disease came to notice. Both incidents show the danger of SARS outbreak at any time
in the near future, either by SARS–CoV virus evolving from SARS–CoV-like virus from animals or by virus from laboratory
samples. There is a SARS–CoV-like virus, also found in animals, but it is not transferable and thus cannot cause SARS-like dis-
ease. It is possible that under special circumstances, this virus may get converted into the early human SARS–CoV , with an
ability to transfer from animals to humans [8].

A large number of papers appeared in the literature on infectious disease SARS in 2003. In the beginning, epidemiologist,
tried to find out the reasons for the cause and spread of SARS. They tried to find measures to control it, but the main emphasis
was on research work concerned with the biological properties of the corona virus [16]. Some work was done to investigate
the transmission dynamics and the effect of various control measures. Most of the study on SARS was done in China, where
the SARS epidemic hit the hardest. This work was published in Chinese journals, which were poorly accessible to interna-
tional researchers. Xia et al. [17] analyzed the pattern of SARS and predicted the course of the SARS epidemic by establishing
a compartmental model using data from Guangdong and Hong Kong. Chowell et al. [5] fitted an SEIJR model for SARS epi-
demic for the data from Toronto, Hong Kong and Singapore. Chowell predicted the behavior of the disease and the role of
diagnosis and isolation as a control mechanism in these regions showing the difference between the epidemic dynamics oc-
curred in these three cities. Yang et al. [19] established a compartmental model to describe the SARS epidemic in spatial–
temporal dimensions determining whether people traveling in buses and trains infect one another or not. They concluded
that SARS can spread through people traveling in buses and trains. In their SEIR models based on data from Beijing and Hong
Kong, Wu et al. [14] and Chen et al. [4] estimated the source of super-spreading events of SARS with the calculation of the
reproductive rate of the disease based on data from Beijing and Hong Kong.

In this paper, a SARS model (Chowell et al. [5]) is considered with the inclusion of diffusion in the system. The diffusion is
introduced in the system to study the spacial spread of disease. Different initial population distributions are chosen to inves-
tigate the effect of diffusion on the spread of SARS. Also intervention strategies have been proposed to investigate the effect
on spread of disease.
2. The SEIJR epidemic model

2.1. Equations

This model is based on the SEIJR model (Chowell et al. [5]) with the inclusion of diffusion in the equations governing the
system. Total population is supposed to be N where N ¼ Sþ Eþ I þ J þ R.
@S
@t
¼ �b

ðI þ qEþ lJÞ
N

S� lSþPþ d1
@2S
@x2 ; ð1Þ

@E
@t
¼ b
ðI þ qEþ lJÞ

N
S� ðlþ jÞEþ d2

@2E
@x2 ; ð2Þ

@I
@t
¼ jE� ðlþ aþ c1 þ dÞI þ d3

@2I
@x2 ; ð3Þ

@J
@t
¼ aI � ðlþ c2 þ dÞJ þ d4

@2J
@x2 ; ð4Þ

@R
@t
¼ c1I þ c2J � lRþ d5

@2R
@x2 ; ð5Þ
where the variables S; E; I; J and R denote the proportion of susceptible, exposed, infected, diagnosed and recovered indi-
viduals respectively. d1; d2; d3; d4 and d5 are the diffusivity constants. Table 1 provides the description and the values of the
parameters.

2.2. Initial and boundary conditions

The domain of all the calculations is considered as ½�2;2�. Boundary and initial conditions are chosen as follows:



Table 1
Interpretation of parameters (per day).

Parameter Description Values

P Rate of inflow of susceptible
individuals into region

3:3� 10�5b

b Transmission Rate 0:75a

l Rate of natural mortality 3:4� 10�5b

l Relative measure of reduced risk
among diagnosed

0:38a

j Rate of progression from exposed
to the infectives

0:33a

q Relative measure of infectiousness
for exposed individuals

0:1a

a Rate of progression from infective
to diagnosed

0:33a

c1 recovery rate of infected
individuals

0:125a

c2 recovery rate of diagnosed
individuals

0:2a

d SARS induced mortality rate 0:006a

a Chowell et al. [5]
b Gummel et al. [10]

Table 2
Routh–Hurwitz criterion of equilibrium without diffusion.

Case Equilibrium point c1 c2 c3 c4 c5 Stable/Unstable

1 P1 0:97677 6:902� 10�7 0:20805 5:343� 10�6 7:613� 10�12 Stable

2 P2 1:02482 7:641� 10�11 0:24969 6:903� 10�6 1:114� 10�11 Stable

3 P3 1:02416 6:560� 10�11 0:23359 6:059� 10�6 8:399� 10�12 Stable

4 P4 0:97676 6:199� 10�11 0:20804 5:109� 10�6 6:421� 10�12 Stable

Where c1 ¼ p1; c2 ¼ p5; c3 ¼ p1p2 � p3, c4 ¼ p1p2p3 þ p1p5 � ðp2
3 þ p2

1p4Þ,
and c5 ¼ ðp1p4 � p5Þðp1p2p3 � p2

3 � p2
1p4Þ þ p2

1p4p5 � ðp5ðp1p2 � p3Þ
2 þ p1p2

5Þ.

Table 3
Routh–Hurwitz criterion of equilibrium with diffusion.

Case Equilibrium point c1 c2 c3 c4 c5 Stable/ Unstable

1 P1 1:0656 4:859� 10�8 0:29522 0:00478 8:061� 10�7 Stable

2 P2 1:11365 5:820� 10�8 0:345648 0:006458 1:411� 10�6 Stable

3 P3 1:1109 4:696� 10�8 0:322143 0:004815 9:623� 10�8 Stable

4 P4 1:06559 4:70� 10�8 0:29521 0:004779 8:049� 10�7 Stable

Where c1 ¼ q1; c2 ¼ q5; c3 ¼ q1q2 � p3, c4 ¼ q1q2q3 þ q1q5 � ðq2
3 þ q2

1q4Þ and c5 ¼ ðq1q4 � q5Þðq1q2q3 � q2
3 � q2

1q4Þ þ q2
1q4q5 � q5ðq1q2 � q3Þ

2q1q2
5.
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@Sð�2; tÞ
@x

¼ @Eð�2; tÞ
@x

¼ @Ið�2; tÞ
@x

¼ @Jð�2; tÞ
@x

¼ @Rð�2; tÞ
@x

¼ 0; ð6Þ

@Sð2; tÞ
@x

¼ @Eð2; tÞ
@x

¼ @Ið2; tÞ
@x

¼ @Jð2; tÞ
@x

¼ @Rð2; tÞ
@x

¼ 0; ð7Þ
1. S0 ¼ 0:98Sechð5x� 1Þ; �2 6 x 6 2:

E0 ¼ 0; �2 6 x 6 2:
I0 ¼ 0:02Sechð5x� 1Þ; �2 6 x 6 2:
J0 ¼ 0; �2 6 x 6 2:
R0 ¼ 0; �2 6 x 6 2:



A. Naheed et al. / Applied Mathematics and Computation 229 (2014) 480–498 483
2. S0 ¼ 0:98expð�5x2Þ3; �2 6 x 6 2:

E0 ¼ 0; �2 6 x 6 2:

I0 ¼
0; �2 6 x < �0:4;
0:02; �0:4 6 x 6 0:4;
0; 0:4 < x � 2:

8><
>:

J0 ¼ 0; �2 6 x 6 2:
R0 ¼ 0; �2 6 x 6 2:
3. S0 ¼ 0:97expð�5ðx� 1Þ2Þ; �2 6 x 6 2:

E0 ¼ 0; �2 6 x 6 2:

I0 ¼ 0:03expð�5ðxþ 1Þ2Þ; �2 6 x 6 2:
J0 ¼ 0; �2 6 x 6 2:
R0 ¼ 0; �2 6 x 6 2:
4. S0 ¼
0:96Sechð15xÞ; �2 6 x 6 0;

�

0; 0 < x 6 2:

E0 ¼ 0; �2 6 x 6 �5:

I0 ¼
0; �2 6 x < �0:6;
0:04; �0:6 6 x 6 0:6;
0; 0:6 < x 6 2:

8><
>:

J0 ¼ 0; �2 6 x 6 2:
R0 ¼ 0; �2 6 x 6 2:
The initial conditions are shown in Fig. 1. In initial condition ðiÞ a large proportion of susceptible and infected populations is
concentrated towards the right half of the main domain. Initial condition ðiiÞ shows both S and I concentrated around the
middle of the main domain. In initial condition ðiiiÞ; I has high concentration in the left half of the domain ½�2;2� and pop-
ulation S has concentration on the right half of the domain ½�2;2�. Initial condition ðivÞ shows susceptible S around the mid-
dle of domain ½�2;2� and infectious individuals around the middle but beyond the domain of S.
3. Numerical scheme

In this section the operator splitting technique [18] has been used to solve the SEIJR model equations. The equations are
divided in two groups of sub equations. The first group comprises the nonlinear reaction equations to be used for the first
half-time step as given:
1
2
@S
@t
¼ �b

ðI þ qEþ lJÞ
N

S� lSþP; ð8Þ

1
2
@E
@t
¼ b
ðI þ qEþ lJÞ

N
S� ðlþ jÞE; ð9Þ

1
2
@I
@t
¼ jE� ðlþ aþ c1 þ dÞI; ð10Þ

1
2
@J
@t
¼ aI � ðlþ c2 þ dÞJ; ð11Þ

1
2
@R
@t
¼ c1I þ c2J � lR; ð12Þ
The second group consists of the linear diffusion equations, to be used for the second half-time step as follows:
1
2
@S
@t
¼ d1

@2S
@x2 ; ð13Þ
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t 0
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t 0
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Fig. 1. Initial conditions ðiÞ–ðivÞ.
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1
2
@E
@t
¼ d2

@2E
@x2 ; ð14Þ

1
2
@I
@t
¼ d3

@2I
@x2 ; ð15Þ

1
2
@J
@t
¼ d4

@2R
@x2 ; ð16Þ

1
2
@R
@t
¼ d5

@2R
@x2;

ð17Þ
By the forward Euler scheme the above equations transform to
S
jþ1

2
i ¼ Sj

i þ Dt �b
ðIj

i þ qEj
i þ lJj

iÞ
Nj

i

Sj
i � lSj

i þP

 !
; ð18Þ

E
jþ1

2
i ¼ Ej

i þ Dt b
ðIj

i þ qEj
i þ lJj

iÞ
Nj

i

Sj
i � ðlþ jÞEj

i

 !
; ð19Þ

I
jþ1

2
i ¼ Ij

i þ DtðjEj
i � ðlþ aþ c1 þ dÞIj

iÞ; ð20Þ

J
jþ1

2
i ¼ Jj

i þ DtðaIj
i � ðlþ c2 þ dÞJj

iÞ; ð21Þ

R
jþ1

2
i ¼ Rj

i þ Dtðc1Ij
i þ c2Jj

i � lRj
iÞ; ð22Þ
where Sj
i; Ej

i; Ij
i; Jj

i and Rj
i are the approximated values of S; E; I; J and R at position �2þ iDx, for i ¼ 0;1; . . . and time

jDt; j ¼ 0;1; . . . and S
jþ1

2
i ; E

jþ1
2

i ; I
jþ1

2
i ; J

jþ1
2

i , and R
jþ1

2
i denote their values at the first half-time step. Similarly, for the second

half-time step,
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Sjþ1
i ¼ S

jþ1
2

i þ d1
Dt

ðDxÞ2
S

jþ1
2

i�1 � 2S
jþ1

2
i þ S

jþ1
2

iþ1

� �
; ð23Þ

Ejþ1
i ¼ E

jþ1
2

i þ d2
Dt

ðDxÞ2
E

jþ1
2

i�1 � 2E
jþ1

2
i þ E

jþ1
2

iþ1

� �
; ð24Þ

Ijþ1
i ¼ I

jþ1
2

i þ d3
Dt

ðDxÞ2
I

jþ1
2

i�1 � 2I
jþ1

2
i þ I

jþ1
2

iþ1

� �
; ð25Þ

Jjþ1
i ¼ J

jþ1
2

i þ d4
Dt

ðDxÞ2
J

jþ1
2

i�1 � 2J
jþ1

2
i þ J

jþ1
2

iþ1

� �
; ð26Þ

Rjþ1
i ¼ R

jþ1
2

i þ d5
Dt

ðDxÞ2
R

jþ1
2

i�1 � 2R
jþ1

2
i þ R

jþ1
2

iþ1

� �
: ð27Þ
The stability condition satisfied by the above described numerical method is given as:
dnDt

ðDxÞ2
6 0:5; n ¼ 1;2;3;4;5: ð28Þ
In each case, Dx ¼ 0:1; d1 ¼ 0:025; d2 ¼ 0:01; d3 ¼ 0:001; d4 ¼ 0:0; d5 ¼ 0:0 and Dt ¼ 0:03 are used.
3.1. Disease-free equilibrium ðDFEÞ and stability analysis

The threshold parameter for any DFE is R0, referred to as the basic reproduction number. It is defined as ‘‘the expected
number of secondary cases produced, in a completely susceptible population, by a typical infective individual [6]. The var-
iational matrix of the system of Eqs. (1)–(5) at the disease-free equilibrium P0 ¼ ð1;0;0;0; 0Þ, is calculated using the same
technique as [7] and given as follows:
V0 ¼

�l �qb �b �lb 0
0 qb� j� l b lb 0
0 j �l� a� c1 � d 0 0
0 0 a �l� c2 � d 0
0 0 c1 c2 �l

2
6666664

3
7777775
Trace½V0� ¼ qb� ð5lþ aþ jþ c1 þ c2 þ dÞ < 0, for b < 5lþaþjþc1þc2þd
q Det½V0� ¼ ðlabjþ bjðlþ c2 þ dÞ þ ðlþ aþ c1 þ dÞ

ðlþ c2 þ dÞðqb� l� jÞÞl2 > 0, for R0 < 1, where R0 ¼ qðlþaþc1þdÞðlþc2þdÞþjðlþc2þdÞþlaj
ðlþaþc1þdÞðlþc2þdÞðjþlÞ .

This shows that P0 is stable for R0 < 1. In the same way we can illustrate the stability of the endemic point for R0 > 1.
3.2. Stability of endemic equilibrium without diffusion

The variational matrix of the system of Eqs. (1)–(5) at P�ðS�; E�; I�; J�R�Þ, is given by
V� ¼

a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

2
6666664

3
7777775
;

where
a11 ¼ b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
� b

ðI� þ qE� þ lJ�Þ
ðS� þ E� þ I� þ J� þ R�Þ � l;

a12 ¼ b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
� b

qS�

ðS� þ E� þ I� þ J� þ R�Þ ;

a13 ¼ b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
� b

S�

ðS� þ E� þ I� þ J� þ R�Þ ;
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f β

n=2
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β
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f β

n=3

0.5 1.0 1.5 2.0 2.5 3.0
β

0.1

0.2

0.3

0.4

f β

Fig. 2. Determination of first excited mode with b as an unknown parameter.

Table 4
Bifurcation value of b.

Cases Value of b Considered Bifurcation Value

Without diffusion With diffusion

1 0:75 0:750435 0:810383
2 0:75 0:750367 0:810239
3 0:75 0:750387 0:809841
4 0:70 0:700381 0:756276

Table 5
Bifurcation values of c1 andc2.

Cases c1 Without diffusion With diffusion c2 Without diffusion With diffusion

1 0:125 0:124708 0:087493 0:2 0:199660 0:161489
2 0:125 0:124752 0:0873489 0:25 0:249586 0:196281
3 0:175 0:17471 0:133485 0:2 0:199694 0:161499
4 0:125 0:124726 0:0875375 0:2 0:199680 0:161530
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a14 ¼ b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
� b

lS�

ðS� þ E� þ I� þ J� þ R�Þ ;

a21 ¼ b
1

ðS� þ E� þ I� þ J� þ R�Þ � b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
;

a22 ¼ b
qS�

ðS� þ E� þ I� þ J� þ R�Þ � b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
� j� l;

a23 ¼ b
S�

ðS� þ E� þ I� þ J� þ R�Þ � b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
;



Table 6
Four cases.

Case Transmission coefficientðbÞ Recovery coefficientðc1Þ Recovery coefficient ðc2Þ

1 0:75 0:125 0:2
2 0:75 0:125 0:25
3 0:75 0:175 0:2
4 0:7 0:125 0:2
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Fig. 3. Solutions with initial condition ðiÞ and without diffusion.

A. Naheed et al. / Applied Mathematics and Computation 229 (2014) 480–498 487
a24 ¼ b
lS�

ðS� þ E� þ I� þ J� þ R�Þ � b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
;

a15 ¼ b
ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
; a25 ¼ �b

ðI� þ qE� þ lJ�ÞS�

ðS� þ E� þ I� þ J� þ R�Þ2
;

a32 ¼ j; a33 ¼ �a� c1 � d� l; a43 ¼ a; a44 ¼ �c2 � d� l; a53 ¼ c1;
a54 ¼ c2, a55 ¼ �l, and a31 ¼ a34 ¼ a35 ¼ a41 ¼ a42 ¼ a45 ¼ a51 ¼ a52 ¼ 0. The characteristic equation for P�ðS�; E�; I�; J�;R�Þ can
be written as
k5 þ p1k
4 þ p2k

3 þ p3k
2 þ p4kþ p5 ¼ 0: ð29Þ
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Fig. 4. Solutions with initial condition ðiiÞ and without diffusion.
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Where p1; p2; p3; p4 and p5 are calculated as in [12].
The Routh–Hurwitz criterion for the stability is given as in [13]:
C1 : p1 > 0; p5 > 0,
C2 : p1p2 > p3,
C3 : p1p2p3 þ p1p5 > p2

3 þ p2
1p4,

C4 : ðp1p4 � p5Þðp1p2p3 � p2
3 � p2

1p4Þ þ p2
1p4p5 > p5ðp1p2 � p3Þ

2 þ p1p2
5. and P1; P2; P3 and P4 are points of equilibrium.

P1 ¼ ð:331581;0:000064;0:000046;0:000074; :607887Þ,
P2 ¼ ð:357187; :000062; :000044; :000058; :585632Þ,
P3 ¼ ð:365393; :000061; :000039; :000064; :577199Þ,
P4 ¼ ð:355572; :000062; :000044; :000072; :584715Þ.

3.3. Stability of endemic equilibrium with diffusion

To calculate the small perturbations S1ðx; tÞ; E1ðx; tÞ; I1ðx; tÞ; J1ðx; tÞ and R1ðx; tÞ, the equations are linearized about the
point of equilibrium P�ðS�; E�; I�; J�;R�Þ as described in [2,11].
@S1

@t
¼ a11S1 þ a12E1 þ a13I1 þ a14J1 þ a15R1 þ d1

@2S1

@x2 ; ð30Þ

@E1

@t
¼ a21S1 þ a22E1 þ a23I1 þ a24J1 þ a25R1 þ d2

@2E1

@x2 ; ð31Þ
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Fig. 5. Solutions with initial condition ðiiiÞ and without diffusion.

A. Naheed et al. / Applied Mathematics and Computation 229 (2014) 480–498 489
@I1

@t
¼ a31S1 þ a32E1 þ a33I1 þ a34J1 þ a35R1 þ d3

@2I1

@x2 ; ð32Þ

@J1

@t
¼ a41S1 þ a42E1 þ a43I1 þ a44J1 þ a45R1 þ d4

@2J1

@x2 ; ð33Þ

@R1

@t
¼ a51S1 þ a52E1 þ a53I1 þ a54J1 þ a55R1 þ d5

@2R1

@x2 ; ð34Þ
where a11; a12; a13 etc. are the elements of the variational matrix V� calculated using same method as described in [12]. As-
sume a Fourier series solution exists of Eqs. (30)–(34) of the form:
S1ðx; tÞ ¼
X

k

SkektcosðkxÞ; ð35Þ

E1ðx; tÞ ¼
X

k

EkektcosðkxÞ; ð36Þ

I1ðx; tÞ ¼
X

k

IkektcosðkxÞ; ð37Þ
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Fig. 6. Solutions with initial condition ðivÞ and without diffusion.
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J1ðx; tÞ ¼
X

k

JkektcosðkxÞ; ð38Þ

R1ðx; tÞ ¼
X

k

RkektcosðkxÞ; ð39Þ
where k ¼ np
2 ; ðn ¼ 1;2;3; . . .Þ is the wave number for the node n. Substituting the value of S1; E1, I1; R1 in Eqs. (30)–(34), the

equations are transformed into
X
k

ða11 � d1k2 � kÞSk þ
X

k

a12Ek þ
X

k

a13Ik þþ
X

k

a14Jk þ
X

k

a15Rk ¼ 0; ð40Þ

X
k

a21Sk þ
X

k

ða22 � d2k2 � kÞEk þ
X

k

a23Ik þ
X

k

a24Jk þ
X

k

a25Rk ¼ 0; ð41Þ

X
k

a32Ek þ
X

k

ða33 � d3k2 � kÞIk ¼ 0; ð42Þ

X
k

a43Ik þ
X

k

ða44 � d4k2 � kÞJk ¼ 0; ð43Þ
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Fig. 7. Solutions with initial condition ðiÞ and with diffusion.
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X
k

a53Ik þ
X

k

a54Jk þ
X

k

ða55 � d5k2 � kÞRk ¼ 0: ð44Þ
The Variational matrix V for Eqs. (40)–(44)
V ¼

a11 � d1k2 a12 a13 a14 a15

a21 a22 � d2k2 a23 a24 a25

0 a32 a33 � d3k2 0 0
0 0 a43 a44 � d4k2 0
0 0 a53 a54 a55 � d5k2

2
6666664

3
7777775
The characteristic equation for the variational matrix V is given as
k5 þ q1k
4 þ q2k

3 þ q3k2 þ q4kþ q5 ¼ 0; ð45Þ
where q1; q2; q3; q4 and q5 are calculated with the same technique as used in [12].
Routh–Hurwitz Conditions are given as:
C1 : q1 > 0; q5 > 0,
C2 : q1q2 > p3,
C3 : q1q2q3 þ q1q5 > q2

3 þ q2
1q4,

C4 : ðq1q4 � q5Þðq1q2q3 � q2
3 � q2

1q4Þ þ q2
1q4q5 > q5ðq1q2 � q3Þ

2q1q2
5.
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Fig. 8. Solutions with initial condition ðiiÞ and with diffusion.
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3.3.1. Excited mode and bifurcation value
The first excited mode of the oscillation n is calculated by the same technique as used in [2]. According to the definition of

mode of excitation the curve
f ðbÞ ¼ ðq1q4 � q5Þðq1q2q3 � q2
3 � q2

1q4Þ þ q2
1q4q5 � ðq5ðq1q2 � q3Þ

2q1q2
5Þ: ð46Þ
for n ¼ 1 represents the first mode of excitation as being closest to the b-axis as shown in Fig. 2. Similarly, n ¼ 1 is first
mode of excitation for Cases 2 – 4. Bifurcation values of the transmission coefficient b are given in Table 4. It is observed
that the bifurcation value of transmission coefficient with diffusion is greater than the value of transmission coefficient
without diffusion. Bifurcation values of recovery coefficients c1 and c2 for which the point of equilibrium remains stable
[3] are given in Table 5. Here the bifurcation value of recovery coefficients with diffusion are smaller than without
diffusion.
4. Numerical solutions

Four cases with the variation of b, the transmission coefficient, c1, the recovery coefficient in the infectious class and c2,
the recovery coefficient in the diagnosed class have been chosen as given in Table 6. Numerical solutions are obtained both
with and without diffusion for all cases specified in Table 6.
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Fig. 9. Solutions with initial condition ðiiiÞ and with diffusion.
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4.1. Solutions of SEIJR model without diffusion (case 1)

Fig. 3, shows the output with initial condition ðiÞ and without diffusion. Here the susceptible population decreases slowly
in the first five days of disease but after that there is a rapid decrease till t ¼ 20 days. There is a rapid increase in population
exposed to disease in the first five days and this increase continues till t ¼ 10. It slows down however after five days. After
ten days there is a quick decrease in exposed individuals. Only a few individuals are in the exposed compartment after fifteen
days. There is a slow increase in infected individuals till the fifth day. But a sudden increase in infected is observed in the
next five days. After reaching maximum level, a decline in infected is observed till t ¼ 15. With the increase of infected indi-
viduals, the number of diagnosed has also increased rapidly but after attaining the maximum in the first ten days of disease,
there is a slow decrease till t ¼ 15. After that a quick decline is observed at t ¼ 20. Recovered individuals increase slowly in
first ten days of disease but after that a rapid increase in recovery is observed.

Fig. 4, shows the output with initial condition ðiiÞ without diffusion. Here the proportion of the susceptible population
decreases rapidly between 5–10 days and after that there is very low level of susceptible population. The population be-
comes exposed very quickly during first five days. After ten days, there is a sudden decrease which continues till t ¼ 20 days.
Infected individuals increase for the first ten days with rapid increase between 5–10 days. After that there is a rapid decrease
till t ¼ 15. Then a decrease occurs slowly till t ¼ 20. The proportion of diagnosed shows an increase till t ¼ 10 and after that
diagnosed individuals reduce with a quick fall between t ¼ 15 and 20 days. Recovery is slow initially but after t = 10, it is
fairly quick.

Fig. 5, shows the output with initial condition ðiiiÞ and without diffusion. The behavior of the susceptible is quite different
as compared to the initial conditions ðiÞ and ðiiÞ. Susceptible move to the right of the initial domain of concentration slowly
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Fig. 10. Solutions with initial condition ðivÞ and with diffusion.
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and slowly without much change in proportion of susceptible population. Initially the main concentration of the susceptible
population is in the interval ½0;2� but at t ¼ 20 this shifts to ½0:6;2�. More and more of the population become exposed during
t = 10 to 20 days of onset of the disease. During the first five days of the onset of SARS, the proportion of infected people goes
down in its domain ½�2;0� and after that starts moving to domain ½0;2� with gradual increase. A sharp increase is observed
between t ¼ 10 and 20 days ½0;1�. The number of diagnosed individuals increases during the first five days in the domain
½�2;0�. After that diagnosed individuals decrease with a slow pace. Also the concentration of the diagnosed moves to the
domain ½0;2�. A rapid increase of diagnosed can be seen between t ¼ 15 and 20 days. Till t ¼ 10 recovery increases in the
domain ½�2;0� and slowly moves to domain ½0;1�. From t ¼ 15 to t ¼ 20 recovery attains maximum values in the domain
½0;1�.

Fig. 6, shows the output with the initial condition ðivÞ and without diffusion. Susceptible individuals decrease rapidly
after t ¼ 5. At t ¼ 15, the susceptible reduce to a very low level of concentration. Exposed individuals reach the maximum
level in first five days and after that start reducing. Infected individuals increase till t ¼ 10 and after that there is a sudden fall
till t ¼ 20. Diagnosed individuals increase in the first ten days and after that there is a gradual decrease. There is gradual
increase in recovered individuals as shown in Fig. 6.

4.2. Solutions of SEIJR model with diffusion (case 1)

Fig. 7, shows the output with initial condition ðiÞ and with diffusion. With the inclusion of diffusion in the system, sus-
ceptible spread in the entire region at t ¼ 5 with peak value 0:2228567. Initially exposed are mainly confined in domain
½�1;1:5�. At t ¼ 5 exposed spread in the domain ½�1;1:5� with peak value 0:118055. At t ¼ 10, exposed spread in the whole



Table 7
Peak values of susceptible (S) and exposed (E) (without diffusion).

Case t SðiÞ SðiiÞ SðiiiÞ SðivÞ EðiÞ EðiiÞ EðiiiÞ EðivÞ

1 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 66.4 66.4 96.9 46.3 19.5 19.5 0.171 29.0
10 0.073 2.34 96.8 0.039 21.3 21.3 1.25 0.039
15 0.001 2.36 96.7 0.059 2.94 2.94 7.87 2.05
20 0.002 2.38 96.6 0.078 0.410 0.410 30.1 0.288

2 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 68.2 68.2 96.9 48.6 18.3 18.3 0.161 27.57
10 0.156 2.34 96.9 0.039 22.6 22.6 1.12 15.7
15 0.001 2.36 96.8 0.059 3.12 3.12 7.38 2.16
20 0.003 2.38 96.7 0.078 0.434 0.434 26.3 0.303

3 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 68.7 68.7 96.9 49.3 18.0 18.0 0.159 27.3
10 0.151 2.34 96.8 0.039 22.8 22.8 1.11 15.9
15 0.001 2.36 96.8 0.059 3.15 3.15 7.36 2.18
20 0.002 2.38 96.7 0.078 0.438 0.438 26.2 0.306

4 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 69.7 68.2 96.9 50.5 17.4 18.3 0.155 26.6
10 0.181 2.34 96.8 0.039 23.4 22.6 1.04 16.3
15 0.001 2.36 96.8 0.059 3.24 3.12 6.92 2.23
20 0.002 2.38 96.7 0.078 0.451 0.434 22.7 0.313

Table 8
Peak values of infective (I) and recovered (R) (without diffusion).

Case t IðiÞ IðiiÞ IðiiiÞ IðivÞ RðiÞ RðiiÞ RðiiiÞ RðivÞ

1 002.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00 –
05 6.91 6.91 0.189 11.4 3.53 3.53 1.86 6.61
10 21.4 21.4 0.416 17.7 32.4 32.4 2.59 41.1
15 5.37 5.37 2.98 3.91 69.9 69.9 2.833 74.8
20 0.891 0.891 11.9 0.632 87.6 87.6 8.47 89.4

2 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 6.55 6.55 0.189 10.9 3.71 3.71 2.01 6.98
10 21.7 21.7 0.403 18.1 33.7 33.7 2.71 43.2
15 5.64 5.64 2.62 4.09 73.4 73.4 2.89 78.3
20 0.942 0.942 11.6 0.665 90.3 90.3 8.39 91.9

3 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 6.08 6.08 0.141 10.1 3.92 3.92 2.01 7.35
10 19.8 19.8 0.377 16.2 34.8 34.8 2.66 43.9
15 4.72 4.72 2.48 3.38 72.5 72.5 2.86 77.0
20 0.742 0.742 10.9 0.521 88.9 88.9 8.82 90.5

4 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 6.20 6.55 0.189 10.4 3.32 3.71 1.86 6.27
10 21.9 21.7 0.394 18.4 30.5 33.7 2.60 39.4
15 5.82 5.64 2.35 4.23 68.7 73.4 2.83 73.8
20 0.975 0.942 11.2 0.687 87.1 90.3 7.26 89.0
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domain with peak value 0:068133. After this a rapid decrease in the exposed individuals occurs. Infected individuals spread
in the whole domain ½�2;2� with the passage of time and at t ¼ 10, infected individual attains its maximum with peak value
0:077894. After this there is a fall in the infected individuals and at t ¼ 20, there is very low level of infected individuals. A
steady spread of diagnosed is observed in the main domain ½�2;2�. At t ¼ 10 diagnosed are observed in the entire domain
with peak value 0:105364. After t ¼ 10, there starts a decrease in the diagnosed population. Recovery starts spreading in
the domain and at t ¼ 20 days, it completely spreads over the whole domain with peak value 0:383669.

Fig. 8, represents the results with the initial condition ðiiÞ and with diffusion. Susceptible quickly spreads in the whole
domain ½�2;2� with low peak value 0:129482 at t ¼ 5. In the first five days exposed spread in the domain ½�1;1� with peak
value 0:117691. In first ten days, exposed spread to whole domain with peak value 0:040644. After ten days the maximum
proportion of population gets infected and spread in the main domain ½�2;2�. Though the population in the whole domain
½�2;2� is infected but main concentration of infected lies in domain ½�1;1�. At time t ¼ 10, diagnosed spread over the whole
domain with peak value 0:085846. Diagnosed thereafter start reducing and at time t ¼ 15 days reduce to peak value



Table 9
Peak values of susceptible (S) and exposed (E) (with diffusion).

Case t SðiÞ SðiiÞ SðiiiÞ SðivÞ EðiÞ EðiiÞ EðiiiÞ EðivÞ

1 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 22.9 12.9 48.4 0.547 11.8 11.8 1.18 4.33
10 0.595 0.859 34.9 0.021 6.81 4.06 8.39 0.584
15 0.001 0.002 15.1 0.002 0.886 0.531 13.2 0.077
20 0.002 0.003 0.004 0.005 0.123 0.077 3.05 0.017

2 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 23.8 13.7 48.5 0.669 0.111 11.2 1.09 4.30
10 0.728 0.917 34.9 0.024 0.072 4.25 7.99 0.603
15 0.002 0.002 15.7 0.003 0.009 0.556 13.1 0.079
20 0.003 0.004 0.005 0.007 0.001 0.079 3.24 0.016

3 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 23.9 13.9 48.5 0.683 11.0 11.1 1.10 4.33
10 0.760 0.949 35.0 0.026 7.21 4.29 7.97 0.609
15 0.001 0.002 15.9 0.003 0.942 0.561 13.2 0.079
20 0.003 0.003 0.005 0.005 0.130 0.081 3.28 0.017

4 00 98.0 98.0 97.0 96.0 0.00 0.00 0.00 0.00
05 24.4 13.7 48.5 0.700 10.7 11.2 1.10 4.35
10 0.876 0.917 7.78 0.029 7.39 4.25 7.78 0.615
15 0.001 0.002 16.7 0.003 0.966 0.556 13.0 0.080
20 0.002 0.004 0.005 0.005 0.134 0.079 3.51 0.017

Table 10
Peak values of infective (I) and recovered (R) (with diffusion).

Case t IðiÞ IðiiÞ IðiiiÞ IðivÞ RðiÞ RðiiÞ RðiiiÞ RðivÞ

1 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 4.63 5.03 0.448 3.30 2.94 3.21 1.84 4.56
10 7.79 5.27 3.61 1.04 17.4 16.0 2.78 10.7
15 1.72 1.07 7.73 0.166 32.0 26.7 10.5 13.7
20 0.272 0.167 3.98 0.028 38.4 31.2 20.7 14.8

2 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 3.10 3.40 1.99 4.89 3.10 3.40 1.99 4.89
10 18.1 16.8 2.91 11.2 18.1 16.8 2.91 11.2
15 33.3 27.8 10.9 14.1 33.3 27.8 10.9 14.1
20 39.2 31.7 21.6 14.9 39.2 31.7 21.6 14.9

3 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 4.08 4.46 0.394 2.95 3.25 3.57 1.99 5.03
10 7.11 4.77 3.20 0.895 18.4 16.9 2.89 11.1
15 1.48 0.905 7.05 0.135 32.8 27.3 11.1 13.9
20 0.223 0.135 3.65 0.022 38.6 31.3 21.3 14.8

4 00 2.00 2.00 3.00 4.00 0.00 0.00 0.00 0.00
05 4.21 4.82 0.422 3.21 2.79 3.39 35.1 4.45
10 7.99 5.36 3.32 1.07 16.5 16.8 2.78 10.5
15 1.84 1.11 7.53 0.174 31.3 27.8 9.98 13.5
20 0.294 0.174 4.27 0.029 37.8 31.7 19.9 14.6

Table 11
Peak values of infective at t ¼ 20.

Cases Peak values for initial conditions Reproductive number

ðiÞ ðiiÞ ðiiiÞ ðivÞ

1 0:891 0:891 11:90 0:632 2:83
2 0:942 0:942 11:60 0:665 2:64
3 0:742 0:742 10:90 0:521 2:58
4 0:975 0:942 11:20 0:687 2:64
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0:051532. Recovery starts slowly and spread to domain ½�0:6;0:6� at t ¼ 5. At t ¼ 20, recovered are spread over the whole
domain with peak value 0:311524.

Fig. 9, shows the results with the initial condition ðiiiÞ and with diffusion. Susceptible spread from the initial domain of
concentration ½0;2� to the domain ½�1:5;2� at t ¼ 5. After 5 days, susceptible start moving back. Susceptible are confined to
the domain ½0:5;2� at t ¼ 15. Exposed individuals also shifts from domain ½�2;0� to ½0;2� with the passage of time. Initially
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infectives are confined to domain ½�2;0�. Infected spread at very slow pace and a small pulse with peak value 0:004476 can
be observed at t ¼ 5. After 10 days, the domain of concentration of infected people moves to ½�1;1�. At t ¼ 15, infection
spread in the whole domain ½�2;2�. At t ¼ 5, a small proportion of diagnosed remain in the domain ½�2;0�. There is, however,
a rapid increase in the number of diagnosed with peak value 0:074575 at t ¼ 20. At t ¼ 5, recovery is restricted to the domain
½�2;0�. After 20 days, recovered spread in the domain ½�2;2�, with peak value 0:206879.

Fig. 10, shows the results with initial condition ðivÞ and with diffusion. A sudden fall in the susceptible is observed at t ¼ 5
with peak value 0:005466. During the same time, exposed spread to domain ½�1:5;1:5� with peak value 0:043322. At t ¼ 10,
infected spread in the domain ½�1:8;1:8� with peak value 0:010391. At t ¼ 5, diagnosed spread to domain½�1;1� with peak
value 0:033966. Diagnosed spread further in the domain ½�1:8;1:8� at t ¼ 15 with peak value 0:01385. Recovery initially oc-
curs in the domain ½�1;1� at t ¼ 5 with peak value 0:045636. There is a further increase of recovered at t ¼ 10 with peak
value 0:106593. At t ¼ 20 there is maximum recovery with peak value 0:147773.

4.3. Other cases

Graphs of numerical solutions of Cases 2–4, obtained both with and without diffusion, for all cases specified in Table 6 are
quite similar to Case 1. Thus graphs for Cases 2–4 are not reproduced here. Summarized results for Cases 2–4 are shown in
Tables 7–10. Here Sj; Ej; Ij and Rj for j ¼ ðiÞ; ðiiÞ; ðiiiÞ and ðivÞ represent the proportion of susceptible, exposed, infected and
recovered population at critical points in the domain ½�2;2� without and with diffusion, for the initial condition ðiÞ; ðiiÞ; ðiiiÞ
and ðivÞ respectively. The following description is based on the information provided in Tables 7 and 10.

In Case 2, there is an increase in the recovery coefficient of diagnosed individual, c2 ¼ 0:25 while keeping values of trans-
mission coefficient, b and recovery rate of infected, c1 the same as in Case 1. There is a slow decrease in susceptible popu-
lation as compared to Case 1, for all initial conditions, with and without diffusion in the system. Fewer individuals seem to be
exposed and infected to disease in the first five days with conditions ðiÞ; ðiiÞ and ðivÞ and after five days their proportion is
greater in comparison to Case 1. But with condition ðiiiÞ, there is a smaller proportion of exposed all the time. There is higher
proportion of recovered in Case 2 as compared to Case 1, both with and without diffusion.

In Case 3, there is increase in recovery rate of infected individuals, c1 ¼ 0:175 as compared to Case 1 and Case 2. There is
slow decrease in susceptible population during the first five days for condition ðiÞ–ðivÞ, with and without diffusion as com-
pared to Cases 1 and 2. Initially exposed are small in proportion as compared to Case 1 but after five days the proportion of
exposed is more than in Case 1 with initial condition ðiÞ; ðiiÞ and ðivÞ. On the other hand with initial condition ðiiiÞ, there is a
decrease in exposed individuals. Population of infectious reduces remarkably in Case 3. Diagnosed class also has a decrease
in individuals. More individuals recover in Case 3 as compared to Case 1. But the recovered population in Case 3 is less than
that in Case 2.

In Case 4, there is a reduced value of the transmission coefficient, b ¼ 0:7 as compared to Cases 1;2;3. This causes a slow
decrease in the susceptible population as compared to Cases 1;2 and 3 till t ¼ 10. Exposed behave similarly as in Cases 2 and 3
with the number of individuals first decreasing and then increasing as compared to Case 1. Population of infected is less
than Cases 1 at t = 5. After that, till t = 20 days, more infected individuals are observed in Case 4 as compared to Cases 1.
Recovered individuals slow down here and the number of recovered population is less in this case as compared to other
cases.
5. Discussion and conclusion

An SEIJR Model for SARS (Chowell et al. [5]) is considered with the inclusion of diffusion in the system. Four different ini-
tial conditions are taken for the population distribution. The equation governing the system are solved numerically using
operator splitting method. The reproduction number R0 is calculated for the disease. It is shown that disease dies out for
R0 < 1, in disease free equilibrium. It however prevails for endemic equilibrium, where R0 > 1 as shown in Table 11. Stabil-
ity of solutions with and without diffusion is established using Routh–Hurwitz conditions as shown in Tables 2 and 3. The
value of the reproduction number R0 depends on ten parameters. The parameters transmission coefficient b, recovery rate in
infectious class c1 and recovery coefficient in diagnosed c2 have been varied to observe the effects on the spread of disease.
Hence four cases are produced to see the effect on the spread of disease. Bifurcation values of transmission coefficient b and
recovery coefficients c1 and c2 are calculated. It is observed that diffusion causes an increase in the bifurcation value of b and
a decrease in the value of recovery coefficients. This shows that the system can be stable for larger value of b and smaller
values of recovery rates c1 and c2 in the presence of diffusion.

Numerical solution with initial condition ðiÞ, as shown in Figs. 3 and 7, that in the absence of diffusion, only the popula-
tion in the domain ½�1;1:5� becomes susceptible, but when diffusion is introduced susceptible spread over the whole domain
in first five days. Similarly the exposed remain confined in the interval ½�1;1:5� in the absence of diffusion. But with diffusion
population outside the domain ½�1;1:5� also become exposed to infection and after ten days exposed population spread to
whole domain. With and without diffusion in the system, infection reached to its peak in first ten days. With the inclusion of
diffusion, however, infection spreads over the whole domain ½�2;2�. Recovered also follows the same pattern. Numerical
solution of initial condition ðiiÞ, as shown in Figs. 4 and 8, follows the same pattern as in condition ðiÞ with only difference
in concentration of population in different domain. In the absence of diffusion infective population fluctuate inside the



498 A. Naheed et al. / Applied Mathematics and Computation 229 (2014) 480–498
domain ½�:5; :5�, but with diffusion in the system fluctuations follows with the spread in the whole domain after ten days
Numerical solution with initial condition ðiiiÞ, as shown in Figs. 5 and 9, shows the main concentration of susceptible shifts
slightly to right of domain ½0;2� in 20 days. Infected move to domain ½0;2� from domain ½�2;0� and with that diagnosed and
recovered also follow the same pattern. With diffusion in the system Susceptible start spreading to the left of the domain
½�2;2� but are mainly confined in ½�0:8;2�. Exposed grows in the smaller domain ½�1;0:5� first and then with passage of time
spread in the domain ½�1:5;2�. Infected shifts their domain from ½�2;0� to ½�1;2� followed with decrease, increase and then
again decrease in proportion. Thus with diffusion more individuals get infected within a short time and infection spreads
quickly and reaches its maximum in 15 days covering almost the whole domain. In the absence of diffusion the maximum
number of infected are observed after twenty days in domain ½0;1�, reflecting the intensity of infection more than that with
diffusion during the same time. A large proportion of population is recovered with diffusion in the system during the same
time as compared to without diffusion. Numerical solution with initial condition ðivÞ, as shown in Figs. 6 and 10, demon-
strate that diffusion causes the infection to spread out from domain ½�:7; :7� to ½�2;2�. The intensity of the infection also be-
comes less than the initial intensity as it spreads to ½�1:5;1:5�.

It has been observed in Tables 7 and 10 that when recovery is improved in diagnosed class with an increased value of c2 as
in Case 2, less proportion of population becomes infected and proportion of the recovered increases. Even better result is
obtained with the greater recovery of infected with an increased value of c1 as shown in Case 3, where the proportion of
recovered is higher than previous Case 2 even with a lower value of diagnosed recovery, c2. With recovery coefficients c1

the same and decreasing the transmission coefficient b as in Case 4, recovery is observed to be slower than the original Case
1.

Conclusions are summarized as follows:

� Initial population distribution plays a crucial role in the spread of disease.
� Diffusion plays an important role in reducing the intensity of disease.
� An increase in recovery of infective through intervention plays an effective role during the initial days of the onset of

disease.
� An increase in recovery of diagnosed plays a more effective role during the last days of disease.
� Thus interventions are good tools to reduce the intensity of the disease.
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