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Choice of interaction function is one of the most important parts for modelling a food
chain. Many models have been proposed as a diseased-prey predator model with Holling
type-I or type-II or type-III interactions, but there is no model with general Holling type
interactions. In this paper, we study a diseased prey–predator model with general Holling
type interactions. Local stability conditions of equilibrium points are derived. We obtain
the permanence and impermanence conditions of the system. The conditions for global sta-
bility of the system are also derived. The system exhibits limit cycle, period-2, higher peri-
odic oscillations and chaotic behaviour for different values of Holling parameters. One
parameter bifurcation analysis is done with respect to general Holling parameters and
infection rate. We utilize the MATCONT package to analyse the detailed bifurcation sce-
nario as the two important interaction parameters are varied. It is interesting to note that
a diseased system becomes a disease free system for proper choice of interaction functions.
Our results give an idea for constructing a realistic food chain model through proper choice
of general Holling parameters.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical models are increasingly used to guide public health policy decisions and to control infectious disease. Epi-
demic dynamics is an important method of studying the spread of infectious disease qualitatively and quantitatively. The
research results are helpful to predict the developing tendency of the infectious disease, to determine the key factors of
the spread of infectious disease and to seek the optimum strategies of preventing and controlling the spread of infectious
diseases. Mathematical models have a long history in infectious disease ecology starting with Bernoulli’s [1] modelling of
smallpox and including Ross’s [2] analysis of malaria. The earliest attempt to provide a quantitative understanding of the
dynamics of malaria transmission was that of Ross [2]. Ross models consisted of a few differential equations to describe
changes in densities of susceptible and infected people, and susceptible and infected mosquitoes. Based on his modelling,
Ross introduced the concept of a threshold density and concluded that ‘in order to counteract malaria anywhere we need
not vanish Anopheles there entirely we need only to reduce their numbers below a certain figure [3]. Classical papers of
mathematical modelling of infectious disease was constructed by Kermack and McKendrick (1927 [4], 1932 [5], and 1933
[6]). These papers had a major influence on the development of mathematical models for disease spread and are still relevant
in many epidemic situations. Aim of ecological modelling is to understand the prevalence and distribution of a species, to-
gether with the factors that determine incidence, spread, and persistence (Anderson and May [7]; May and Anderson [8];
Bascompte and Rodriguez-Trelles [9]). Now we have models for many of the most important human emerging infectious dis-
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eases e.g., HIV (May and Anderson [10]), malaria (Aron and May [11]; Macdonald [12]), SARS-coronavirus (Anderson et al.
[13]), rabies (Murray and Seward [14]), and influenza (Ferguson and Anderson [15]). Mathematical models are also being
used to explore wildlife disease dynamics (Grenfell and Dobson [16]; Hudson et al. [17]) and possible routes of zoonotic dis-
ease emergence. Understanding disease dynamics across hosts is an essential first step in understanding and articulating
those conditions under which new diseases can emerge from wildlife reservoirs [18]. A predator–prey system with infected
prey in polluted environment is proposed by Sinha et al. [19]. Anderson and May [20] were probably the first who considered
the disease factor in a predator–prey dynamics and found that the pathogen tends to destabilize the predator–prey interac-
tion. In Rosenzweig prey-predator model, Hadeler and Freedman [21] determined a threshold above which an infected equi-
librium or an infected periodic solution appear. Chattopadhyay and Arino [22] considered a three species ecoepidemiological
model and studied local stability of equilibrium points, extinction criteria of species and found condition for Hopf-bifurca-
tion in an equivalent two-dimensional model. Haque and Chattopadhyay [23] studied the role of transmissible diseases in a
prey dependent predator–prey system with prey infection. Haque and Venturino reported the influence of transmissible dis-
ease in prey taking Holling–Tanner predator–prey model [24]. The dynamical behaviour of the predator–prey system was
investigated when a predator avoids infected prey and the predator has alternative sources of food ([25,26]). Bhattacharyya
et al. [27] proposed a epidemiological model with nonlinear infection incidence. Das et al. [28] modified the HP model by
introducing disease in the prey population. They derived conditions for population extinction and the conditions for perma-
nent or impermanent of the system. Sahoo and Poria described a diseased prey-predator model supplying additional food to
predator for biological control[29]. Recently, Haque et al. investigated predator-infected eco-epidemics systems with differ-
ent functional responses[30].

In this paper, we modify the model of Das et al. [28] by introducing the general Holling type interactions in Section 2.
Some preliminary results are derived in Section 3. In Section 4, the conditions for local stability of equilibrium points are
derived. We derive the permanency and impermanence conditions for the model in Section 5. Section 6 presents the condi-
tions for global stability. Section 7 contains the numerical simulation results of the model. We have done bifurcation analysis
of the model with respect to general Holling parameters and have also investigated the influence of infection rate on the
dynamics. The different routes of continuation of the associated bifurcations are analysed with the help of MATCONT soft-
ware package ([31–33]).

2. Model formulation

All food chain models use some realistic interaction functions between preys and predators based on some biological
hypothesis. A realistic interaction function should not allow the predators to grow arbitrarily fast, if prey is abundant. Apart
from these basic biological considerations, Holling interaction functions are taken as simplest realistic interactions. Holling
type-II function is defined as FðXÞ ¼ AX

KþX, where A is the maximum predation rate and K is half saturation constant. The func-
tion increase linearly if X is small. At large values of X the slope of the function F 0ðXÞ decreases as predator becomes saturated
but F 0ðXÞ always remains non-negative. Actually, the Holling type-II function is based on the assumption that predation rate
is proportional to prey density if prey is scarce. However, if the predator actively seeks out large concentration of prey the
Holling type-III function FðXÞ ¼ AX2

K2þX2 is more appropriate. Since the slope of this function goes to zero for small values of X it
may be suspected that the food chain will be destabilized if prey concentration becomes too small. The general Holling func-
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Fig. 1. Comparision of different types of Holling functional responses. (a) For some a 2 ð0;1� and (b) for some a 2 ½1;2�.
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tion is defined as FðXÞ ¼ AXa

KaþXa, where a > 0 ([34–36]). The behaviour of different types response functions are shown in Fig. 1
for different values of a.

We take the following assumptions to formulate the model.

(a) The prey population is divided into two classes, viz. (i) susceptible class whose population density is denoted by S and
(ii) infected class whose population density is denoted by I. The intermediate predator whose population density is
denoted by P1 and the density of top-predator is denoted by P2.

(b) A part of the susceptible prey population becomes infected at a rate c, following the law of mass action.
(c) Infected population is not in a state of reproduction and also does not compete for the resources.
(d) Behaviour of the entire community is assumed to arise from the coupling of these interacting species, where P1 preys

on both susceptible prey and infected prey in the form of general Holling type and Holling type-I respectively. This
different combinations of functional forms are taken because the capturing of infected prey is different from that of
susceptible prey. Top-predator preys intermediate predator in the form of general Holling type interaction. This is
in contrast to other models which assume particular Holling type interactions ([24–26]).

(e) The infected prey population dies at the rate D1 and the intermediate predator and top-predator die at the rate D2 and
D3 respectively.

Under the above assumptions, we obtain the following model:
dS
dT
¼ R0S 1� S

K0

� �
� cIS� C1A1

P1Sa

Ba
1 þ Sa

dI
dT
¼ cIS� A2P1I � D1I ð1Þ

dP1

dT
¼ A1

P1Sa

Ba
1 þ Sa þ C2A2IP1 � A3

P2Pb
1

Bb
2 þ Pb

1

� D2P1

dP2

dT
¼ C3A3

P2Pb
1

Bb
2 þ Pb

1

� D3P2
Here S; I; P1; P2 are respectively the susceptible prey, the infected prey, the intermediate predator and the top-predator
population respectively and T is the time. The constant R0 is the ‘intrinsic growth rate’ and the constant K0 is the ‘carrying
capacity’ of species S. A1 and A2 are the maximal predation rate of intermediate predator for susceptible and infected prey
respectively; A3 is the maximal predation rate of top-predator for intermediate predator; B1 and B2 are the half saturation
constant for functional response of intermediate and the top-predator respectively; C�1

1 is the conversion rate of susceptible
prey to intermediate predator; C2 is the conversion rate of infected prey to intermediate predator; C3 is the conversion rate of
intermediate predator to top-predator. Here að> 0Þ and bð> 0Þ are the general Holling parameters. From biological point of
view, in real world, predators of different species may feed on preys in different types of consumption ways. For example,
consider crops, aphids, and lady beetles as prey, intermediate-predator, and top-predator, respectively. In this case, it is nat-
ural to assume that the feeding type of aphids on crops is different from that of lady beetles on aphids. Thus, to describe these
phenomenon, different types of functional responses are needed.

We nondimensionalize the system (1) with s ¼ S
K0
; i ¼ I

K0
, p1 ¼ P1

K0
, p2 ¼ P2

K0
; t ¼ R0T and obtain the following set of

equations:
ds
dt
¼ sð1� sÞ � asi� b

p1sa

1þ csa ¼ F1ðs; i;p1;p2Þ;

di
dt
¼ asi� dp1i� ei ¼ F2ðs; i; p1;p2Þ;

dp1

dt
¼ f

p1sa

1þ csa þ gip1 � h
p2pb

1

1þmpb
1

� jp1 ¼ F3ðs; i; p1;p2Þ; ð2Þ

dp2

dt
¼ k

p2pb
1

1þmpb
1

� lp2 ¼ F4ðs; i; p1; p2Þ:
The system (2) has to be analysed with the following initial conditions: sð0Þ > 0; ið0Þ > 0; p1ð0Þ > 0; p2ð0Þ > 0; where

a ¼ cK0
R0
; b ¼ C1A1Ka

0
R0Ba

1
; c ¼ Ka

0
Ba

1
; d ¼ A2K0

R0
, e ¼ D1

R0
; f ¼ A1Ka

0
R0Ba

1
; g ¼ C2A2K0

R0
; h ¼ A3Kb

0

R0Bb
2

; j ¼ D2
R0
; k ¼ C3A3Kb

0

R0Bb
2

; l ¼ D3
R0
; m ¼ Kb

0

Bb
2

.

3. Theoretical studies

3.1. Positive invariance

Let X ¼ ðs; i; p1; p2Þ
T 2 R4 and
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FðXÞ ¼ ½F1ðXÞ; F2ðXÞ; F3ðXÞ; F4ðXÞ�T ; ð3Þ
where FðXÞ : Cþ ! R4 and F 2 C1þ ðR
4Þ. Then system (2) becomes
_X ¼ FðXÞ; ð4Þ
with Xð0Þ ¼ X0 2 R4
þ. It is easy to verify that whenever choosing Xð0Þ 2 R4 such that Xi ¼ 0 then ½FiðXÞ�Xi¼0 P 0 (for

i = 1,2,3,4). Now any solution of the Eq. (4) with X0 2 R4
þ , say XðtÞ ¼ Xðt;X0Þ, is such that XðtÞ 2 R4

þ for all t > 0 (Nagumo,
M. [37]).

3.2. Boundedness

Theorem 1. All solutions of the system (2) which initiate in R4
þ are uniformly bounded.
Proof. Let us consider that W ¼ sþ iþ p1 þ p2.
Therefore;
dW
dt
¼ ds

dt
þ di

dt
þ dp1

dt
þ dp2

dt
:

Using Eq. (2), we have predator-infected eco-epidemics
dW
dt
¼ sð1� sÞ � ðb� f Þ p1sa

1þ csa � ðd� jÞp1i� ðh� kÞ p2pa
1

1þmpa
1
� ei� jp1 � lp2:
since b P f ; d P g and h P k we get the following expression:
dW
dt
6 sð1� sÞ � ei� jp1 � lp2:

i:e:;
dW
dt
6 �ð1� sÞ2 � ðsþ iþ p1 þ p2ÞLþ 1;
where L = minð1; e; j; lÞ.
dW
dt
þ LW 6 1� ð1� sÞ2:

This imples
dW
dt
þ LW 6 1:
since ð1� sÞ2 P 0. Integrating, WeLt
6

eLt

L þ C, C being arbitrary positive constant. Initially, when t ¼ 0,
W ¼Wðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞ. Therefore from the solution, we have Wðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞ 6 1

L þ C, i.e.,
C P Wðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞ � 1

L.

Therefore,
WeLt < eLt

L þWðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞ � 1
L.

Thus, W < 1�e�Lt

L þWðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞe�Lt .

From the theory of differential inequality we obtain 0 < W < 1�e�Lt

L þWðsð0Þ; ið0Þ; p1ð0Þ; p2ð0ÞÞe�Lt .

For t !1, we have 0 < W < 1
L.

Hence all the solutions of (2) that initiate in R4
þ will ultimately remain in the region B ¼ fðs; i; p1; p2Þ 2 R4

þ : W ¼ 1
L þ g, for

g > 0g. This proves the theorem. h
3.3. Extinction criterion

Lemma 1. If 1 6 aiðtÞ , then limt!1sðtÞ ¼ 0. If asðtÞ 6 e, then limt!1iðtÞ ¼ 0. If f 6 cj and giðtÞ 6 j, then limt!1p1ðtÞ ¼ 0. If
k 6 ml, then limt!1p2ðtÞ ¼ 0.
Proof. We have
ds
dt
¼ sð1� sÞ � asi� b

p1sa

1þ csa 6 sð1� aiÞ:
Solving above equation we have sðtÞ 6 sðt0Þexp
R t

t0
ð1� aiðrÞÞdr

� �
. Hence limt!1sðtÞ ¼ 0, provided 1 6 aiðtÞ.
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Now
di
dt
¼ asi� dp1i� ei:
Therefore, iðtÞ ¼ iðt0Þexp
R t

t0
ðasðrÞ � dp1ðrÞ � eÞdr

� �
.

iðtÞ 6 iðt0Þexp
R t

t0
ðasðrÞ � eÞdr

� �
.

Thus, limt!1iðtÞ ¼ 0, provided asðtÞ 6 e.
dp1

dt
¼ f

p1sa

1þ csa þ gip1 � h
p2pb

1

1þmpb
1

� jp1:
Therefore,
dp1

dt
6 f

p1sa

1þ csa þ gip1 � jp1:
Therefore, p1ðtÞ 6 p1ðt0Þexp
R t

t0

fsaðrÞ
1þcsaðrÞ þ giðrÞ � j
� �

dr
� �

,

i.e, p1ðtÞ 6 p1ðt0Þexp
R t

t0
ðf � cjÞ saðrÞ

1þcsaðrÞ þ giðrÞ � j
� �

dr
� �

.

Thus, if f 6 cj and giðtÞ 6 j, then limt!1p1ðtÞ ¼ 0.

Now,

dp2

dt
¼ k

p2pb
1

1þmpb
1

� lp2:� �� �

p2ðtÞ ¼ p2ðt0Þexp

R t
t0

kpb
1ðrÞ

1þmpb
1ðrÞ
� l dr ,

i.e., p2ðtÞ 6 p2ðt0Þexpð�lðt � t0ÞÞ.

Thus, limt!1p2ðtÞ ¼ 0, provided k 6 ml. h
4. Existence and local stability of equilibrium points

The system has seven equilibrium points. E0ð0;0;0;0Þ is the trivial equilibrium point. The axial equilibrium point is
E1ð1;0;0;0Þ. Disease free planar equilibrium point is E2ðh1;0; h2;0Þ , where ha

1 ¼
j

f�cj ; h2 ¼ f ð1�h1Þ
bh1 j .

The existence condition of disease free planer equilibrium point E2 are f � cj > 0 and 1 > h1.
The endemic planar equilibrium point is E3

e
a ;
ða�eÞ

a2 ; 0; 0
� �

. where a� e > 0. E4ð�s; 0; �p1; �p2Þ is disease free space equilib-
rium point where

�p1
b ¼ l

k�ml ; �p2 ¼
kff�sa�jðc�saþ1Þjg

hð1þc�saÞlp1
and �s are the positive roots of the equation c�saþ1 þ c�sa � �p1b�sa�1 � �sþ 1 ¼ 0. The disease free

equilibrium point E4 exists if k > ml; f�sa > jð1þ c�saÞ.

E5ðŝ; î; p̂1;0Þ is the top-predator free equilibrium point where ŝ ¼ eþdp̂1
a ,

î ¼ j
g �

f ðeþdp̂1Þ
a

g½aaþcðeþdp̂1Þ
a � and p̂1 are the positive roots of the equation

gcdp̂1ðeþ dp̂1Þ
a þ ðacg � a2cj� faÞðeþ dp̂1Þ

a � ba2gp̂1ðeþ dp̂1Þ
a�1 � aagðeþ dp̂1Þ þ gaaþ1 � jaaþ2 ¼ 0,

The top-predator free equilibrium point E5 exists if j > efþdf p̂1
b

aþceþcdp̂1
b.

The interior equilibrium point is given by E�ðs�; i�; p�1; p�2Þ, where s� ¼ dp�1þe
a . i� ¼ 1�s�

a �
bp�1s�a�1

að1þcs�aÞ. p�1
b ¼ l

k�ml and

p�2 ¼
1þmp�1

b

p�1
b�1h

fs�a

1þcs�a þ gi� j
h i

.

The interior equilibrium point E� exists if 1 > s� þ bp�1s�a�1

1þcs�a , k > ml, fs�a

1þcs�a þ gi� > j.
The Jacobian matrix J of the system (2) at an arbitrary point ðs; i; p1; p2Þ is given by
J ¼

F1s F1i F1p1
0

F2s F2i F2p1
0

F3s F3i F3p1
F3p2

0 0 F4p1
F4p2

0
BBB@

1
CCCA: ð5Þ
Theorem 2. The trivial equilibrium point E0 is always unstable. The disease free planar equilibrium point E2 is locally stable if
khb

2

1þmhb
2

< l; ah1 < dh2 þ e; bh2ha�1
1 ½ð1þcha

1Þ�a�
ð1þcha

1Þ
2 < h1. The endemic planar equilibrium point E3 is locally stable if fea

aaþcea þ gða�eÞ
a2 < j.
Proof. Since an eigenvalue associated with the Jacobian matrix at E0 is 1, so E0 is an unstable equilibrium point.
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The Jacobian matrix J1 at E1 is given by
J1 ¼

�1 �a � b
1þc 0

0 a� e 0 0
0 0 f

1þc � j 0
0 0 0 �l

0
BBB@

1
CCCA:
From the Jacobian matrix J1, it is observed that equilibrium point E1 is unstable if a > e and f > ðc þ 1Þj, which are the exis-
tence condition for the equilibrium points E2 and E3.

The Jacobian matrix J2 at E2 is given by
J2 ¼

bh2ha�1
1 ½ð1þcha

1Þ�a�
ð1þcha

1Þ
2 � h1 �ah1 � bha

1
1þcha

1
0

0 ah1 � dh2 � e 0 0
f h2ahða�1Þ

1

ð1þcha
1Þ

2 gh2 0 � hhb
2

1þmhb
2

0 0 0 khb
2

1þmhb
2

� l

0
BBBBBBBB@

1
CCCCCCCCA
:

The characteristic roots of J2 are ah1 � dh2 � e and khb
2

1þmhb
2

� l and the roots of the equation k2 � bh2ha�1
1 ½ð1þcha

1Þ�a�
ð1þcha

1Þ
2 � h1

� �
kþ bf h2ahð2a�1Þ

1

ð1þcha
1Þ

3 ¼ 0.

Hence, E2 is stable if the conditions given in the theorem are satisfied
The Jacobian matrix J3 at E3 is given by
J3 ¼

� e
a �e � bea

aaþcea 0
a�e

a 0 � dða�eÞ
a2 0

0 0 fea

aaþcea þ gða�eÞ
a2 � j 0

0 0 0 �l

0
BBBB@

1
CCCCA:
The characteristic roots of J3 are �l, fea

aaþcea þ gða�eÞ
a2 � j and the roots of the equation k2 þ e

a kþ eða�eÞ
a ¼ 0. h

Hence, the equilibrium point E3 is stable if fea

aaþcea þ gða�eÞ
a2 < j.

Theorem 3. The disease free equilibrium point E4 is locally stable if
�p1b�sa�1½ð1þ c�saÞ � a�
ð1þ c�saÞ2

< �s; a�s < d �p1 þ e; ð1þm �p1
bÞ < b ð6Þ
and the top-predator free equilibrium point E5 is stable if
kp̂1
b

1þmp̂1
b
< l;

p̂1bŝa�1½ð1þ cŝaÞ � a�
ð1þ cŝaÞ2

< ŝ; fdaŝða�1Þ
6 ð1þ cŝaÞbg: ð7Þ
Proof. The Jacobian matrix J4 at E4 is given by
J4 ¼

�p1b�sa�1 ½ð1þc�saÞ�a�
ð1þc�saÞ2

� �s �a�s � b�sa
1þc�sa 0

0 a�s� d �p1 � e 0 0
fa �p1�sða�1Þ

ð1þc�saÞ2
g �p1

�p2h �p1
b�1 ½ð1þm �p1

bÞ�b�
ð1þm �p1

bÞ2
� h �p1

b

1þm �p1
b

0 0 kb �p2 �p1
ðb�1Þ

ð1þm �p1
bÞ2

0

0
BBBBBB@

1
CCCCCCA
:

The characteristic roots of the Jacobian matrix J4 are a�s� d �p1 � e, and the roots of the characteristic equation is given by
k3 þX1k

2 þX2kþX3 ¼ 0. where
X1 ¼ �
�p1b�sa�1½ð1þ c�saÞ � a�

ð1þ c�saÞ2
� �s

 !
þ

�p2 h �p1
b�1½ð1þm �p1

bÞ � b�
ð1þm �p1

bÞ2

 !" #
;

X2 ¼
hkb �p2 �p1

ð2b�1Þ

ð1þm �p1
bÞ3
þ

�p2h �p1
b�1½ð1þm �p1

bÞ � b�
ð1þm �p1

bÞ2

" #
�p1b�sa�1½ð1þ c�saÞ � a�

ð1þ c�saÞ2
� �s

" #
þ bf �p1a�sð2a�1Þ

ð1þ c�saÞ3
;

X3 ¼ �
�p1b�sa�1½ð1þ c�saÞ � a�

ð1þ c�saÞ2
� �s

" #
khb �p2 �p1

ð2b�1Þ

ð1þm �p1
bÞ3

:
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Hence, by Routh–Hurwitz criterion [38] the equilibrium point E4 is stable if the condition 6 holds.

The Jacobian matrix J5 at E5 is given by
J5 ¼

p̂1bŝa�1 ½ð1þcŝaÞ�a�
ð1þcŝaÞ2

� ŝ �aŝ � bŝa
1þcŝa 0

âi 0 �d̂i 0
fap̂1 ŝða�1Þ

ð1þcŝaÞ2
gp̂1 0 � hp̂1

b

1þmp̂1
b

0 0 0 kp̂1
b

1þmp̂1
b � l

0
BBBBBB@

1
CCCCCCA
:

The characteristic roots of the Jacobian matrix J5 are kp̂1
b

1þmp̂1
b � l, and the roots of the equation is given by

k3 þH1k
2 þH2kþH3 ¼ 0. where
H1 ¼ �
p̂1bŝa�1½ð1þ cŝaÞ � a�

ð1þ cŝaÞ2
� ŝ

" #
;

H2 ¼ d̂igp̂1 þ
bf p̂1aŝð2a�1Þ

ð1þ cŝaÞ3
þ a2 ŝ̂i

" #
;

H3 ¼ �
p̂1bŝa�1½ð1þ cŝaÞ � a�

ð1þ cŝaÞ2
� ŝ

 !
ðd̂igp̂1Þ �

afadp̂1 î̂sð2a�1Þ

ð1þ cŝaÞ2
þ � bŝa

1þ cŝa

� �
ðâigp̂1Þ

" #
:

Hence, by Routh–Hurwitz criterion [38] the equilibrium point E5 is stable if the conditions 7 hold. h
Theorem 4. The interior equilibrium point E�ðs�; i�; p�1; p�2Þ for the system (2) is locally asymptotically stable if the following con-
ditions hold as follows:

r1 > 0, r1r2 � r3 > 0, r3ðr1r2 � r3Þ � r4r2
1 > 0, where ri’s are given in the proof of the theorem.
Proof. The Jacobian matrix at the interior point E�ðs�; i�; p�1; p�2Þ is
V ¼

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

0
BBB@

1
CCCA:
Where
A11 ¼
p�1bs�a�1½ð1þ cs�aÞ � a�

ð1þ cs�aÞ2
� s�; A12 ¼ �as�; A13 ¼ �

bs�a

1þ cs�a
; A14 ¼ 0;A21 ¼ ai�; A22 ¼ 0; A23 ¼ �di�; A24

¼ 0; A31 ¼
fap�1s�ða�1Þ

ð1þ cs�aÞ2
; A32 ¼ gp�1; A33 ¼

p�2hp�1
b�1½ð1þmp�1

bÞ � b�
ð1þmp�1

bÞ2
; A34 ¼ �

hp�1
b

1þmp�1
b ; A41 ¼ 0; A42 ¼ 0; A43

¼ kbp�2p�1
ðb�1Þ

ð1þmp�1
bÞ2

; A44 ¼ 0
.
The characteristic equation of Jacobian matrix V is given by

k4 þ r1k3 þ r2k2 þ r3kþ r4 ¼ 0. where
r1 ¼ �½A11 þ A22 þ A33 þ A44�;

r2 ¼ �A34A43 þ A11A33 � A32A23 � A21A12 þ A13A31;

r3 ¼ ðA34A43 þ A32A23ÞA11 þ A21A12A33 þ A12A23A31 þ A32A21A13;

r4 ¼ A12A21A34A43:
Using the Routh–Hurwitz criteria [38] we observe that the system (2) is stable around the positive equilibrium point E� if the
conditions stated in the theorem hold. h
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5. Permanence and impermanence of the system

From biological point of view, permanence of a system means the survival of all species of the system in future time.
Mathematically, permanence of a system means that strictly positive solutions do not have omega (X) limit points on the
boundary of the non-negative cone.

Theorem 5. Let f > ðc þ 1Þj and a > e and the following conditions are satisfied

(i) fea

aaþcea þ gða�eÞ
a2 > j,

(ii) a�s > eþ d �p1,
(iii) kp̂1

b

ð1þmp̂1
bÞ > l.

Further if there exists finite number of periodic solutions s ¼ /rðtÞ; p1 ¼ wrðtÞ; r ¼ 1;2;3; . . . . . . ::;n in the s� p1 plane, then
system (2) is uniformly persistent provided for each periodic solutions of period T.

gr ¼ �eþ 1
T

R T
0 ða/r � dwrÞdt > 0; r ¼ 1;2; . . . . . . ::;n.

Proof. Let v be a point in the positive quadrant and oðvÞ be orbit through v and X be the omega limit set of the orbit through
v. Note that XðvÞ is bounded.

We claim that E0 R XðvÞ. If E0 2 XðvÞ then by the Butler–McGehee lemma there exist a point P in X
T

WsðE0Þ where
WsðE0Þ denotes the stable manifold of E0. Since OðpÞ lies in XðvÞ and WsðE0Þ is the i� p1 � p2 space, we conclude that oðPÞ is
unbounded, which is a contradiction.

Next E1 R XðvÞ, for otherwise, since E1 is a saddle point (which follows from the existence of E2 and E3) by the Butler–
McGehee lemma there exist a point P in X

T
WsðE1Þ . Now WsðE1Þ is the s� p2 plane implies that an unbounded orbit lies in

XðvÞ, a contradiction.
Next we show that E3 R XðvÞ. If E3 2 XðvÞ, the condition fea

aaþcea þ gða�eÞ
a2 > j implies that E3 is saddle point. WsðE3Þ is the

s� i� p2 space and hence the orbits in this space emanate either E0 or E1 or an unbounded lies in XðvÞ, again a contradiction.

The condition a�s > d �p1 þ e implies that E4 is a unstable point and also the contradiction, kp̂1
b

ð1þmp̂1
bÞ > l implies that E5 is

unstable. So by similar arguments we can show that E4 R XðvÞ and E5 R XðvÞ.
Lastly we show that no periodic orbits in the s� p1 or E2 2 XðvÞ. Let ri; i ¼ 1;2; . . . ::;n denote the closed orbit of the

periodic solution ð/rðtÞ;wrðtÞÞ in s� p1 plane such that ri lies inside rði�1Þ. Let the Jacobian matrix J given in (6) corresponding
to ri is denoted by Jrð/rðtÞ; 0;wrðtÞ;0Þ. h

Computing the fundamental matrix of linear periodic system, X0 ¼ JrðtÞX; Xð0Þ ¼ X0.
We find that its Floquet multiplier in the i direction is eðg1TÞ. Then proceeding in an analogous manner like Kumar and

Freedman [39], we conclude that no ri lies on XðvÞ. Thus, XðvÞ lines in the positive quadrant and system (2) is persistent.
Finally, since only the closed orbits and the equilibria from the omega limit set of the solutions on boundary of R4 and system
(2) is dissipative. Now using a theorem of Butler et al. [40], we conclude that system (2) is uniformly persistent.

Theorem 6. Let f > ðc þ 1Þj and a > e and the following conditions are satisfied
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Fig. 2. Plots of Susceptible prey, Infected prey, Intermediate predator, Top-predator vs. time in the system (2) for different values of a;b and a.
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Fig. 3. Plots of Susceptible prey, Infected prey, Intermediate predator, Top-predator vs. time in the system (2) for different values of a; b and a.
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Fig. 4. Figure depicts the Limit Cycle, Period-2, Period-3 and Period-4 behaviour of the system (2) for different values of a and b with infection rate a ¼ 1:15.
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(i) fea

aaþcea þ gða�eÞ
a2 > j,

(ii) a�sa > eþ d �p1,
(iii) minf kp̂1

b

ð1þmp̂1
bÞ ;

khb
2

1þmhb
2

g > l.

and there exists no limit cycle in the s� p1 plane, the system (2) is uniformly persistent.
Proof. Proof of the Theorem (6) is obvious and so omitted.
Before obtaining condition for impermanence of system (2), we briefly define the impermanence of a system. Let

v ¼ ðv1; v2; v3; v4Þ be the population, vector, let E ¼ fv : v1; v2; v3; v4 > 0g, and @D is the boundary of D. qð. . .Þ is the
distance in R4

þ.
Let us consider the system of equation is
_v ¼ vif1ðvÞ; i ¼ 1;2;3;4
where fi : R4
þ ! R and fi 2 C1.

The semi orbit cþ is defined by the set fvðtÞ : t > 0g where vðtÞ is the solution with initial value vð0Þ ¼ v0.
The above system is said to be impermanent [41] if and only if there is an v 2 D such that limt!1qðvðtÞ; @DÞ ¼ 0. Thus a

community is impermanent if there is at least one semi orbit which tends to boundary. h
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Fig. 5. Figure depicts the Period-5, Period-6, Period-7 and Chaotic behaviour of the system (2) for different values of a and b with infection rate a ¼ 1:15.
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Theorem 7. Let f > ðc þ 1Þj and a > e and if the condition fea

aaþcea þ gða�eÞ
a2 < j holds, then the system (2) is impermanent.
Proof. The conditions f > ðc þ 1Þj and a > e are obtain from existence of the equilibria points E2 and E3. The given condition
fea

aaþcea þ gða�eÞ
a2 < j implies that E3 is a saturated equilibrium point on boundary. Hence, there exist at least one orbit in the

interior that converges to the boundary (Hofbauer, [42]).
Consequently the system (2) is impermanent (Hutson and Law, [41]). h

6. Global stability

We have determined the conditions for global stability of interior equilibrium point through the following theorem.

Theorem 8. The sufficient conditions for the system (2) is to be globally asymptotically stable around the equilibrium

E�ðs�; i�; p�1; p�2Þ if d > g; b > f ; h > k and l ¼ bp1
s�sa�1

1þcsa þ ss�a�1

1þcs�a

� �
þ f s�ap�1

1þcs�a �
sap�1

1þcsa

� �
þ hp2

p�1pb�1
1

1þmpb
1

þ p1p�1
b�1

1þmp�1
b

� �
þ

�
k p�1

bp�2
1þmp�1

b �
pb

1p�2
1þmpb

1

� �
� < 0.

Proof. We first choose a Lyapunov function defined as follows:
Vðs; i;p1;p2Þ ¼
Z s

s�

s� s�

s
dsþ

Z i

i�

i� i�

i
diþ

Z p1

p�1

p1 � p�1
p1

dp1 þ
Z p2

p�2

p2 � p�2
p2

dp2: ð8Þ
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Calculating time derivative of the Eq. (8) along the solutions of the system (2) gives us
dV
dt
¼ ðs� s�Þ

s
ds
dt
þ ði� i�Þ

i
di
dt
þ ðp1 � p�1Þ

p1

dp1

dt
þ ðp2 � p�2Þ

p2

dp2

dt

¼ ðs� s�Þ �ðs� s�Þ � aði� i�Þ � bp1
sa�1

1þ csa �
s�a�1

1þ cs�a

� �� 	

þ ði� i�Þfaðs� s�Þ � dðp1 � p�1Þg þ ðp1 � p�1Þ f
sa

1þ csa �
s�a

1þ cs�a

� �
þ gði� i�Þ � hp2

pb�1
1

1þmpb
1

� p�1
b�1

1þmp�1
b

 !( )

þ ðp2 � p�2Þ k
pb

1

1þmpb
1

� p�1
b

1þmp�1
b

 !( )
: ¼ �ðs� s�Þ2 � ðd� gÞði� i�Þðp1 � p�1Þ � ðb� f Þ p1sa

1þ csa � ðbþ f Þ p1s�a

1þ cs�a

þ bp1
s�sa�1

1þ csa þ
ss�a�1

1þ cs�a

� �
þ f

s�ap�1
1þ cs�a

� sap�1
1þ csa

� �
� ðh� kÞ p2pb

1

1þmpb
1

� ðhþ kÞ p2p�1
b

1þmp�1
b

þ hp2
p�1pb�1

1

1þmpb
1

þ p1p�1
b�1

1þmp�1
b

 !
þ k

p�1
bp�2

1þmp�1
b �

pb
1p�2

1þmpb
1

 !
:

Thus, dV
dt < 0, provided d > g; b > f ;h > k and l ¼ bp1

s�sa�1

1þcsa þ ss�a�1

1þcs�a

� �
þ f s�ap�1

1þcs�a �
sap�1

1þcsa

� �h
þhp2

p�1pb�1
1

1þmpb
1

þ p1p�1
b�1

1þmp�1
b

� �
þ k p�1

bp�2
1þmp�1

b �
pb

1p�2
1þmpb

1

� �
� < 0.

Hence the theorem folllows. h
7. Results

We illustrate some of the key findings using numerical simulations. We assume the parameter values
b ¼ 5; d ¼ 3; e ¼ 0:5; f ¼ 5; g ¼ 2:5; h ¼ 0:1; m ¼ 2; j ¼ 0:4; k ¼ 0:1; l ¼ 0:01; c ¼ 3, which remain unchanged for all
numerical simulations. The main goal of this paper is to investigate the effects of infection rate a as well as the effects of
different types of interactions for different values of a and b.

For a ¼ 1:6 and a ¼ 1:36; b ¼ 0:98 we obtain the positive interior equilibrium point E�ð0:5371;0:1585;0:1198;11:1964Þ.
For the above set of parameter values we have r1 ¼ 0:2504 > 0; r4 ¼ 0:0016 > 0; r1r2 � r3 ¼ 0:0367 > 0 and
r3ðr1r2 � r3Þ � r4r2

1 ¼ 0:0000203 > 0 which implies that the system (2) is locally asymptotically stable around positive
equilibrium E�.

We have shown system’s dynamics for different values of a; b and infection rate a in Fig. 2 and Fig. 3. From Fig. 2 and
Fig. 3, we observe that the system (2) have periodic oscillations as well as chaotic bands for different general Holling
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parameters and infection rate. From Figs. 4 and 5, we observe limit cycle, period-2 to period-7 and chaotic dynamics. The
global stability behaviour of the system (2) with different initial conditions is presented in Fig. 6 for different Holling param-
eter values a and b. Therefore, oscillatory as well as stability nature of the diseased prey population can be captured for a
range of Holling parameter values. Das et al. [28] observed chaotic dynamics of the system (2) for a ¼ 1:15, the period-dou-
bling for a ¼ 1:17, the limit cycle oscillation for a ¼ 1:2 and finally stable steady state distribution of all four species for
a ¼ 1:3 for a particular value of a ¼ 1 and b ¼ 1 using above set of parameter values. Here we have investigated the dynamics
for a ¼ 1:15 with different Holling interactions through bifurcation analysis.

7.1. Equilibrium and fold continuation

The main goal of this section is to study the pattern of bifurcation that takes place as we vary the parameters a and b. This
is actually done by studying the change in the eigenvalue of the Jacobian matrix and also following the continuation algo-
rithm. To start with we consider a set of fixed point initial solution, s0 ¼ 0:77674048; i0 ¼ 2:04127� 10�128; p10 ¼ 0:151012
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and p20 ¼ 11:30064, corresponding to a parameter set of values a ¼ 1:15; b ¼ 5; d ¼ 3; e ¼ 0:5; f ¼ 5; g ¼ 2:5; h ¼ 0:1;
m ¼ 2; j ¼ 0:4; k ¼ 0:1; l ¼ 0:01; c ¼ 3, most of which are taken from Hastings and Powell model [43]. The characteristics
of Hopf point, the limit cycle and the general bifurcation may be explored using the software package MATCONT. This pack-
age is a collection of numerical algorithms implemented as a MATLAB toolbox for the detection, continuation and identifi-
cation of limit cycles. In this package we use prediction–correction continuation algorithm based on the Moore–Penrose
matrix pseudo inverse for computing the curves of equilibria, limit point (LP), along with fold bifurcation points of limit point
(LP) and continuation of Hopf point (H), etc.

To start with we show in Fig. 7(a) the continuation curve from the equilibrium point with b as the free parameter. In the
Fig. 7(a) we get two Hopf points (H), one limit point (LP) and two branch point (BP) of s with respect to b for fixed a ¼ 0:98.
The first Hopf point is located at ðs; i; p1; p2; bÞ � ð0:787046;0000000;0:142950;11:042450;1:068978Þ. For this Hopf point
the first Lyapunov coefficient turns out to be �0:1726285, indicating a supercritical Hopf bifurcation. It being negative im-
plies that a stable limit cycle bifurcates from the equilibrium when this looses stability. The branch points (BP) occur at
b ¼ 1:051086 and at b ¼ 1:398560. As the parameter is increasing, second Hopf point situated at
ðs; i; p1; p2; bÞ � ð0:257371;000000;0:259227;8:744051;1:540269Þ. For this second Hopf point the first Lyapunov coefficient
turns out to be �3:898144, indicating a supercritical Hopf bifurcation. The limit point is located at
ðs; i; p1; p2; bÞ � ð0:343108;000000;0:263828;11:985347;1:560608Þ with the eigenvalues as ð�0:896911;�0:056442�
0:520142i;0Þ. The real part being negative, indicates that the LP is stable. The continuation curve of equilibrium point of s
is also shown in same Fig. 7(a) for a ¼ 1;1:2;1:4.

Now it should be recapitulated that we have started with two parameters a and b as bifurcation parameters. To start with
we show in Fig. 7(b) the continuation curve from the Hopf (H) point with respect to b. We observe six generalized Hopf (GH)
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points, one Bogdanov–Takens (BT) point, one zero-Hopf (ZH) point, two Neutral saddle (HH) point at different values of a and
b. At the generalized Hopf (GH) points, where the first Lyapunov coefficient vanishes indicating that all GH points are non-
degenerate, since the second Lyapunov coefficients are non-zero. The Bogdanov–Taken points are common points for the
limit point curves and curves corresponding to equilibria with eigenvalues k1 þ k2 ¼ 0; k3 – 0. Actually, at each BT point,
the Hopf bifurcation curve (with k1;2 ¼ �ix;x > 0) turn into the neutral saddle curve (with real k1 ¼ �k2). Now, we start
LP point continuation from a Bogdanov–Taken (BT) point. If we choose b and a as free parameters and start from the BT point,
the continuation curve shows two BT points and two cusp points (CP) which is shown in Fig. 8(a). A similar analysis can also
be carried out for the variables i; p1 and p2, the results being displayed in Fig. 8(b), Fig. 9(a) and Fig. 9(b) respectively.

To proceed further we start from the Hopf point (H) in Fig. 7(a) as the initial point for b ¼ 1:068978 with fixed a ¼ 0:98,
and get a family of stable limit cycles bifurcating from this Hopf point. This phenomenon is shown in Fig. 10(a), where again
the Holling parameter b in the system is the only free parameter. One observes that at b ¼ 1:025252, we have a LPC point
with period 83.36766. At this situation two cycles collide and disappears. The critical cycle has a double multiplier equal
to 1. From this it follows that a stable branch occurs after the LPC point. For b ¼ 1:028799, another LPC point occurs with
one of the multiplier is greater than 1 which indicates that the cycle is unstable after LPC point. At b ¼ 1:023759 there is
a period doubling (PD) with period 92.32825, two of the multiplier is equal to 1. However, for b ¼ 1:003603, we observe
PD again with period 102:9418, one of the multiplier is greater than 1. At b ¼ 1:002767 and b ¼ 1:013483, LPC’s are observed
with period 105:6208 and 113:8772 respectively. For b ¼ 0:9888908, we have a branch point cycle (BPC) with period
133:5280. If we choose b and period of the cycles as free parameters and start from the Hopf point (H), as shown in
Fig. 7(a), then the corresponding variation of period versus b is shown in Fig. 10(b). The similar analysis is done starting from
the second Hopf point (H) as initial point, as shown in Fig. 7(a) at b ¼ 1:540269, and we observe family of stable LPC in
Fig. 11(a). The variation of period versus b is shown in Fig. 11(b). The corresponding scenario for s; p1 and p2 is exhibited
in Figs. 12 and 13.
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Fig. 14. Bifurcation diagram of Susceptible and Infected prey of the system (2) with respect to a 2 ½0:98;2� taking b ¼ 0:98; a ¼ 1:15.
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Our above analysis shows that a rich bifurcation structure exists for the predator–prey system with different Holling
interactions, when a and b are varied over a wide range of values. It is to be noted that these two parameters represent
two important physical quantities in the actual situation, respectively, biological pest control and agricultural research field.
As such it may happen that such changes in behaviour may manifest in experimental studies also and so we need further
extension of this studies.

7.2. Bifurcation

Bifurcation is an important tool to study the behaviour of a dynamical system. In this section, we study the dynamical
behaviour of the system through bifurcation analysis with respect to a; b and a as free parameters taking a parameter set
of values b ¼ 5; d ¼ 3; e ¼ 0:5; f ¼ 5; g ¼ 2:5; h ¼ 0:1; m ¼ 2; j ¼ 0:4; k ¼ 0:1; l ¼ 0:01; c ¼ 3.

We have done bifurcation analysis of the system (2) with respect to Holling parameter a within the range 0:98 6 a 6 2,
while another Holling parameter b ¼ 0:98 and infection rate a ¼ 1:15 are kept fixed. Bifurcation diagrams are presented in
Figs. 14 and 15. Fig. 14(a) is the bifurcation diagram of susceptible prey of the system (2) with respect to a. The Fig. 14(a)
depicts chaotic bands for 0:98 6 a < 1:16, periodic oscillations for 1:16 6 a < 1:56 and the system settles down to steady
state after a P 1:56. The bifurcation diagram of infected prey of the the system (2) is shown in Fig. 13(b). From
Fig. 14(b), it is clear that the system becomes infection free for 0:98 6 a < 1:56, but the infected prey species exists for
1:56 6 a 6 2. Fig. 15(a) is the bifurcation diagram of intermediate predator (p1) with respect to Holling parameter



1 1.2 1.4 1.6 1.8 2
0

0.5

1

 Holling parameter β

 S
us

ce
pt

ib
le

 p
re

y 
s

 (a)

α=1.1

1 1.2 1.4 1.6 1.8 2
0

2

4

6

8 x 10−143

 Holling parameter β

 In
fe

ct
ed

 p
re

y 
i

 (b)

α=1.1

1 1.2 1.4 1.6 1.8 2
0

0.5

1

 Holling parameter β

 P
re

da
to

r p
1

 (c)

α=1.1

1 1.2 1.4 1.6 1.8 2
0

5

10

15
 (d)

 Holling parameter β

 P
re

da
to

r p
2 α=1.1

Fig. 16. Bifurcation diagram of Susceptible prey (s), Infected prey (i), intermediate predator (p1) and top-predator (p2) of the system (2) with respect to
b 2 ½0:97;2� for a ¼ 1:1; a ¼ 1:15.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

0.2

0.4

0.6

0.8

1

 Infection rate a

 S
us

ce
pt

ib
le

 p
re

y 
s

 (a)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

0.2

0.4

0.6

0.8

 Infection rate a

 In
fe

ct
ed

 p
re

y 
i

 (b)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

0.1

0.2

0.3

0.4

0.5

 Infection rate a

 P
re

da
to

r p
1

 (c)

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
0

5

10

15

 Infection rate a

 P
re

da
to

r p
2

 (d)

Fig. 17. Bifurcation diagram of Susceptible prey (s), Infected prey (i), intermediate predator (p1) and top-predator (p2) of the system (2) with respect to
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a 2 ½0:98;2�. The chaotic behaviour is observed in Fig. 15(a) for 0:98 6 a < 1:16. Within 1:16 6 a < 1:56, we observe periodic
oscillations and for 1:56 6 a 6 2 the system settles down to steady state. The bifurcation diagram of top-predator (p2) with
respect to a is shown in Fig. 15(b). From the Fig. 14(b) it is evident that the system has chaotic bands for 0:98 6 a < 1:16,
periodic oscillations for 1:16 6 a < 1:56 and finally it settles down to steady state for 1:56 6 a 6 2.

Bifurcation analysis of the system (2) is done with respect to Holling parameter b (0:97 6 b 6 2) for a ¼ 1:1 and infection
rate a ¼ 1:15 with above fixed set of parameter values and it is presented in Fig. 16. From Fig. 16(a) we observe chaotic
behaviour for 0:97 6 a 6 1:06, steady state for 1:06 < a < 1:7 and oscillatory behaviour for 1:7 6 a 6 2. The extinction sce-
nario of the infected prey is shown in Fig. 16(b). Fig. 16(c) depicts chaotic behaviour for 0:97 6 a 6 1:06, stable state for
1:06 < a < 1:7 and oscillatory behaviour for 1:7 6 a 6 2. The chaotic behaviour for 0:97 6 a < 1:06, stable state for
1:06 6 a < 1:67 and extinction scenario of top-predator species for 1:67 6 a 6 2 are observed in Fig. 16(d).

One of the most important observation is that the model of Das et al. [28] with Holling type-II interaction (i.e., for
a ¼ 1; b ¼ 1) showed chaotic behaviour, but in this model we observe periodic behaviour for 1:16 < a < 1:56 with
b ¼ 0:98 (Fig. 14 and Fig. 15). A typical period subtracting nature of the system (2) is observed. Therefore, with the increase
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of consumption rate of intermediate predator on prey stable coexistence of infected prey, susceptible prey, intermediate
predator and top-predator is observed. For lower values of a < 1:56 the consumption rate of susceptible prey is low and
therefore the consumption rate of infected prey is very high (there will be no infected prey after some time) and as a result
the system becomes disease free.

Here we have done bifurcation analysis of the system (2) with respect to infection rate a for 2 6 a 6 3:34, taking Holling
parameters a ¼ 1:36; b ¼ 0:98 in Fig. 17. We observe steady state for 2 6 a < 2:36, periodic oscillations for 2:36 6 a 6 3:4
and after a > 3:4, it shows chaotic behaviour. Therefore, for low infection rate population remain steady but with the in-
crease of infection rate oscillatory nature become prominent. From Fig. 17(b) and Fig. 17(c), we notice that infected prey
and intermediate predator have extinction possibility for 2:44 < a < 3:4, whenever susceptible prey and top-predator have
no such extinction risk [Fig. 17(a), Fig. 17(d)]. A typical period adding cascade nature is observed here.

8. Conclusions

A diseased food chain model with general Holling type interaction is proposed and the effects of different types of general
Holling interactions are investigated. We derive sufficient conditions for local stability of equilibrium points. We also analyse
the permanence and impertinence conditions of the system. The conditions for global stability are also obtained for different
Holling parameters. We have explored the detailed bifurcation scenario of the proposed system varying the interaction func-
tion parameters a and b. The interesting outcomes are the occurrence of various kinds of bifurcation points in the process of
continuation. Altogether our analysis reveals the internal complexity of the system in detailed manner. Bifurcation analysis
shows that the dynamics of susceptible prey, infected prey, intermediate predator and top-predator are highly effected by
the force of infection a as well as the interaction parameters a and b, which is in sharp contrast with the existing results
[24–26]. From the simulation results, it is clear that the infected prey extinct for proper choice of interaction functions.
Therefore, a diseased system reduces to a disease free system with proper choice of general Holling parameters. Therefore,
we can succesfully control a disease by controlling interaction function from outside in ecosystem. We observe various types
of non-unique bifurcation diagrams with respect to bifurcation parameters a; b and a respectively, having stable fixed point,
limit cycle, period-2 to higher periodic oscillations, chaotic bands etc. We notice that the infected prey may survive in the
system for some range of values of general Holling parameters.

Das et al. [28] reported that rate of infection and body size of intermediate predator are prime factors for disappearance of
chaotic dynamics observe in HP model. Our observations indicate that chaos disappear for suitable choice of interaction
functions. The most important observation is that our model with Holling type-II interaction (for a ¼ 1; b ¼ 1) shows chaotic
behaviour but for a 2 ½1:16;1:56�; b ¼ 0:98 it shows periodic behaviour. The periodic dynamical behaviour of species was
reported by many researchers from the field data [44] and laboratory data [45]. Therefore, the model with Holling type-II
interactions does not always realistic in ecology, because there are lots of real food chain model which are not chaotic,
but depicts oscillatory coexistence. Therefore, we conclude that a realistic food chain model depends on proper choice of
general Holling parameters. Novelty of our observation is that one can control an infectious disease if the interaction func-
tions can be controlled from outside. As research extends to higher level, we must need to continue the study for construc-
tion of real food chain model with proper general Holling interactions.
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