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In this letter the authors discuss the relationship between structure and random walk dynamics in
directed complex networks, with an emphasis on identifying whether a topological hub is also a
dynamical hub. They establish the necessary conditions for networks to be topologically and
dynamically fully correlated �e.g., word adjacency and airport networks�, and show that in this case
Zipf’s law is a consequence of the match between structure and dynamics. They also show that
real-world neuronal networks and the world wide web are not fully correlated, implying that their
more intensely connected nodes are not necessarily highly active. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2766683�

We address the relationship between structure and dy-
namics in complex networks by taking the steady-state dis-
tribution of the frequency of visits to nodes–a dynamical
feature–obtained by performing random walks1 along the
networks. A complex network2–5 is taken as a graph with
directed edges and associated weights, which are represented
in terms of the weight matrix W. The N nodes in the network
are numbered as i=1,2 , . . . ,N, and a directed edge with
weight M, extending from node j to node i, is represented as
W�i , j�=M. No self-connections �loops� are considered. The
in and out strengths of a node i, abbreviated as is�i� and
os�i�, correspond to the sum of the weights of its in- and
outbound connections, respectively. The stochastic matrix S
for such a network is

S�i, j� = W�i, j�/os�j� . �1�

The matrix S is assumed to be irreducible; i.e., any of its
nodes can be accessible from any other node, which allows
the definition of a unique and stable steady state. An agent,
placed at any initial node j, chooses among the adjacent
outbound edges of node j with probability equal to S�i , j�.
This step is repeated a large number of times T, and the
frequency of visits to each node i is calculated as v�i�
= �number of visits during the walk� /T. In the steady state
�i.e., after a long time period T�, v=Sv and the frequency of
visits to each node along the random walk may be calculated
in terms of the eigenvector associated with the unit eigen-
value �e.g., Ref. 6�. For proper statistical normalization we

set �pv�p�=1. The dominant eigenvector of the stochastic
matrix has theoretically and experimentally been verified to
be remarkably similar to the corresponding eigenvector of
the weight matrix, implying that the adopted random walk
model shares several features with other types of dynamics,
including linear and nonlinear summations of activations and
flow in networks.

In addition to providing a modeling approach intrinsi-
cally compatible with dynamics involving successive visits
to nodes by a single or multiple agents, such as is the case
with world wide web �WWW� navigation, text writing, and
transportation systems, random walks are directly related to
diffusion. More specifically, as time progresses, the fre-
quency of visits to each network node approaches the activ-
ity values which would be obtained by the traditional diffu-
sion equation. A full congruence between such frequencies
and activity diffusion is obtained at the equilibrium state of
the random walk process. Therefore, random walks are also
directly related to the important phenomenon of diffusion,
which plays an important role in a large number of linear and
nonlinear dynamic systems including disease spreading and
pattern formation. Random walks are also intrinsically con-
nected to Markov chains, electrical circuits, and flows in net-
works, and even dynamical models such as Ising. For such
reasons, random walks have become one of the most impor-
tant and general models of dynamics in physics and other
areas, constituting a primary choice for investigating dynam-
ics in complex networks.

The correlations between activity �the frequency of visits
to nodes v� and topology �out strength os or in strength is�a�Electronic mail: luciano@if.sc.usp.br
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can be quantified in terms of the Pearson correlation coeffi-
cient r. For full activity-topology correlation in directed net-
works, i.e., �r�=1 between v and os or between v and is, it is
enough that �i� the network must be strongly connected, i.e.,
S is irreducible, and �ii� for any node, the in strength must be
equal to the out strength. The proof of the statement above is
as follows. Because the network is strongly connected, its
stochastic matrix S has a unit eigenvector in the steady state,
i.e., v=Sv. Since S�i , j�=W�i , j� /os�j�, the ith element of the
vector Sos is given as

S�i,1�os�1� + S�i,2�os�2� + ¯ + S�i,N�os�N�

=
W�i,1�
os�1�

os�1� +
W�i,2�
os�2�

os�2� + ¯ +
W�i,N�
os�N�

os�N�

= W�i,1� + W�i,2� + ¯ + W�i,N� = is�i� . �2�

By hypothesis, is�i�=os�i� for any i and, therefore, both os
and is are eigenvectors of S associated with the unit eigen-
value. Then os= is=v, implying full correlation between fre-
quency of visits and both in and out strengths.

An implication of this derivation is that for perfectly
correlated networks, the frequency of symbols produced by
random walks will be equal to the out strength or in strength
distributions. Therefore, an out strength scale-free3 network
must produce sequences obeying Zipf’s law7 and vice versa.
If, on the other hand, the node distribution is Gaussian, the
frequency of visits to nodes will also be a Gaussian function;
that is to say, the distribution of nodes is replicated in the
node activation. Although the correlation between node
strength and random walk dynamics in undirected networks
has been established before8 �including full correlation9,10�,
the findings reported here are more general since they are
related to any directed weighted network, such as the WWW
and the airport network. Indeed, the correlation conditions
for undirected networks can be understood as a particular
case of the conditions above.

A fully correlated network will have �r�=1. We obtained
r=1 for texts by Darwin11 and Wodehouse12 and for the net-
work of airports in the USA.13 The word association network
was obtained by representing each distinct word as a node,
while the edges were established by the sequence of imme-
diately adjacent words in the text after the removal of
stopwords14 and lemmatization.15 More specifically, the fact
that word U has been followed by word V, M times during
the text, is represented as W�V ,U�=M. Zipf’s law is known
to apply to this type of network.16 The airport network pre-
sents a link between two airports if there exists at least one
flight between them. The number of flights performed in one
month was used as the strength of the edges.

We obtained r for various real networks �Table I�, in-
cluding the fully correlated networks mentioned above. To
interpret these data, we recall that a small r means that a hub
�large in or out strength� in topology is not necessarily a
center of activity. Notably, in all cases considered r is greater
for the in strength than for the out strength. This may be
understood with a trivial example of a node from which a
high number of links emerge �implying large out strength�
but which has only very few inbound links. This node, in a
random walk model, will be rarely occupied and thus cannot
be a center of activity, though it will strongly affect the rest
of the network by sending activation to many other targets.
Understanding why a hub in terms of in strength may fail to
be very active is more subtle. Consider a central node receiv-
ing links from many other nodes arranged in a circle, i.e., the
central node has a large in strength but with the surrounding
nodes possessing small in strength. In other words, if a node
i receives several links from nodes with low activity, this
node i will likewise be fairly inactive. In order to further
analyze the latter case, we may examine the correlations be-
tween the frequency of visits to each node i and the cumu-
lative hierarchical in and out strengths of that node. The
hierarchical degree17–19 of a network node provides a natural
extension of the traditional concept of node degree. The im-

TABLE I. Number of nodes �No. nodes�, number of edges �No. Edges�, means and standard deviations of the clustering coefficient �CC�, cumulative
hierarchical in strengths for levels 1–4 �IS1–IS4�, cumulative hierarchical out strengths for levels 1–4 �OS1–OS4�, and the Pearson correlation coefficients
between the activation and all cumulative hierarchical in strengths and out strengths �rIS1–rOS4� for the complex networks considered in the present work.

Cortex C. elegans Airports Darwin Wodehouse WWW

No. nodes 53 191 280 3678 3705 10 810
No. edges 826 2449 4160 22 095 16 939 158 102
CC 0.60±0.15 0.22±0.11 0.62±0.41 0.04±0.11 0.03±0.08 0.60±0.21
IS1 25.89±9.42 100.82±110.03 2041.07±4323.33 7.87±22.15 5.29±16.15 14.63±155.87
IS2 217.13±56.68 1183.32±960.60 76 068.88±53 936.38 329.61±648.33 188.45±385.21 176.00±917.67
IS3 285.02±27.13 3543.97±1118.85 110 381.09±35 614.97 3352.93±2716.07 1977.58±1758.30 879.71±2635.18
IS4 285.68±27.13 4164.04±535.73 113 662.07±32 404.79 6943.53±2470.62 4830.73±1876.14 2468.12±4528.49
OS1 25.89±11.87 100.82±73.69 2041.07±4329.44 7.87±22.15 5.29±16.15 14.63±10.58
OS2 217.96±89.94 1156.76±675.14 76 049.93±54 196.34 313.16±626.72 187.60±394.19 176.00±131.02
OS3 296.98±34.93 3071.82±806.15 110 771.60±35 721.52 3234.23±2705.50 1961.32±1778.45 913.55±495.34
OS4 298.94±32.19 3532.41±473.59 114 054.35±32 493.50 6753.76±2454.90 4823.73±1853.97 2356.92±1200.37
rIS1 0.83 0.78 1.00 1.00 1.00 0.15
rIS2 0.58 0.84 0.33 0.86 0.82 0.09
rIS3 0.24 0.43 0.11 0.42 0.43 0.13
rIS4 0.24 0.35 0.08 0.20 0.22 0.11
rOS1 0.39 0.20 1.00 1.00 1.00 0.00
rOS2 0.30 0.01 0.33 0.87 0.81 −0.03
rOS3 −0.03 −0.19 0.11 0.42 0.43 −0.05
rOS4 −0.07 −0.33 0.07 0.20 0.22 −0.07
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mediate neighbors of a node i are called the first hierarchical
level of i. The subsequent hierarchical levels are obtained as
follows. The level h+1 contains the neighbors of the nodes
of level h. The cumulative hierarchical out strength of a node
i at the hierarchical level h corresponds to the sum of the
weights of the edges extending from the hierarchical level
h−1 to the level h, plus the out strengths obtained from
hierarchy 1 to h−1. Similarly, the cumulative in strength of a
node i at hierarchical level h is the sum of the weights of the
edges from hierarchical level h to the previous level h−1,
plus the in strengths obtained from hierarchy 1 to h−1. The
traditional in and out strengths are, respectively, the cumula-
tive hierarchical in and out strengths at hierarchical level 1
�see Supplementary Methods in Refs. 20 for an illustration of
hierarchical levels�. Because complex networks are also
small world structures, it suffices to consider hierarchies up
to two or three levels.

For the least correlated network analyzed, viz., that of
the largest strongly connected cluster in the network of
WWW links in the domain of Ref. 21 �Massey University,
New Zealand� �Refs. 22 and 23� activity could not be related
to in strength at any hierarchical level. Because the Pearson
coefficient corresponds to a single real value, it cannot ad-
equately express the coexistence of the many relationships
between activity and degrees present in this specific network
as well as possibly heterogeneous topologies. Very similar
results were obtained for other WWW networks, which indi-
cate that the reasons why topological hubs have not been
highly active cannot be identified at the present moment �see,
however, discussion for higher correlated networks below�.

However, for the two neuronal structures of Table I that
are not fully correlated �network defined by the interconnec-
tivity between cortical regions of the cat24 and network of
synaptic connections in C. elegans25�, activity was shown to
increase with the cumulative first and second hierarchical in
strengths. In the cat cortical network, each cortical region is
represented as a node, and the interconnections are reflected
by the network edges. Significantly, in a previous paper,26 it
was shown that when connections between cortex and thala-
mus were included, the correlation between activity and out-
degree increased significantly. This could be interpreted as a
result of increased efficiency with the topological hubs be-
coming highly active. Furthermore, for the fully correlated
networks, such as word associations obtained for texts by
Darwin and Wodehouse, activity increased basically with the
square of the cumulative second hierarchical in strength �see
Supplementary Fig. 2. in Ref. 20�. In addition, the correla-
tions obtained for these two authors are markedly distinct, as
the work of Wodehouse is characterized by substantially
steeper increase of frequency of visits for large in strength
values �see Supplementary Fig. 3 in Ref. 20�. Therefore, the
results considering higher cumulative hierarchical degrees
may serve as a feature for authorship identification.

In conclusion, we have established �i� a set of conditions
for full correlation between topological and dynamical fea-
tures of directed complex networks and demonstrated that
�ii� Zipf’s law can be naturally derived for fully correlated
networks. Result �i� is of fundamental importance for studies

relating the dynamics and connectivity in networks, with
critical practical implications. For instance, it not only dem-
onstrates that hubs of connectivity may not correspond to
hubs of activity but also provides a sufficient condition for
achieving full correlation. Result �ii� is also of fundamental
importance as it relates two of the most important concepts
in complex systems, namely, Zipf’s law and scale-free net-
works. Even though sharing the feature of power law, these
two key concepts had been extensively studied on their own.
The result reported in this work paves the way for important
additional investigations, especially by showing that Zipf’s
law may be a consequence of dynamics taking place in scale-
free systems. In the cases where the network is not fully
correlated, the Pearson coefficient may be used as a charac-
terizing parameter. For a network with very small correla-
tion, such as the WWW links between the pages in a New
Zealand domain analyzed here, the reasons for hubs failing
to be active could not be identified, probably because of the
substantially higher complexity and heterogeneity of this net-
work, including varying levels of clustering coefficients, as
compared to the neuronal networks.
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