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By using the microscopic Markov-chain approximation approach, we investigate the epidemic

spreading and the responsive immunization in social networks. It is assumed that individual

vaccination behavior depends on the local information of an epidemic. Our results suggest that the

responsive immunization has negligible impact on the epidemic threshold and the critical value of

initial epidemic outbreak, but it can effectively inhibit the outbreak of epidemic. We also analyze

the influence of the intervention on the disease dynamics, where the vaccination is available only

to those individuals whose number of neighbors is greater than a certain value. Simulation analysis

implies that the intervention strategy can effectively reduce the vaccine use under the epidemic

control. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4872177]

It is well known that the vaccination is very helpful in

controlling vaccine preventable disease. When the volun-

tary vaccination can eradicate the epidemic transmission

eventually, two relevant problems are presented:

(i) whether it is able to decrease the possibility of epi-

demic outbreak? (ii) how the vaccine should be used at

minimum to yield better result? In this work, we attempt

to solve them to some extent. By introducing the respon-

sive immunization based on the local information, we

study the impact of the voluntary vaccination on the epi-

demic threshold. Theoretical analysis and simulation

shows that the responsive immunization cannot signifi-

cantly affect the condition of epidemic. We further ana-

lyze the intervention strategy based on the targeted

immunization and find that it can effectively reduce the

vaccine use. These results may allow to gain new insight

into the role of the voluntary vaccination in the epidemic

control.

I. INTRODUCTION

The spread of an epidemic disease (e.g., tuberculosis

(TB),1 severe acute respiratory syndrome (SARS),2 Asian-

influenza,3 swine-origin influenza A (H1N1)4,5) in a popula-

tion can be studied by using dynamical system approaches.

The susceptible-infected-susceptible (SIS) model and the sus-

ceptible-infected-recovered/removed (SIR) model are two

widely considered models. The theory of complex network

can provide an analytic framework for heterogenous contact

patterns of a population.6 The heterogeneous contact reflects

the property that the node degree k, or, the number of contacts

with other individuals for a given individual, is not uniform.

The frequently used network models are Erd€os-R�enyi (ER)

random graphes,7 Strogatz-Watts (SW) small-world net-

works,8 and Barab�asi-Albert (BA) scale-free networks.9

There is a sharp contrast in their degree distributions P(k).

The study of epidemic spreading on complex networks shows

the existence of a high correlation between the condition of

epidemic outbreak and the degree distribution.10–14

How to find optimal immunization strategies to minimize

the risk of epidemic outbreaks on complex networks have

been widely studied.14–21 A number of basic immunization

strategies have been proposed and investigated, such as the

random immunization,14 the targeted immunization14 and the

acquaintance immunization.15 These proposed immunization

strategies, however, are built on a major premise that vaccina-

tion or immunization is compulsory and have not considered

the willingness or desire of individuals. Given some social

factors, such as, religious belief and human rights, thus, the

immunization behavior is not a compulsory behavior but

decided by individuals themselves. In this situation, whether

to vaccinate or not is related to the risk of being infected by

the infectious disease.18,20 As a kind of individual aware-

ness,22,23 risk assessment of infection should be closely related

to an individual’s local information (the state of an individu-

al’s neighborhood). Hence, individual vaccination behavior

depends on its local information. For the convenience, we call

such dynamic immunization as the responsive immuniza-
tion,21 which is also referred as the information-driven vacci-

nation19 or the information dependent vaccination.24

In our work22 and further work,25 the local information

affects individual susceptibility and can change the epidemic

threshold. An interesting problem is: can the responsive im-

munization based on the local information affect the epi-

demic threshold? Intuitively, the answer seems to be “yes.”

However, we will find that it is not the case for the responsive

immunization. In this paper, we mainly focus on the influence

of the responsive immunization on the “epidemic threshold.”

Herein, the “epidemic threshold” means the critical value that

can discriminate the dynamical behaviors of the system.26

The rest of this paper is organized as follows: in Sec. II,

an SIS epidemic model with responsive immunization strat-

egy is proposed and the theoretical analysis on the thresholds
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of the model is given based on the microscopic Markov-

chain method. Numerical simulations are also presented to

verify the theoretical results. In Sec. III, the external inter-

vention in the responsive immunization is further investi-

gated. At last, conclusions and some discussions are

summarized in Sec. IV.

II. THE SIS MODEL WITH RESPONSIVE
IMMUNIZATION

A. The model

We use the SIS model to investigate the effect of re-

sponsive immunization. The SIS model is chosen for the fol-

lowing two reasons: (1) it is widely applicable and may be

adapted for some epidemic diseases such as meningitis and

gonorrhea;27 (2) it is also relatively simple and approximated

to the early stage of the epidemic outbreak. We also assume

an epidemic spreads along the static network G with size N,

which is completely determined by its adjacency matrix A
where the entries aij ¼ aji ¼ 1 if there is a link between

nodes i and j, otherwise aij ¼ aji ¼ 0. All nodes of G are

enumerated with index i ¼ 1; 2; � � � ;N.

In this model with the responsive immunization consid-

ered in the SIS model, each individual may stay in one of

three states: S-susceptible, I-infected, and V-vaccinated.

During a time step, a susceptible individual may get infected

at an average rate b per unit time if it is contacted by one

infected individual, and meanwhile may also be vaccinated

and then removed (due to the responsive immunization) at

rate pvacðiÞ. An infected individual may recover and become

susceptible again at rate c per unit time. It is assumed that all

these events are independent.

Intuitively, the immunization rate pvac increases with

both the local information of an epidemic and the response

rate of epidemic risk, d (0 � d � 1). Suppose node i with

degree ki has kinf (kinf � 0) infected neighbors, then the

immunization rate of node i is given by

pvacðiÞ ¼ d
kinf

ki
:

When d ¼ 0, the model is just the standard SIS epidemic

model.10 Similar to the previous work, we define the effec-

tive spreading rate k ¼ b=c. For the sake of the following

analysis, we first present a lemma:

Lemma 1: Let V� be a set composed of nodes in a net-

work G and pj;t be the probability of node j 2 V� to be

infected at time t, respectively. Then the number of infected

nodes in V� is a stochastic variable n 2 ½0; jV�j� (jV�j denot-

ing the number of the elements in set V�) and its expected

value satisfies

E½n� ¼
X
j2V�

pj;t:

Proof: Note that

E½n� ¼
X

V1�V�
jV1j �Pj2V1

pj;t �Pj2V�nV1
ð1	 pj;tÞ

� �
:

According to the inductive method, we can complete the

proof.

B. The microscopic Markov-chain approximation

Previous literatures have indicated that the microscopic

Markov-chain approximation (MMA) approach28,29 is an

effective method in studying the epidemic spreading in

quenched networks (i.e., the adjacency matrix is unchanged

in time), including unweighted networks,26,30 weighted net-

works,29,31 and even multiplex networks.32

Along this way, we denote the probability of node i to

be infected and to be immunized at time t, pi;t and qi;t,

respectively. During the time interval ½t; tþ 1Þ, the change of

pi;t depends on two events: the recovery from state I to state

S and the infection from state S to state I. The change of qi;t

only depends on the vaccination from state S to state V.

Note that for each susceptible node i, there exists two

exclusive events per unit time: (i) getting infected at rate

pinfðiÞ; (ii) becoming immunized at rate pvacðiÞ. Therefore,

with these notations the discrete-time epidemic network

model is described by

pi;tþ1 ¼ ð1	 cÞpi;t þ ð1	 pi;t 	 qi;tÞpinfðiÞ;
qi;tþ1 ¼ qi;t þ ð1	 pi;t 	 qi;tÞpvacðiÞ:

(
(1)

Now, we establish the specific forms of pinfðiÞ and

pvacðiÞ. Let fi;t denote the probability of node i being unin-

fected at time t. Considering node i may get infected through

connections with each of its infected neighbors, the expres-

sion of uninfected probability reads28,29

fi;t ¼
Y
j2N i

ð1	 bpj;tÞ: (2)

Here, N i denotes the neighborhood of node i. Accordingly,

we have

pinfðiÞ ¼ 1	 fi;t ¼ 1	
Y
j2N i

ð1	 bpj;tÞ: (3)

We continue to give the expression for pvacðiÞ.
Following its definition, we consider the stochastic variable

n ¼ kinf (n � ki). By using Lemma 1, we take the expected

value of n as an approximation to kinf and obtain

pvacðiÞ ffi E d
n
ki

� �
¼ d

E½n�
ki
¼ dk	1

i

X
j2N i

pj;t: (4)

So Eq. (1) can be rewritten as

pi;tþ1 ¼ ð1	 cÞpi;t þ ð1	 pi;t 	 qi;tÞ 1	
Y
j2N i

ð1	 bpj;tÞ
� �

(5a)

qi;tþ1 ¼ qi;t þ dk	1
i ð1	 pi;t 	 qi;tÞ

X
j2N i

pj;t: (5b)

When d ¼ 0 and qi;0 ¼ 0 for each i, model (5) reduces

into the following simple form:
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pi;tþ1 ¼ ð1	 cÞpi;t þ ð1	 pi;tÞ 1	
Y
j2N i

ð1	 bpj;tÞ
� �

:

This is just the standard SIS model without reinfection

terms.28,29 According to the previous literature, the critical

value of epidemic outbreak for the spreading rate, kSIS
c , obeys

kSIS
c ¼

1

KmaxðAÞ
; (6)

where KmaxðAÞ is the leading eigenvalue of the adjacency

matrix A. When the spreading rate is larger than the critical

value, the epidemic disease will become endemic and persist

in a population.

C. The steady state and the critical value of epidemic
spreading

For the approximation model (5), we first analyze the

steady state of its dynamical behavior. To this end, we would

like to determine the values of pi;t and qi;t at the steady state,

pi and qi. On substituting pi;t � pi and qi;t � qi into Eqs. (5),

we have

pi ¼ ð1	 cÞpi þ ð1	 pi 	 qiÞ 1	
Y
j2N i

ð1	 bpjÞ
� �

;

qi ¼ qi þ dk	1
i ð1	 pi 	 qiÞ

X
j2N i

pj:

8>>><
>>>:

(7)

As long as d > 0, we have ð1	 pi 	 qiÞ
P

j2N i
pj ¼ 0.

This indicates two possible cases: (i)
P

j2N i
pj ¼ 0;

(ii) 1	 pi 	 qi ¼ 0. When
P

j2N i
pj ¼ 0, we have pj ¼ 0 for

each j 2 N i and further 1	
Q

j2N i
ð1	 bpjÞ ¼ 0. In either

case, ð1	 pi 	 qiÞ½1	
Q

j2N i
ð1	 bpjÞ� � 0. This means

that for each node i, pi ¼ 0 but the value of qi is unknown

and related to the initial conditions of the system. Therefore,

the fraction of infected node in a population (denoted by I(t))
always decays to zero regardless of the spreading rate k and

the response rate d (d > 0).

Next, we want to estimate the critical value of epidemic

spreading for our model, that is, the epidemic threshold kc.

Based on the analysis of the steady state, the epidemic

threshold means: if k � kc, I(t) decreases to zero (no epi-

demic), otherwise, first increases to a maximum and then

decreases to zero (an epidemic) due to the responsive immu-

nization. Following,33,34 the occurrence or not of an epi-

demic depends on the stability of the disease free

equilibrium of the disease model described by (5).

Additionally, we notice that IðtÞ ¼ ð1=NÞ
PN

i¼1 pi;t.

Therefore, in order to obtain the mathematical expression of the

epidemic threshold we only consider the subsystem (5a) near

the disease free equilibrium (pi ¼ 0 and 0 � qi � 1 for each i).
At this time, a linear form of Eqs. (5a) can be written as

pi;tþ1 ¼ ð1	 cÞpi;t þ bð1	 qiÞ
XN

j¼1

aijpj;t: (8)

This uses the approximation ð1	 aÞð1	 bÞ ’ 1	 a	 b
when a� 1; b� 1.

This system is not a closed form since we do not know

qi value corresponding to pi ¼ 0 for each i. However, we can

approximately analyze the stability of the disease free equi-

librium under the assumption (H): pi;0 ’ 0 and qi;0 ¼ 0 for

each i. In fact, from Eqs. (5), when pi;0 ¼ 0 we have pi;t ¼ 0

for t > 0 and then qi;t ¼ 0. In other words, under the assump-

tion (H) pi;0 ! 0 can imply that qi;t ! 0 and further qi ! 0.

Hence, we consider the system near the zero solution

(pi ¼ qi ¼ 0 for each i). At this time, model (8) becomes

pi;tþ1 ¼ ð1	 cÞpi;t þ b
XN

j¼1

aijpj;t: (9)

Now we study the stability of the above system. Let us

introduce a vector function pt ¼ ðp1;t; p2;t; :::; pN;tÞT 2 RN

(the state vector of the network). Then, Eq. (9) can be given

by a collective form

ptþ1 ¼ ð1	 cÞpt þ bApt ¼ ½bAþ ð1	 cÞI�pt: (10)

Here, I denotes a N-dimensional identity matrix. From

above, the local stability of the zero solution of system (10)

can be established by

Kmax½bAþ ð1	 cÞI� < 1:

This indicates that the epidemic threshold for the spreading

rate, kc, is given by

kc ¼
1

KmaxðAÞ
: (11)

The threshold condition is the same as that in the stand-

ard SIS model (6) and indicates that the response rate d has

no impact on the epidemic threshold. This differs signifi-

cantly from our previous work without vaccination,22 where

we have shown that the local information can affect the epi-

demic threshold. We argue that the epidemic threshold is

unchanged for different d values because: (1) the response

rate does not directly affect the dynamic of infection but

decrease the number of susceptible nodes; (2) at the begin-

ning of an epidemic spreading, the vaccination fraction gen-

erated by the responsive immunization is not large enough to

halt the epidemic outbreak.

It is worth stressed that the analysis of the epidemic

threshold is on the basis of the assumption (H). If the

assumption is not satisfied, the epidemic threshold should be

related with initial conditions (i.e., pi;0, qi;0). In addition,

considering the effectiveness of the MMA approach, we

believe that the responsive immunization has no significantly

affect on the epidemic threshold in the stochastic model, to-

gether with the following simulation analysis.

D. Simulations

To test above argument, we perform Monte Carlo simu-

lations over both BA scale-free networks9 with the degree

distribution PðkÞ 
 k	3 and ER networks with connecting

probability p ¼ 0:006.7 The Monte Carlo simulations are

implemented in a parallel way, that is, each node’s state can
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be updated with a certain rate in a time step. More specifi-

cally, for a susceptible node i at each time step, we generate

a random number r 2 ½0; 1Þ, if r 2 ½0; pinfðiÞÞ then node i is

changed from state S to state I; else if r 2 ½pinfðiÞ; pinfðiÞ
þpvacðiÞÞ then node i is changed from state S to state V; else

node i is still susceptible. Here, pinfðiÞ and pvacðiÞ are the

transition rates as stated above. One should note that, since

we mainly focus on the epidemic threshold of the model,

near this critical point, the epidemic just begins to prevail, so

the infected neighbors are few, in this situation, we can

image that the value of pinfðiÞ þ pvacðiÞ is smaller than 1.

Although the network considered here is small (N¼ 2000),

we also made simulations for a larger network (e.g.,

N¼ 5000) and obtained a similar observation.

We first verify the accuracy of Eq. (11). Simulations

begin with a single seed initial condition. To minimize ran-

dom fluctuation caused by the initial conditions, we make av-

erage over 200 realizations of different initial infected nodes.

In Fig. 1, we compare the Monte Carlo simulations and

theoretical model (5) on the epidemic threshold, kc. The

Markov chain prediction shows that the epidemic threshold

is indeed independent of the parameter d, which complies

with the analysis from Eq. (11). In order to further verify this

formula, we compute the value of KmaxðAÞ for the BA scale-

free network used here according to the power method and

obtain that KmaxðAÞ ’ 26:325. Following Eq. (11), we have

that kc ¼ 1	 KmaxðAÞ ’ 0:03799, which is a good approxi-

mation to the simulation results obtained from Eqs. (5)

(Fig. 1(b)). For an ER random network, KmaxðAÞ ’ 13:202,

so kc ¼ 1	 KmaxðAÞ ’ 0:07575. This also complies with

the simulation results obtained from Eq. (5) (Fig. 1(d)).

The epidemic threshold for the Monte Carlo simulation

on a BA scale-free network (Fig. 1(a)) is larger than that for

the Markov chain prediction based on Eqs. (5) (Fig. 1(b)).

This is mainly due to the first order approximation of the

mathematic model.35

Hinted by the real situations in which the responsive im-

munization often takes place after the beginning of the out-

break of the epidemic (for an emerging infectious disease at

least), we consider another kind of initial condition: a portion

of infected seeds, e.g., 1% of the nodes are infected. Unless

otherwise specified, we set the recovery rate c ¼ 0:5 in the

later simulations.

Herein, we would like to examine the exactness of the

theoretical model (5) compared to the Monte Carlo simula-

tion. In order to do this, we consider the maximal infection

density Imax and the corresponding peak time tmax over dif-

ferent BA scale-free networks and ER random networks with

the almost same mean degree, respectively. Fig. 2 shows the

peak time and the maximal infection density as functions of

FIG. 1. The contour plot of the maximal infection density Imax, where the x coordinate is the response rate d and the y coordinate is the spreading rate k on a

BA network with the mean degree hki ffi 12 (a) (b) and an ER network with p ¼ 0:006 (c) (d). Plots (a) and (c) denote the Monte Carlo simulations and plots

(b) and (d) represent the Markov chain predictions (5). In all simulations the recover rate c ¼ 1. The bottom line in each plot forms the boundary between the

epidemic outbreak and the epidemic extinction.
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the infection rate for different d values, which are consistent

with theoretical models as indicated by the solid lines. This

figure tells us that the MMA approach is effective to model

the epidemic spreading with responsive immunization, even

for the prediction of the peak time.

Furthermore, Fig. 2 suggests that, though the epidemic

threshold is not related to the value of d, increasing the

value of d can lower the peak time tmax, indicating the

upward tendency of epidemic is fast controlled. Meanwhile,

the maximal infection density Imax also decreases with the

value of d, which means that the responsive immunization

can effectively control or hinder the prevalence of

epidemic.

In the final part of this section, we investigate the initial
outbreak of epidemic, which means that I(t) increases at

t¼ 0. For the discrete-time system (5), it is needed to con-

sider the quantity

DI ¼ Ið1Þ 	 Ið0Þ ¼

X
j
pj;1 	

X
j
pj;0

N
: (12)

Considering the average over initial conditions, we have

pi;0 ¼ e and qi;0 ¼ 0 for each i. Then,

X
j

pj;1 	
X

j

pj;0 ¼ 	ceN þ ð1	 eÞ
X

i

½1	 ð1	 beÞki �

’ 	ceN þ be
X

i

ki

’ 	cþ bhkið ÞeN:

On plugging the above equality into Eq. (12), we

obtain

DI ’ 	ceþ ehkib:

From this equality, the critical value of initial epidemic out-

break obeys

k0
c ¼

1

hki : (13)

Interestingly, we find that k0
c is inversely proportional to the

mean degree of the network. When k > k0
c , DI > 0 and I(t)

first increases; when k < k0
c , we have DI < 0 and the epi-

demic prevalence first decreases. One should note that, this

condition is used to judge whether the epidemic will out-

break at initial time step, though k < k0
c , the outbreak of epi-

demic is also possible to happen since k0
c > kc (as illustrated

in the latter simulation).

FIG. 2. Illustrations of the peak time tmax for a BA network (a) and an ER network (c), the maximal infection density Imax for a BA network (b) and an ER net-

work (d) as functions of the infection rate b. The solid lines denote the theoretical predictions. In four figures, three curves correspond to different response

rates. From top to bottom: d ¼ 0:1; 0:5, and 0.9. All simulation results are averaged over 200 epidemic dynamics.
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In Fig. 3, we illustrate the change of DI on a BA scale-

free network with the mean degree hki ffi 12. Note that

e ¼ 0:01 and c ¼ 0:5, so we have DI ¼ 	0:005þ 0:12b:
This tells us that DI is a linear function of the infection rate

b, which can be seen in this figure. Also, we can derive the

condition of initial epidemic outbreak: k > k0
c ) b

> 0:0417. In the inset of Fig. 3, we can see that DI > 0 only

if b � 0:05, which is in accordance with the Markov chain

prediction.

III. INTERVENTION IN THE RESPONSIVE
IMMUNIZATION

According to the content of the responsive immuniza-

tion, each individual potentially vaccinates with a certain

rate. Hence, the vaccine coverage may range from nodes

with small degree to ones with large degree. In order to

investigate the range of the vaccine coverage in our model,

we consider the degree distribution of vaccinated nodes

(called as the vaccination degree distribution)

FðkÞ ¼ number of vaccinated nodes with degree k

total number of vaccinated nodes
;

which can be compared to the degree distribution of all

nodes in the network P(k) by using numerical simulations.

In this section, we use BA scale-free networks to simu-

late epidemic dynamics and initially 1% of the nodes are

infected. As shown in Fig. 4, the relation between two kinds

of degree distribution is FðkÞ 
 PðkÞ 
 k	3. The good rela-

tion should be induced by the degree uncorrelated property

of BA networks and it would be interesting to consider the

impact of network structure on the vaccination degree distri-

bution and its relation with the degree distribution in other

work. Nevertheless, this tells us that the vaccination possibil-

ity of the node with small degree is nearly equal to that of

the node with large degree, which forces a large amount of

vaccines to be required for the responsive immunization (see

Fig. 5(a): c¼ 0). However, the situation that too many people

choose vaccination potentially leads to the waste of resour-

ces. Especially when the vaccine is rare, it may cause social

FIG. 3. Initial change DI as a function of the infection rate b when d ¼ 0:5
and hki ffi 12. The inset shows the zoom in results for the range b 2 ½0; 0:08�.
The simulation result is averaged over 200 epidemic dynamics.

FIG. 4. The degree distribution of all nodes and the vaccination degree dis-

tribution of all vaccinated nodes in a BA scale-free network with hki ffi 12.

Other parameters: d ¼ 0:1; c ¼ 0:5, and b ¼ 0:2.

FIG. 5. (a) The fraction of vaccinated nodes at the steady state is shown as a function of the infection rat b. This figure allows us to compare different interven-

tion levels about the vaccination sizes. (b) The fraction of infected nodes at the steady state is shown as a function of the infection rate b. This figure indicates

another epidemic threshold above which an epidemic can undergo a new outbreak and persist in a population. Parameters d ¼ 1 and c ¼ 0:5. Numerical simu-

lation results are carried out and averaged over 100 epidemic dynamics.
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panic, even violence. So we should take some necessary

intervention to the voluntary vaccination.

It is well known that the targeted immunization scheme

in scale-free networks is very effective in controlling the epi-

demic outbreak.14 Inspired by this, we introduce the inter-

vention measure based on the targeted immunization and

only permit those nodes with large degree to take vaccine—

when node i goes to the epidemic prevention station to vacci-

nate, we only allow those nodes with degree ki � c to get

vaccinated. In other words, we modify the above model with

responsive immunization as follows:

pvacðiÞ ¼
dk	1

i kinf ; ki � c;

0; otherwises:

(
(14)

Here, c reflects the level of vaccination intervention. The

larger the value of c, the higher the intervention level. When

c¼ 0, there is no any vaccination intervention. As above

analysis, an infectious disease dies out eventually. However,

in this case the vaccination fraction is generally large.

Hence, we consider the impact of the external intervention

(i.e., c > 0) on the vaccination fraction.

In Fig. 5(a), we report the change of the vaccination

fraction at the steady state V ¼ V1ðcÞ for different c values

when the maximal response rate (i.e., d ¼ 1) is assumed. In

this figure, we choose the parameter window b 2 ½0; 0:06�
where for all cases become zero/vanish as t!1 (Fig. 5(b)).

This can allow us to clearly observe the intervention effect.

As a result, V decreases significantly with increasing c value.

We take the case b ¼ 0:05 as an illustration. In this case,

V1ð0Þ ffi 70%, while V1ð10Þ ffi 30% and V1ð30Þ ffi 1%.

For the model with no intervention, the infection density

becomes zero eventually. But for the model with degree-

based intervention, the change of infection density I(t) may

not be like that. Actually, as shown in Fig. 5(b), when the

infection rate is large enough there exists a positive value of

infection density at the steady state. This determines another

epidemic threshold k0c. When k > k0c, I ¼ I1ðcÞ > 0; when

k < k0c, I¼ 0. Therefore, the intervention can lead to another

larger epidemic threshold, above which the infectious dis-

ease will undergo a new outbreak and persist in the popula-

tion. This is not desirable from the perspective of epidemic

control and can be solved by increasing the vaccine cover-

age. When the vaccine is rare, we should implement other

strategies, e.g., quarantine strategies.

Besides the SIS-like epidemic threshold k0c, the system

has two other critical values: (1) the threshold of initial epi-

demic outbreak k0
c; (2) the SIR-like epidemic threshold kc

above which the epidemic disease asymptomatically decays.

We can approximately evaluate these quantities. Actually,

after substituting the modified form of pvacðiÞ (14) into

model (1) and using the similar analysis, we obtain that k0
c ¼

1=hki; and kc ffi 1=KmaxðAÞ; where the usage of the approxi-

mation symbol accounts for the impact of a portion of initial

infection condition. These equalities indicate that the two pa-

rameters d and c almost have no impact on both k0
c and kc.

Since KmaxðAÞ is never smaller than the mean degree of

the network, hki, kc � k0
c .30 What is more, kc must be less

than k0c. When k0c 6¼ k0
c , the dynamical behavior of the system

under consideration is completely characterized by three crit-

ical values of spreading rate (kc; k
0
c , and k0c). As an illustra-

tion, we consider the intervention model for the case c¼ 30

and c ¼ 0:5 on a BA scale-free network. According to our

simulations and computations, three critical values of infec-

tion rate bc ’ 0:02; b0
c ’ 0:04, and b0c ’ 0:06. Therefore,

bc < b0
c < b0c:

When the infection rate lies between bc and b0
c , the epidemic

prevalence first decreases, then increases, and finally drops

to zero. Fig. 6 shows that the change of the infection curve

I(t) is just like that. We also notice the deviation at the peak

time between the Monte Carlo simulation and the Markov

chain prediction. This may be related to the number of

infected seeds distributed in the network initially. When this

number is very small, a possible outbreak may be eradicated

due to the simulation randomness. Hence, we can see that

the deviation becomes smaller with increasing I(0) values as

illustrated in Fig. 6(b).

FIG. 6. The fraction of infected nodes in a population I(t) as a function of

time in the same BA scale-free network with N¼ 2000 for different initial

infection conditions: (a) Ið0Þ ¼ 1%; (b) Ið0Þ ¼ 5%. The simulation is

obtained by taking the average over 100 epidemic dynamics. Other parame-

ters: d ¼ 1; c ¼ 0:5;b ¼ 0:03, and c¼ 30. This figure shows that the devia-

tion between them can be reduced by increasing the initial infection density.
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IV. CONCLUSIONS AND DISCUSSIONS

As a brief summary, a modified SIS epidemic model

with the responsive immunization is proposed and analyzed.

Our main results are: (1) we derive the epidemic threshold of

the model and find that kc ¼ 1=KmaxðAÞ; (2) we establish the

critical condition of initial epidemic outbreak; (3) we obtain

the impact of the intervention on the epidemic dynamics and

final vaccination size.

Recently, Sahneh and et al.26 found two kinds of epi-

demic thresholds that can discriminate the asymptotical

decay and the exponential decay of an epidemic disease in a

susceptible-alert-infected-susceptible (SAIS) model. In our

intervention model, we also find the existence of multiple

critical values of spreading rate. Interestingly, the meanings

of kc and k0c are just as stated in Ref. 26. From the viewpoint

of epidemic control, it is not enough to raise the larger

threshold k0c because the epidemic still breaks out when the

spreading rate k satisfies kc < k < k0c.

In our model, the responsive immunization has no sig-

nificant influence on the epidemic threshold and a large vac-

cination fraction is required to halt the epidemic spreading.

It is necessary to take some intervention measures in the vol-

untary vaccination. We argue that there are two types of

intervention measures according to their effects: (1) one is

that the epidemic threshold becomes larger; (2) the other is

that the epidemic threshold is unchanged but final vaccina-

tion size decreases. In the present paper, the degree-based

intervention based on the targeted immunization belongs to

the second type since it can only reduce the vaccine size.

One may consider the first type of vaccination intervention,

e.g., the responsive immunization on the adaptive contact

network17 where the epidemic threshold may be changed

due to the change of network structure.
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