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Lipids were long believed to have a structural role in biomembranes and a role in energy storage utilizing
cellular lipid droplets and plasma lipoproteins. Research over the last decades has identified an additional
role of lipids in cellular signaling, membrane microdomain organization and dynamics, and membrane
trafficking. These properties make lipids an attractive target for pathogens to modulate host cell pro-
cesses in order to allow their survival and replication. In this review we will summarize the often inge-
nious strategies of pathogens to modify the lipid homeostasis of host cells, allowing them to divert
cellular processes. To this end pathogens take full advantage of the complexity of the lipidome. The
examples are categorized in generalized and emerging principles describing the involvement of lipids
in host–pathogen interactions. Several pathogens are described that simultaneously induce multiple
changes in the host cell signaling and trafficking mechanisms. Elucidation of these pathogen-induced
changes may have important implications for drug development. The emergence of high-throughput lip-
idomic techniques will allow the description of changes of the host cell lipidome at the level of individual
molecular lipid species and the identification of lipid biomarkers.

� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

Lipids are loosely defined as biological molecules with hydropho-
bic or amphipathic properties that render them soluble in organic
solvents [1]. Despite the fact that this definition includes thousands
of different chemical structures, a more defined classification
seemed unnecessary for a long period of time. Lipids were believed
to have two general functions: a structural role in biomembranes
and a role in energy storage in cells (lipid droplets) and body fluids
(lipoproteins). During the last two decades, however, we have come
to realize that lipids have a multitude of different and essential func-
tions in the cell. First indications for the involvement of specific
lipids in biological processes came from the identification of plate-
let-activating factor as a lipid molecule [2]. The groundbreaking
work of Irvine and Berridge in the 1980s showed the involvement
of lipids in intracellular cellular signaling by the generation of sec-
ond messengers from phosphoinositides [3]. Almost concomitantly
the discovery was made that diacylglycerol and phosphatidic acid
are biologically active lipids, as well as lipidic breakdown products
of cellular sphingolipids [4–7]. Since the identification of the phos-
phatidylinositol transfer protein as an essential factor for protein
trafficking from the trans-Golgi network (TGN) in yeast in the early
1990s [8], an overwhelming body of evidence showed the involve-
ment of lipids in the regulation of membrane traffic [9]. Lipids have
also been implicated in the generation of lateral heterogeneity in
biological membranes, creating membrane domains that are often
referred to as lipid rafts [10]. By specific recruitment of proteins
and lipids to these domains while excluding others, many biological
processes such as cell migration, the immune system, and the cell
cycle are affected or regulated.

Thus, lipids have a multitude of functions in many biological
processes and we are beginning to understand the long-time mys-
terious reason why nature synthesizes thousands of different lip-
ids. This multitude of functions makes lipids also an attractive
target for pathogens. In the innate immune system, microbes can
be internalized by a phagocytosis-like process in order to be de-
graded by the acidic environment in subsequent phagolysosomal
compartments. Some pathogens, however, escape the immune sys-
tem by interacting with the cellular machinery at any one of these
steps, allowing their survival and multiplication. Today there are
many indications for an important role of lipids in various stages
of host–pathogen interactions. One of the first examples for such
involvement comes from the bacterium Vibrio cholerae that se-
cretes the enterotoxin cholera toxin. The receptor of the toxin is
a lipid termed GM1 [11]. This protein-lipid interaction results in
the formation of a membrane pore, ultimately causing severe
diarrhea.

In this review we will summarize the often ingenious strategies
that pathogens utilize to divert cellular processes by modifying cel-
lular lipid homeostasis. To this end pathogens take full advantage
of the complexity of the lipidome (Fig. 1). The examples are catego-
rized in generalized and emerging principles describing the
involvement of lipids in host–pathogen interactions.

Many lipid-derived (signaling) molecules that classify as lipids
themselves, and that might have a role in host–pathogen interaction,
like prostaglandins, leukotrienes, quinones, vitamins, and tocophe-
rols will not be discussed here. This still leaves us with thousands
of different lipid species in the (phospho)lipid and sterol classes.

Until recently, only limited possibilities for lipid analysis were
available, often only capable of lipid identification into different
classes. Now the field of lipidology enters a new era, with mass
spectrometry-based techniques providing novel tools to analyze
samples at the single lipid species level and at the same time at
the whole lipidome level [12–14]. We already see preliminary
examples of and the urgent need for lipidomic approaches in var-
ious fields, including that of host–pathogen interaction, to unravel
the involvement of lipids in infectious diseases [15]. This review
aims to give an overview of the current status of our knowledge
on the involvement of lipids in host–pathogen interactions, indi-
cating that lipids from both host and pathogen play key roles in
infection processes.
2. Modulation of the fatty acid moiety of host cell lipids

2.1. Fatty acid modulation of host cell lipids upon infection

During development in the erythrocyte, the malaria causing
parasites, Plasmodium spp. modify the protein and lipid composi-
tion and various properties of the plasma membrane of their host
cell [16–18]. In the membrane of erythrocytes parasitized by Plas-
modium falciparum the composition of individual phospholipid
classes, as well as that of their fatty acid constituents is altered
[17–19]. Fatty acid alterations are not observed in all lipid classes.



Fig. 1. Overview of modifications of the host cell lipidome by various pathogens. MVB: multivesicular body; EPEC: Enteropathogenic E. coli; PC: phosphatidylcholine; PI:
phosphatidylinositol; PI(3)P: phosphatidylinositol-3-phosphate; PI(5)P: phosphatidylinositol-5-phosphate; PI(3,4)P2: phosphatidylinositol-3,4-bisphosphate; PI(4,5)P2:
phosphatidylinositol-4,5-bisphosphate; PI(3,4,5)P3: phosphatidylinositol-3,4,5-trisphosphate.
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Alterations in the fatty acid composition of phosphatidylcholine
and phosphatidylethanolamine of erythrocyte membranes were
observed for Plasmodium knowlezi [20]. Intraerythrocytic develop-
ment of Plasmodium chabaudi is also associated with alterations in
the overall fatty acid composition of the plasma membrane of the
host cell [21], but not in that of the host cell’s plasma membrane
phosphatidylcholine [22]. At this moment it is not clear whether
the observed alterations in fatty acid composition are due to enzy-
matic modifications in situ of the phospholipids in the plasma
membrane of the erythrocyte, or to selective uptake of phospho-
lipid molecular species from the erythrocyte plasma membrane
by the parasite. Alterations in fatty acid composition of host cell
lipids are not limited to parasitic infections. Changes in phospho-
lipid fatty acid composition were also observed in mouse tissues
after infection with Bacillus Calmette-Guérin, an attenuated mu-
tant of Mycobacterium bovis [23], while human immunodeficiency
virus-1 (HIV-1) infection of cultured lymphocytes was found to re-
sult in alterations of the fatty acid composition of the membrane
lipids of the lymphocytes [24].

Pathogens can modify the fatty acid composition of host cell lip-
ids in several ways. One way is the modulation of host cell fatty
acid uptake from the environment. Enteropathogenic Escherichia
coli (EPEC) inhibits the uptake of short-chain fatty acids, as illus-
trated by inhibition of butyrate uptake into Caco-2 cells during
infection [25]. Genome-wide RNAi screens in Drosophila cells in-
fected by Listeria monocytogenes or Mycobacterium fortuitum indi-
cated the involvement of a member of the CD36 family of
scavenger receptors, which are presumed fatty acid translocases
[26,27]. A second way to modify the host cell fatty acid composi-
tion is the modulation of the activity or expression of enzymes in-
volved in fatty acid synthesis. RNAi screening in Drosophila SL2
cells indicated that infection by M. fortuitum or L. monocytogenes re-
quires sufficient expression of acetyl-CoA carboxylase, fatty acid
synthase and stearoyl-CoA 9-desaturase [26]. Likewise, inhibition
of acetyl-CoA carboxylase or fatty acid synthase in the host cells
inhibits Hepatitis C virus (HCV) RNA replication [28,29]. Moreover,
during infection HCV induces an upregulation of the expression of
mRNAs encoding enzymes of fatty acid synthesis [28,29]. It is not
clear whether alterations in expression levels of enzymes involved
in fatty acid biosynthesis also result in altered fatty acid profiles of
membrane lipids. In the next sub-sections we will focus on a third
way for pathogens to modulate the fatty acid composition of host
cell lipids which involves phospholipase activities, lipase activities,
and/or cholesterol acyltransferase activities to efficiently modify of
the fatty acid composition of host cell lipids by fatty acid exchange.

2.2. Pathogen and host cell phospholipases

Phospholipases, enzymes that cleave phospholipids, are in-
volved in modification of membrane composition, in cell signaling
pathways and in inflammatory cascades. Based on the position
within the phospholipid at which the cleavage takes place, they
are classified into four major groups: phospholipase A, B, C and D
(PLA, PLB, PLC and PLD, respectively). Phospholipases from bacteria,
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viruses and parasites act as virulence factors by modifying host cell
lipids to their advantage [30,31]. They exert their action by being
involved in a variety of aspects of host–pathogen interaction, such
as causing membrane damage (hemolysis in the case of erythro-
cytes), entry into the host, and exit from vacuoles (Fig. 2). Phospho-
lipases of pathogens may also be involved in acquisition of fatty
acids for nutritional purposes (see Section 8), and activation of host
signaling pathways to regulate the immune response (see Section
3). Lastly, pathogens can also trigger the activity of host cell phos-
pholipases. Distinct isoforms of PLA2 were found to mediate the
ability of Salmonella typhimurium and Shigella flexneri to induce
the transepithelial migration of neutrophils [32].

Pseudomonas aeruginosa injects an effector protein ExoU with
PLA2 activity directly into host cells by means of a type 3 secretion
system [33–35]. This PLA2 requires Cu2+, Zn2+-superoxide dismu-
tase (SOD1) from the host cell as an activating factor [36]. Recently,
ExoU was also found to have lysophospholipase A activity [37].
ExoU injected into the host cell is cytotoxic. By lysing cell mem-
branes it may contribute to the ability of Pseudomonas to dissemi-
nate rapidly from lung tissue into the bloodstream. However, the
cellular effects of ExoU are not limited to localised cell death and
tissue destruction. This protein triggers an arachidonic acid-depen-
Fig. 2. Lipid metabolism at the pathogen-containing vacuole. The various effectors and e
to the membrane is, in most cases, unknown. PLA: phospholipase A1 or A2; PLC: phosp
diacylglycerol; Sph: sphingosine; S1P: sphingosine-1-phosphate; RSV: respiratory syncy
EspF: Escherichia coli effector molecule F; SapM: M. tuberculosis effector molecule; IpgD: S
droplet-associated Chlamydial effector proteins. For other abbreviations: see legend to F
dent inflammatory cascade in vivo [38]. Recent data indicate that
ExoU liberates the arachidonic acid from intracellular lipid droplets
[39]. In addition, it activates several transcription factors that con-
trol proliferative responses and proinflammatory cytokine produc-
tion (for review, see [30]. S. typhimurium injects an effector protein
SseJ into the host cell cytoplasm from within a vacuole in which
the bacterium resides after its uptake into the host cell. SseJ exhib-
its both PLA and glycerophospholipid:cholesterol acyltransferase
activity [40,41]. The exact role of this enzyme, which is activated
by as yet unidentified proteinaceous host cell factor(s), is not yet
clear [40]. SseJ is not cytotoxic [42].

2.3. Phospholipases and host cell plasma membrane damage

Many pathogenic bacteria secrete or contain in their outer
membrane a phospholipase activity, which can destabilize the
erythrocyte plasma membrane. This hemolytic activity has been
characterized for several pathogens: In the case of Campylobacter
coli [43], Vibrio ssp. [44–46] and Legionella pneumophila [47] it is
a PLA, while in the case of P. aeruginosa [48,49] and Pseudomonas
fluorescence [50] it is a PLC. The observation of a positive correla-
tion between the presence of PLC activity and the hemolytic activ-
nzymes are drawn in the vacuolar membrane. However, their exact location relative
holipase C; PLD: phospholipase D; PL: phospholipid; PA: phosphatidic acid; DAG:
tial virus; CMV: cytomegalovirus; Chol: cholesterol; LDL: low-density lipoprotein;
higella flexneri effector molecule; SseJ: Salmonella SPI-2 effector molecule; Lda: Lipid
ig. 1.
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ity in a range of Mycobacterium isolates indicates that also in Myco-
bacterium species a PLC is involved in hemolysis [51]. In some cases
the bacteria may acquire iron from the lysed erythrocytes. PLA se-
creted by L. pneumophila may act as an important agent in causing
lung disease by destruction of phospholipids of pulmonary surfac-
tant and damage to cell membranes by the generated lysophospha-
tidylcholine [52].

In addition to causing lysis of cells, membrane degradation by
hydrolysis of phospholipids and (in the case of PLA activity) forma-
tion of lytic phospholipids may also facilitate entry of pathogens
into host cells, while in the gastrointestinal tract phospholipases
may also degrade the mucus layer overlying these cells. A PLA2

of Helicobacter pylori plays a role in colonization of the gastric mu-
cosa [53,54]. A similar role may be played by a PLA secreted by
Campylobacter pylori, which was shown to degrade phospholipids
of gastric mucus [55]. The Plasmodium berghei phospholipase Pb
PL is involved in migration of sporozoites through cells to gain en-
try into the bloodstream [56]. Pb PL is most similar in sequence to
LCAT, a member of the PLA2 family of serine lipases. Like LCAT it
contains the GxSxG motif found in many serine lipases, and the
catalytic triad of serine, histidine and aspartate. The enzyme was
shown to have PLA activity [56]. The penetration of host cells by
Rickettsia rickettsii, R. prowazekii and R. conorii also appears to be
mediated by a PLA2 of rickettsial origin [57,58]. A PLA2 may also
be involved in host cell invasion by the protozoan parasites Cryp-
tosporidium parvum [59] and Toxoplasma gondii [60,61]. PLB se-
creted by Cryptococcus neoformans is important in the binding of
this fungus to human epithelial cells prior to its internalization,
possibly due to the release of fatty acids from host cell plasma
membranes or pulmonary surfactant [62].

2.4. Phospholipases and vacuolar membrane damage

After invasion into host cells or phagocytosis by macrophages,
bacteria reside in a vacuole or phagosome. Some intracellular
pathogens escape from this vacuole into the cytoplasm to success-
fully survive and replicate [63,64]. This vacuole escape involves the
action of pore-forming proteins or phospholipases or both [64].
Clostridium perfringens escapes from its macrophage phagosome
by use of its a-toxin (a PLC) in cooperation with its perfringolysin
O, a cholesterol-dependent cytolysin [65]. The combined action of
phospholipase and a pore-forming protein in escape from the vac-
uole is also seen for the well-studied L. monocytogenes, an intracel-
lular pathogen that replicates in the cytosol of host cells [63,64].
After invasion into cells, L. monocytogenes escapes from its vacuole
by the combined action of the pore-forming protein listeriolysin O
(LLO) and a phosphatidylinositol-specific PLC (PI-PLC), both se-
creted by the bacterium [63,64,66,67]. It has been suggested that
LLO forms holes into the vacuole membrane, which allow L. mono-
cytogenes phospholipase to access exposed membrane leaflet [63].
However, in a liposome lysis assay membrane permeabilization by
L. monocytogenes PI-PLC in cooperation with LLO was found to be
independent of phospholipid hydrolysis [68]. In addition to di-
rectly invading a cell, L. monocytogenes can also spread from one
cell to another without leaving the intracellular environment. After
such cell-to-cell spread the bacterium resides in a secondary vacu-
ole surrounded by a double membrane. The escape from this dou-
ble-membrane vacuole requires the coordinated action of LLO, PI-
PLC and PC-PLC (a PC-preferring PLC also secreted by L. monocytog-
enes) [67,69,70]. Recent data indicate that the PI-PLC and PC-PLC
act specifically in the initial degradation of the inner membrane
of the double-membrane vacuole, after which the outer membrane
is disrupted by LLO [71]. PLCs may likewise be involved in phagos-
omal escape of Bacillus anthracis. Cooperation between the choles-
terol-dependent cytolysin anthrolysin O and three PLCs in B.
anthracis mediated macrophage-associated growth and survival
of this pathogen, while ectopic expression of anthrolysin O from
B. anthracis in Bacillus subtilis conferred limited phagosomal escape
upon the recombinant bacterium [72]. However, at present it is un-
clear whether the mediation by the combined action of anthrolysin
O and the PLCs of growth and survival of B. anthracis in macro-
phages is actually related to an effect on phagosomal escape. Also
various Rickettsia species lyse their phagosomal compartment after
entry into a host cell. The lysis of the vacuolar membrane has been
attributed to the activity of rickettsia PLA2 [57,58,73]. The failure to
identify a rickettsia PLA2 from the rickettsia genome, together with
the identification of a PLD in R. prowazekii and R. conorii has led to
the suggestion that a PLD is involved in the escape from the vacu-
ole [74]. This is supported by the observation that expression of the
R. prowazekii PLD gene in S. typhimurium, which normally does not
escape from its vacuole, conferred on the Salmonella the ability of
vacuole escape [75]. There are also viruses that use a phospholi-
pase to escape from a host cell vesicle: parvovirus virions deploy
a capsid-tethered PLA2 to breach the endosomal membrane after
entry into a cell [76].

2.5. Lipases

Lipases are enzymes hydrolyzing tri-, di- and monoacylglyce-
rols and are in some cases involved in pathogenesis. Burkholderia
cepacia secretes a lipase that increases its invasion into epithelial
cells without affecting plasma membrane or tight junction integ-
rity [77]. P. aeruginosa uses a secreted lipase together with a se-
creted PLC to induce inflammatory mediator release from human
platelets and leukocytes. Among these inflammatory mediators
are the lipidic 12-hydroxyeicosatetraenoic acid (12-HETE) and leu-
kotriene B4 [78,79]. A lipase secreted by Staphylococcus aureus de-
creases phagocytosis and intracellular killing by human
granulocytes of staphylococci, but not the phagocytic killing of
pneumococci or streptococci. The effect of the lipase was reported
to be partly retained after heat inactivation, indicating that the ef-
fect of the lipase is not exerted by enzyme action alone [80]. Also
Candida parapsilosis secretes a lipase which inhibits phagocytosis
and intracellular killing by macrophages [81]. In addition to these
functions, lipases secreted by pathogens may also be involved in
generation of fatty acids from host cell lipids for the pathogens’ en-
ergy production or complex lipid synthesis (see Section 8).

2.6. Cholesterol acyltransferases

Several bacteria secrete enzymes with glycerophospho-
lipid:cholesterol acyltransferase (GCAT) activity. These GCATs
transfer an acyl chain from a phospholipid onto cholesterol, result-
ing in the formation of cholesterol esters and lysophospholipids. In
addition, they possess phospholipase A activity. They are members
of the GDSL lipase family, which is characterized by the presence of
a conserved GDSL motif and a catalytic triad (S-D-H) [82,83]. Cho-
lesterol is an important component of eukaryotic membranes, but
is absent from the membranes of most prokaryotes. Acylation by a
pathogen of host cell cholesterol might therefore be a good tool for
the pathogen to specifically target host cells using an enzyme that
in principle does not discriminate between host cell and pathogen
lipids. Lowering the cholesterol level in the membranes of host
cells may lead to increased fluidity of these membranes. In addi-
tion, GCAT/PLAs may influence signaling pathways in the host cell
by generating lysophospholipids and fatty acids, or by affecting li-
pid raft composition through their effects on cholesterol. Here we
will describe 3 examples of host–pathogen interactions involving
GCAT activity that have been described in some detail.

In a survey of the distribution of a GCAT originally found in the
culture supernatant of Aeromonas hydrophila [84] this enzyme was
found to be present in the culture media of all Aeromonas species
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tested, in that of Vibrio anguillarum and V. parahaemolyticus, and in
that of S. aureus [85]. The enzyme has been purified from Aeromo-
nas salmonicida and has a preference for phospholipids carrying
short-chain or unsaturated fatty acids [86]. In addition to GCAT
activity, the enzyme also possesses phospholipase A2 and lyso-
phospholipase A activity [87]. The enzyme is a major lethal toxin
to fish, and lytic toward fish erythrocytes, especially when bound
to lipopolysaccharide [88]. The AspA serine protease, another toxin
secreted by A. salmonicida, is responsible for the proteolytic activa-
tion of pro-GCAT to GCAT after secretion of the former from the
bacterium [89,90]. Despite their toxicity, however, neither the
GCAT, nor the AspA appear to be essential for the virulence of A.
salmonicida [91].

The second example comes from the intracellular pathogen L.
pneumophila that secretes a GCAT activity termed PlaC. PlaC is
probably secreted via a type 2 secretion system. It requires activa-
tion which is either directly or indirectly dependent on the type 2
secreted zinc metalloprotease ProA [92]. Beside GCAT activity, PlaC
also possesses PLA and lysophospholipase A activity. As cholesterol
is not present in the membrane of Legionella, PlaC may play a role
in modification of host cell membranes. However, PlaC is not
essential for infection of and replication within Acanthamoeba cas-
tellanii (L. pneumophila’s natural host) and U937 macrophages [92].

A third member of the GDSL lipase family is the S. typhimurium
effector protein SseJ. This protein was recently found to have GCAT
activity [40,41], PLA activity [40] and deacylase activity towards
the artificial substrate para-nitrophenyl butyrate [93], but no lyso-
phospholipase activity [40]. SseJ is translocated by a type 3 secre-
tion system into the cytosol of a host cell from within the
Salmonella-containing vacuole (SCV) in which the Salmonella re-
sides after its entry into the host cell [94]. The GCAT and PLA activ-
ities of SseJ are both potentiated by proteinaceous factors from the
host cell [40]. SseJ destabilizes the SCV membrane in the absence of
another Salmonella effector SifA [42], and antagonizes the stimula-
tory effect of SifA on the formation of Salmonella-induced filaments
Fig. 3. Effects of Toxoplasma gondii on the host cell lipidome. ACAT: acyl-CoA:choleste
cholesterolester.
(Sifs), which are tubular extensions of the SCVs [42,95]. SifA pre-
vents the microtubule motor kinesin from being recruited to the
SCV [96]. The GCAT activity of SseJ may lower the cholesterol level
of the SCV membrane and lead to storage of the resulting choles-
terol esters in lipid droplets [41]. The decreased cholesterol level
in the SCV membrane may lead to increased fluidity of this mem-
brane, thus facilitating kinesin-mediated rupture of the SCV
around Salmonella lacking SifA [40]. Furthermore, it was suggested
that by lowering the amount of cholesterol in the SCV membrane
SseJ could lower the amount of SifA on the SCV, thereby decreasing
the level of Sif formation [40]. Alternatively, the formation of lyso-
phospholipid by SseJ may aid in giving the Sif membrane the right
amount of curvature.

Another type of acyltransferase is produced byS. aureus. The elim-
ination of S. aureus from staphylococcal abscesses is mediated by the
generation of bactericidal fatty acids, possibly by the activity of leu-
kocytes [97]. However, several species of Staphylococcus produce an
enzyme, termed fatty acid modifying enzyme (FAME), which can in-
hibit the bactericidal activity of these fatty acids by esterifying them
with an alcohol [98]. Cholesterol, which the bacterium may obtain
from the host cell membranes, is a particularly good alcohol sub-
strate for this enzyme. FAME has not yet been purified and character-
ized in detail. The enzyme does not require ATP for its activity and is
probably not a cholesterol esterase acting in reverse [98].

As a final example of the involvement of cholesterol acyltransfer-
ase in host–pathogen interactions we mention the apicomplexan
parasitic protozoa T. gondii that resides in a parasitophorous vac-
uole. In the vacuole the parasite depends on host cell cholesterol
derived from endocytosed low-density lipoproteins (Fig. 3) (see
Section 8 for further details). Replication of T. gondii in its vacuole
is dependent on the conversion of cholesterol to cholesterol ester.
The parasite expresses two isoforms of acyl-CoA:cholesterol
acyltransferase (ACAT), which differ from mammalian ACAT in
their substrate affinity and specificity, and in their mechanism
of regulation [99]. The endogenous ACAT activities of T. gondii
rol acyltransferase; ER: endoplasmic reticulum; LDL: low-density lipoprotein; CE:
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are thought to be involved in the parasite’s cholesterol ester syn-
thesis and lipid droplet biogenesis [99,100] (Fig. 3).

Utilization of host cholesterol is also critical for the intraerythr-
ocytic proliferation of a related apicomplexan parasite, P. falcipa-
rum [101]. The genome of this parasite was screened for genes
that may be involved in acyl coenzyme A:DAG acyltransferase
(DGAT) [102]. In addition to this gene, a sequence was identified
which, based on its homology to the sequences for human and
mouse lecithin:cholesterol acyltransferase (LCAT), was suggested
to encode a plasmodial LCAT [102]. LCAT transfers an acyl chain
from phosphatidylcholine (lecithin) to cholesterol, similarly to
the GCATs described above. Despite the presence of the sequence
for the putative LCAT in the Plasmodium, this parasite was found
not to produce cholesterol esters, at least not while residing in
erythrocytes [102].
3. Pathogen interference with lipid signaling in host cells

3.1. Phosphoinositide signaling during phagocytosis

Lipids play a major role in cellular signaling [103,104]. In gen-
eral, signaling lipids have a rapid turnover and are present in min-
ute amounts. This does not exclude the possibility that signaling
lipids transiently appear at high concentrations in subdomains of
the membrane. Phosphoinositides are an important class of signal-
ing lipids and they are involved in numerous cellular signaling cas-
cades. Phosphatidylinositol can be phosphorylated at its 3, 4 and 5
position in all possible combinations, leading to 7 different phos-
phoinositide species. Phosphorylation at other positions is also
possible but less common. Phosphoinositides are involved in cellu-
lar signaling via two different mechanisms: (1) their hydrolysis
yields second messengers that transmit downstream signals; and
(2) they serve as a docking site for proteins with domains that rec-
ognize specific phosphoinositides [105]. In the latter case, phos-
phoinositides must be present in stoichiometric amounts and
must be generated at (or targeted to) specific organelles or mem-
brane domains. Therefore, phosphoinositides help define the iden-
tity of an organelle or of a domain by recruitment of specific
proteins [106].

Phosphoinositide metabolism plays a central role in the regula-
tion of receptor-mediated endocytosis and phagocytosis [107,108].
It contributes to the dynamics of the entire phagocytic maturation
process, starting with the formation of a phagocytic cup at the
plasma membrane and ending with the maturation process trans-
forming a phagosome into a phagolysosome. During these pro-
cesses, lipid kinases and phosphatases act in concert to regulate
the extensive interconversion of various phosphoinositides. In
brief: at the phagocytic cup, rapid interconversions between
PI(4)P, PI(3,4)P2, PI(4,5)P2, and PI(3,4,5)P3 take place [109,110].
Some of the phosphoinositides are involved in the recruitment of
cytoskeletal elements, necessary for the formation of a phagocytic
cup [111]. During the subsequent maturation process, formation of
PI(3)P is essential, as well as the action of PI(3) kinases. Multiple
waves of PI(3)P attract effector proteins such as EEA1 and Hrs to
the phagosome, which is important for downstream signaling
events [112]. In later stages of phagosome maturation, PI(3,5)P2

is generated through phosphorylation of PI(3)P by PIKfyve [113].
As a result, PI(3)P effector proteins are released from the mem-
brane and PI(3,5)P2 effector proteins are recruited to the
phagosomes.
3.2. Modulation of phosphoinositide signaling by pathogens

Pathogens have evolved ingenious strategies to subvert phos-
phoinositide metabolism by interference with many of the inter-
conversion steps (for excellent reviews on this topic, see
[114,115]). Here we will discuss some general principles, updated
with recent examples. By interference with phosphoinositide
metabolism, pathogens can affect either the uptake process (A)
or the phagosomal maturation process (B).

(A) L. monocytogenes is a Gram-positive pathogen that secretes
an effector named InlB via its type 3 secretion system. The Listeria
surface protein InlB promotes bacterial internalization into host
cells by activation of type I phosphatidylinositol 3-kinase (PI3KI)
[116], resulting in the generation of PI(3,4,5)P3. The effector pro-
tein In1B also results in the co-recruitment of type II phosphatidyl-
inositol 4-kinases (PI4KII) to phagosomes [117]. The mechanism of
action PI4KII remains to be established, as knockdown of PI4KII did
not affect the levels of phosphoinositides but did affect the uptake
process.

Yersinia pseudotuberculosis activates PIP(5)KIa to form PI(4,5)P2

and causes activation of the small GTPase Rac1, involved in mem-
brane ruffling during the uptake in epithelial cells [118].

An ingenious example of modulation of host cell phosphoinosi-
tide signaling is provided by P. aeruginosa that can only enter cells
via basolateral membranes. To enable its uptake at the apical
membrane, P. aeruginosa stimulates a PI(3) kinase at the apical
membrane to increase local phosphoinositide levels that are phos-
phorylated at the 3 position, including PI(3,4,5)P3 [119]. Formation
of PI(3,4,5)P3 leads to the generation of domains in the apical
membrane resembling a basolateral membrane [120]. This trans-
formation makes the apical membrane accessible for P. aeruginosa
entry [121].

S. typhimurium secretes SigD (also known as SopB) via a type 3
secretion system. SigD is a phosphatase that, at least in vitro, is
capable of dephosphorylating inositol phosphates and phosphoin-
ositides at various positions [122]. This effector influences phos-
phoinositide metabolism in several ways, affecting both the
uptake process and the maturation process (see below). By elimi-
nation of host cell PI(4,5)P2, SigD promotes membrane fission at
the plasma membrane during Salmonella invasion [123,124]. At
the same time, SigD phosphatase activity leads to an accumulation
of PI(3,4)P2 and PI(3,4,5)P3 on invasion ruffles, suggesting the con-
current recruitment to or activation at the plasma membrane of
PI(3)-kinase [125].

Enteropathogenic E. coli (EPEC) also induces a transient
PI(4,5)P2 accumulation at bacterial infection sites, resulting in lo-
cal actin accumulation and induction of PI(3,4,5)P3 clustering
[126].

(B) After uptake, pathogens disrupt phosphoinositide signaling
by secretion of lipid modifying enzymes, allowing them to inter-
fere with the maturation process. As these enzymes lead to propa-
gation of the infection, they are often regarded as virulence factors
[127]. As mentioned before, Salmonella secretes SigD which affects
phosphoinositide metabolism at the plasma membrane of the host
cell. The same enzyme activity of SigD is, however, also active at
the Salmonella-containing vacuole (SCV). After entry of the Salmo-
nella, SigD is delivered from the plasma membrane to the SCV via a
process controlled by SigD ubiquitination [128]. At the SCV, SigD
promotes formation of PI(3)P [125]. In this process SigD does not
dephosphorylate phosphoinositides to produce PI(3)P, as sug-
gested earlier [129], but promotes recruitment of Rab5 and its
effector the PI(3) kinase Vps34, which in turn results in the forma-
tion of PI(3)P [125]. The mechanism described for the effector pro-
tein SigD is reminiscent of the effector IpgD that is secreted by S.
flexneri. IpgD is a phosphatase that dephosphorylates PI(4,5)P2 to
PI(5)P. PI(4,5)P2 is a key regulator of the actin cytoskeleton and
in this way the cytoskeletal organization is affected [130,131]. Fur-
thermore, IpgD is required for the formation of PI(3)-kinase prod-
ucts during S. flexneri invasion, possibly by activating a class I PI(3)-
kinase [132].
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Other pathogens that manipulate the phosphorylation at the 3
position of phosphoinositides to disrupt phagosome maturation in-
clude (i) Enteropathogenic E. coli that secretes EspF to block host
PI(3) kinase activity [133,134]; (ii) Helicobacter pylori that strongly
activates PI(3) kinases to disrupt actin cytoskeleton regulation and
to cause a delayed phagocytosis [135]; and (iii) Mycobacterium
tuberculosis that targets phosphoinositide metabolism is several
ways. Via an unknown mechanism, M. tuberculosis secretes SapM,
a lipid phosphatase that hydrolyzes PI(3)P (Fig. 4) and inhibits
phagosome-late endosome fusion in vitro, thereby arresting phag-
osomal maturation [136]. In addition, M. tuberculosis interferes
with PI-3 kinase hVPS34 by using phosphatidylinositol homo-
logues [137] (Fig. 4). This will be further discussed in Section 4.
3.3. Sphingolipid signaling

Sphingolipids are a major class of membrane lipids, virtually
absent from mitochondria and the ER, but constituting 20–
35 mol% of plasma membrane lipids [138]. As a bulk lipid, sphin-
gomyelin is involved in the stability of the lipid scaffold of lipid-
enriched microdomains or lipid rafts. These microdomains are
important targets for pathogens and will be dealt with separately
(see Section 6). During the past two decades it became clear that
sphingosine and related lipids containing a sphingoid base have
an important role in cellular signaling, in cell function including
the cell cycle, and in apoptosis [104]. The sphingolipid metabo-
lites ceramide (Cer) and sphingosine (Sph) are associated with
growth arrest and apoptosis. Many stress stimuli increase the lev-
els of Cer and Sph, whereas suppression of apoptosis is associated
with increased intracellular levels of sphingosine-1-phosphate
(S1P). The balance between the apoptotic signals of Cer and Sph
and the pro-survival signal of S1P is referred to as the ‘‘sphingo-
lipid rheostat” [139].
Fig. 4. Effects of mycobacteria on the host cell lipidome. LD: lipid droplet; S1
phosphatidylinositol-3-phosphate; EEA1: Early endosomal antigen 1; PI(3)K/Vps34:
mannose-capped form of Lam (lipoarabinomannan); ER: endoplasmic reticulum; TACO:
3.4. Pathogen targeting of sphingosine-1-phosphate

S1P directly stimulates Ca2+ release from the endoplasmic retic-
ulum (ER) [140,141]. The sphingosine kinase 1-dependent increase
in cytosolic [Ca2+] is necessary for the fusion and fission events
during phagosomal maturation [142]. S1P also activates phago-
some actin assembly required for killing of pathogenic mycobacte-
ria [108]. Hence, inhibition of S1P may benefit pathogen survival in
host cells and indeed, lysates from macrophages that were treated
with M. tuberculosis inhibited sphingosine kinase activity, indicat-
ing direct inhibition of the enzyme by mycobacterial components
[142] (Fig. 4). In addition, M. tuberculosis interferes with sphingo-
sine kinase 1 translocation to the Mycobacterial phagosome, there-
by inhibiting S1P accumulation and phagosomal maturation [143].

In contrast, some viruses that do depend on the phagocytic
process, such as respiratory syncytial virus (RSV), stimulate sphin-
gosine kinase activity resulting in increased levels of S1P. The pro-
survival signal of S1P delays host cell death and results in increased
viral replication [144]. Cytomegalovirus also activates sphingosine
kinase, but in this case an elevated level of dihydrosphingosine-1-
phosphate (dhS1P, also known as sphinganine-1-phosphate) was
observed [145]. Sphingosine kinase can use both sphingosine and
dihydrosphingosine (dhSph) as a substrate, resulting in the synthe-
sis of S1P or dhS1P, respectively. As dhSph is a temporary interme-
diate in early steps of the synthesis of sphingolipids in the ER,
levels of dhSph and its metabolites such as dhS1P are usually very
low. Hence little is known about their potential biological (signal-
ing) activity. dhS1P has been shown to be an S1P receptor agonist
[146]. Opposite effects of dhS1P and S1P have been observed in
transforming growth factor-beta/Smad signaling [147]. Thus, po-
tential overlap and divergence in their biological activities have
yet to be defined. It is interesting to note that the lipid composition
of HIV-1, an enveloped retrovirus, shows an enrichment of the
unusual sphingolipid dihydrosphingomyelin [148].
P: sphingosine-1-phosphate; SapM: M. tuberculosis effector molecule; PI(3)P:
phosphoinositide 3- kinase; PIM: phosphatidylinositol mannoside; ManLam:

tryptophan aspartate containing coat protein.
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3.5. Pathogens aid pharmaceutical targeting of sphingolipid
metabolism

Many naturally occurring and synthetic sphingoid base-like
compounds have been identified that interfere with various steps
of the complex interconversion of sphingolipid metabolism [149].
These compounds bear promise for therapeutic interventions for
cancer cells and pathogenic microorganisms. For example, specific
inhibition of serine palmitoyltransferase (SPT), the first step in the
synthesis of sphingolipids, suppresses virus replication [150–152].
In several of these cases, it is not clear whether the inhibition is the
result of inhibition of cellular signaling, or is due to an altered
interaction of pathogens with lipid rafts, in which sphingolipids
play an important role (see Section 6).

Several of the naturally occurring sphingoid base-like com-
pounds that interfere with sphingolipid metabolism are produced
by pathogenic fungi (for an excellent review, see [149]). Fusarium
moniliforme (=F. verticillioides) for example produces fumonisins
which mimic metabolites of sphingolipid metabolism. Fumonisins
inhibit ceramide synthase and are major toxins involved in induc-
ing apoptosis [153–156]. The effects of the compounds produced
by fungi are very diverse, ranging from causing disease to immuno-
suppression [157]. Some of these compounds act as (irreversible)
enzyme inhibitors, whereas others act as molecular mimics, closely
resembling host lipids (see Section 4).
3.6. Other signaling lipids

Upon host cell infection with Chlamydia, diacylglycerol (DAG)
accumulates at the inclusion vacuole (Fig. 5), as detected by the
expression of a fluorescently tagged C1 domain that specifically
interacts with DAG [158]. The accumulation of DAG at the vacuole
results in the recruitment of protein kinase Cd, resulting in an anti
apoptotic effect of bacterial infection.

Leishmania major induces cholesterol depletion in host cells
[159]. Recent evidence suggests that this affects the DC40 signaling
Fig. 5. Effects of Chlamydia trachomatis on the host cell lipidome. LD: lipid droplet
complex (signalosome) composition and effector function of this
parasite [160]. This is the first time that a pathogen is shown to
be capable of modulating lipid levels to such an extent, that the
biophysical properties of biological membranes are altered. These
biophysical properties are likely to be mediated via lipid rafts
which are discussed below (see Section 6).
4. Molecular mimicry of lipids

4.1. Sphingolipids

One of the most complex forms of molecular mimicry occurs in
sphingolipid metabolism. Sphingolipids play an important role in
the regulation of the delicate balance between the pathogen and
the host. Pathogens that cannot produce sphingolipids themselves
are often capable of utilizing host sphingolipids to promote their
virulence [161,162]. This is illustrated by Chlamydia trachomatis.
The bacterial membrane contains up to 4% of (modified) sphingo-
lipids although the bacterium is not capable of sphingolipid syn-
thesis de novo [163]. The observations implying that pathogens
can take up and modify host cell sphingolipids will be further dis-
cussed below (see Section 8). Pathogens capable of producing
sphingolipids often produce types of sphingolipid species that are
not present in mammalian hosts and that are specific to plants
and fungi, including phytoceramide, inositolphosphorylceramide
(IPC), and products thereof [156,161,162]. The functions of these
pathogen-specific sphingolipids are not fully understood. Some
are essential for pathogen function itself, as is seen for example
in Leishmania. In this case, inhibition of sphingolipid synthesis re-
sults in an accumulation of small intracellular vesicles in internal
vacuoles and the flagellar pocket [164,165]. The small vesicles in
internal vacuoles resemble those occurring within the multivesic-
ular bodies or multivesicular tubules of the endocytic pathway.
These observations are consistent with the enrichment of
sphingolipids in the endocytic pathway and multivesicular bodies
[138]. Another potential function for these pathogen-specific
; DAG: diacylglycerol; ER: endoplasmic reticulum; MVB: multivesicular body.
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sphingolipids is that they contribute to virulence. In this respect it
is interesting to note that pathogen-specific sphingolipids are not a
substrate for host cell enzymes involved in sphingolipid metabo-
lism and thus are not converted to other sphingolipid metabolites
in host cells [162]. This does not exclude the possibility, however,
that several of these pathogen-specific sphingolipids can bind to
host cell enzymes involved in sphingolipid metabolism. In fact,
by molecular mimicry several of these compounds are highly effi-
cient inhibitors of host cell enzymes involved in sphingolipid
metabolism [149]. Given the crucial role of sphingolipids in host
cell function, including proliferation, differentiation and apoptosis,
these compounds can effectively affect the host organisms, and
cause disease or death. In fundamental and applied research, these
inhibitors are used to study the involvement of sphingolipid
metabolism in biological processes. For pharmaceutical research
these compounds offer great potential for the development of
anti-infectious disease drugs.

4.2. Phosphoinositides

Phosphatidylinositol with a mannose attached to the inositol
headgroup at the 2 position (PIM) is one of the most common
phospholipids in the mycobacterial envelope [166]. Additional
mannose groups can be attached at the 6 position of the inositol
ring, giving rise to PIM2-PIM6. PIM stimulates Rab5 and EEA1 to
enhance fusion of phagosomes with early endosomes (Fig. 4) in-
stead of fusion with lytic organelles [136]. PIM is the precursor
of lipoarabinomannan (LAM), which is a heavily glycosylated form
of PI, and of ManLAM (mannose-capped form of LAM). ManLAM
interferes with a PI(3) kinase that synthesizes PI(3)P and thereby
with subsequent recruitment of EEA1, affecting late endosomal
and lysosomal trafficking events [137,167,168] (Fig. 4). The molec-
ular mechanism(s) of action of PIMs and LAMs are not known. M.
tuberculosis may disrupt phosphoinositide signaling by molecular
mimicry of phosphoinositides. It has been suggested that espe-
cially the structure of PIM1 and PIM2 may resemble that of phos-
phoinositides, with the mannose residues replacing the phosphate
groups [169]. The effect of PIM is independent of PI(3)K as it stim-
ulates early endosomal fusion in the presence of wortmannin
[170]. However, it is difficult to envision the binding of PIMs to
phosphoinositide-specific protein domains in which electrostatic
interactions of the phosphate groups play an important role
[171]. Deretic and colleagues [170] suggest that PIMs may act
either by insertion in membranes and subsequent recruitment of
effector proteins [172], or by modifying the biophysical properties
of the membrane bilayer.

4.3. Cholesterol

As will be discussed below (see Section 6), cholesterol plays an
important role in host–pathogen interactions. In the case of Myco-
bacteria, cholesterol is involved in mycobacterial entry and sur-
vival [173,174]. Mycolic acids are major components of the cell
wall of Mycobacteria [166]. These a-alkyl b-hydroxy long-chain
fatty acids may resemble the structure of cholesterol according
to several criteria, including binding to cholesterol-specific anti-
bodies, binding to Amphotericin B, and binding to each other
[175]. Thus, free mycolic acids from microbacterial origin seem
to be capable of mimicking cholesterol. It is not clear how a small
subset of mycolic acids via their cholesterol-like hydrophobic
properties contribute to mycobacterial pathogenesis.

4.4. Lipid membrane mimicry

Many highly pathogenic viruses including influenza virus, vac-
cinia virus, and HIV are enveloped, i.e. they have a membrane
around the nucleocapsid containing the viral genome. Whereas
the proteins on the viral envelope are almost exclusively virally en-
coded, all lipids originate from the host and are recruited from host
membranes. Thus, the lipid composition of the virus resembles the
composition of the host cell membrane [176,177]. This form of
mimicry may allow viruses to avoid immune detection. An exam-
ple illustrating this principle is the recent observation that two rare
antibodies against HIV-1 with potential clinical application were in
fact reactive with the phospholipid cardiolipin [178]. Because of
autoantigen mimicry, current HIV-1 vaccines may not induce these
types of antibodies.

Vaccinia uses membrane mimicry to enter host cells [179]. The
uptake of the virus by the host cell is critically dependent on the
presence of phosphatidylserine in the viral membrane. By having
phosphatidylserine at the outside of the membrane, Vaccinia mim-
ics apoptotic bodies. This mimicking of apoptotic bodies causes
efficient uptake of Vaccinia due to macropinocytosis by phagocy-
tosing cells.

Schistosoma mansoni binds and ingests LDL particles, and
breaks them down to serve as a source for lipids [180,181]. Next
to lipid acquisition S. mansoni also uses LDL for immune evasion,
by covering its surface with LDL to mask its own antigens [180].
4.5. Glycosylphosphatidylinositol (GPI)

GPI is a complex structure comprising a phosphoethanolamine
linker, a glycan core, and a phosphatidylinositol tail. It is well
known as a C-terminal post-translational modification of proteins
[182]. Much less is known about the function of free glycosylphos-
phatidylinositol molecules that abundantly cover the cell surface
of several parasites, including Leishmania, Trypanosoma, T. gondii,
and malaria parasites (P. falciparum). The free GPIs of these proto-
zoan pathogens closely resemble the mammalian GPI anchor, but
differ from each other with respect to the composition of the gly-
can head group and/or the fatty acid-moieties of the lipid anchor
[183,184]. Differences between free GPI structures are responsible
for sometimes opposite biological effects. Depending on the isola-
tion of GPIs from T. Brucei, P. falciparum, or Leishmania, the GPI iso-
lates activated or inhibited macrophage function [185–187]. Very
little is known about the mechanism of action of free GPI on host
cells. If free GPI from pathogens would act by molecular mimicry
on host cells, this would suggest a signaling role of GPI in mamma-
lian cells. So far, however, the only function ascribed to GPI in
mammalian cells is to serve as anchoring device for peripheral pro-
teins. Alternatively, the signal of pathogen-derived GPI might be
mediated via Toll-like receptors (TLR) and be involved in induction
of secretion of the cytokine tumor necrosis factor (TNF). Indeed,
parasite GPIs have been shown to activate TLR1, TLR2, TLR4, and
TLR6 [188–190] A glycosylphosphatidylinositol-based treatment
alleviates Trypanosomiasis-associated immunopathology [191].
5. Cholesterol and pathogens

Cholesterol is a ubiquitous component of all mammalian mem-
branes. It influences the biophysical properties of biological mem-
branes and is central to the organization, dynamics, function, and
sorting of lipid bilayers in vivo [192]. Cholesterol is enriched in
the plasma membrane of eukaryotic cells, where it is non-uni-
formly distributed. Within the plasma membrane, it is enriched
in microdomains that play an important role in cellular signaling
[193,194]. Because of the crucial roles of cholesterol, its (sub)cellu-
lar levels are carefully maintained [192,195–197]. The crucial roles
played by cholesterol also make this lipid an attractive target for
many pathogens via which they can influence host cell dynamics.
In addition, the absence of cholesterol from prokaryotes makes it
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an almost ideal biomarker that pathogens can use to recognize and
infect mammalian host cells. Hence, pathogens have developed
various ingenious ways to make use of the presence of cholesterol
for the recognition of and interaction with host cell membranes.
The interaction of pathogens with lipid rafts will be discussed in
the next section. Here we will discuss indications for raft-indepen-
dent interactions of pathogens with cholesterol.

5.1. Effector binding to cholesterol

Several type 3 secretion systems (T3SSs) have now been identi-
fied in Gram-negative bacteria to deliver virulence effector pro-
teins into eukaryotic target cells via a needle-like structure. They
have been classified into three distinct phylogenetic groups in
which e.g. Salmonella and Shigella entry-associated T3SSs are clo-
sely related and the T3SSs of EPEC and Pseudomonas are more
divergent [198]. At the tip of the needle, bacterial proteins insert
into the host cell membrane to form a translocon that perturbs
the bilayer [199,200]. The translocon components SipB and IpaB
of Salmonella and Shigella, respectively, are cholesterol-binding
proteins. Cholesterol is required for the binding of SipB to the plas-
ma membrane, and secretion of effectors by the T3SSs of Salmo-
nella, Shigella and EPEC depends on cholesterol [201]. Of the
Pseudomonas translocon components PopB and PopD, PopB directly
binds cholesterol, while in addition both PopB and PopD can bind
phosphatidylserine [202]. PopB together with PopD causes a cho-
lesterol-dependent aggregation of liposomes [203]. This aggrega-
tion occurs in liposomes containing 15% cholesterol and is
independent of the presence of sphingomyelin, suggesting that this
effect is lipid raft-independent. The biological significance of the
aggregation observed in this assay is not clear. Under different
experimental conditions, PopB and PopD synergistically permeabi-
lize vesicles without causing aggregation in a cholesterol-indepen-
dent manner [202].

5.2. Cholesterol accumulation on pathogen-containing vacuoles

Host cell cholesterol accumulates at parasitophorous vacuoles
of several intracellular pathogens (see Section 8). At later stages
of infection the Salmonella-containing vacuole (SCV) contains up
to 30% of the cellular cholesterol pool in both epithelial cells and
macrophages [204]. The function of cholesterol recruitment to
the pathogen-containing vacuoles is not clear.

First, it may be used as a nutrient, as was recently shown for
mycobacteria [205]. See Section 8 for further details.

Second, cholesterol may influence the interaction of pathogen-
containing vacuoles with other cellular organelles, which depends
on membrane-trafficking pathways [206]. Various intracellular
trafficking pathways of eukaryotic cells are sensitive to cholesterol,
including ER to Golgi transport [207], intra-Golgi transport [208],
endosomal transport [209–211], and phagosomal maturation
[212,213]. Cholesterol levels may affect intracellular trafficking in
various ways, including the recruitment of proteins and lipids to
the pathogen-containing vacuole. For example, cholesterol was
found to mediate the phagosomal association of TACO/coronin-1,
affecting the degradation of mycobacteria in lysosomes [174]
(Fig. 4). Coronin-1 is required for activation of the Ca2+-dependent
phosphatase calcineurin, thereby blocking lysosomal delivery of
mycobacteria [214]. This mechanism acts in concert with the effect
of mycobacterium on sphingosine kinase (discussed in Section 3.4
and elsewhere [215]).

Third, the Salmonella effector SseJ has been described to use
cholesterol as an acceptor of acyl chains and might therefore use
cholesterol at SCVs as a substrate [40,41]. In addition, this function
may also imply cholesterol-specific recruitment of SseJ to the SCVs.
Vice versa, SseJ may be involved in the recruitment of cholesterol
to the SCV, as overexpression of SseJ results in formation of choles-
terol-rich membrane structures [42].

5.3. Pathogen uptake and modification of cholesterol

Cholesterol in the membranes of Helicobacter spp. [216–218], S.
aureus [217], Anaplasma phagocytophilum [219] and Chlamydia EB
and RB membranes [163] is of host origin. A sterol-binding protein
in Toxoplasma was recently identified that may optimize pathogen
handling of host cell derived cholesterol [220]. Helicobacter pylori
extracts cholesterol from epithelial cells and converts it into cho-
lesteryl a-glucosides [221]. Cholesterol and cholesteryl glucosides
represent 1.6% and 25%, respectively, of the total lipids of H. pylori
[222]. The abundant presence of glucosylated cholesterol inhibits
phagocytosis of and T-cell activation by H. Pylori, providing an im-
mune escape mechanism for this pathogen.
6. Lipid rafts

The organization of biological membranes is based on interac-
tions between membrane proteins and lipids. Recent evidence sug-
gests that in these membranes specialized microdomains (so called
lipid rafts) exist that are characterized by an enrichment of choles-
terol, sphingolipids, and a specific subset of proteins. By selective
inclusion and exclusion of proteins, rafts are involved in many cel-
lular processes such as endocytosis, signaling, protein sorting and
intracellular membrane trafficking. It is beyond the scope of this
review to describe details and to discuss controversies surrounding
the biological function and properties of lipid rafts. These topics are
covered by many review articles [10,223–230].

The biophysical properties and the high concentration of signal-
ing molecules make lipid rafts a natural target for pathogens
through which they communicate with host cells and hijack mem-
brane-trafficking pathways. This topic has also been the focus of
several reviews to which the reader is referred [231–235]. An up-
dated list now includes over 100 pathogens that have been sug-
gested to interact with lipid rafts (Tables 1–4). Not in all cases
the involvement of rafts, rather than e.g. cholesterol, in the
host–pathogen interaction has been unambiguously established.
The early methodology to show an involvement of lipid rafts in
biological processes is rather diffuse, and uses detergents and cho-
lesterol-extracting agents. Only a combination of several indepen-
dent methods, which also include morphological and functional
studies, can establish the involvement of lipids rafts in host–path-
ogen interactions. Hence, especially data from early publications,
when these additional methods were not yet available, should be
interpreted with some caution.

The basic property of lipid rafts that is exploited by pathogens is
their intrinsic ability to transiently oligomerize. This property is
abused by pathogens, resulting in stabilized, altered or disrupted
oligomeric structures which (i) provide a mechanism for pathogen
uptake, (ii) affect host cell signaling; (iii) alter intracellular traffick-
ing including pathogen vacuole maturation, and (iv) offer strate-
gies for exit from the host cell. Here we will focus on the role of
lipids in the raft-mediated interactions between host cells and
pathogens.

6.1. Raft lipids as receptors for pathogens

Several pathogens directly target sphingolipids in raft struc-
tures (Table 1). Recently, VacA was identified as a bacterial vir-
ulence factor, secreted by the gastric pathogen Helicobacter
pylori that exploits a plasma membrane sphingolipid, sphingo-
myelin (SM), as a cellular receptor [298]. Helicobacter pylori
may exploit the capacity of SM to partition into lipid rafts in



Table 1
Bacteria interacting with lipid rafts.

Bacterium Involved in Pathogen molecule
involved

Raft molecule involved Refs.

Anaplasma phagocytophilum Entry GPI-anchored proteins [236]
Afipia felis Entry via macropinocytosis [237]
Brucella abortus Entry 1,2 cyclic glycan Class A scavenger receptor [238–240]

Phagosomal maturation
Brucella suis Entry/ intracellular survival [238]
Campylobacter jejuni Entry [241]
Chlamydia pneumonia Entry [242]
Chlamydia psittaci Entry [242]
Chlamydia trachomatis (E and F) Entry [242–244]
Ehrlichia chaffeensis Entry GPI-anchored protein [236]
Escherichia coli FimH expressing Entry/survival FimH CD48/CD55 uroplakin-1a [245–249]
Escherichia coli Enteropathogenic Induces lipid rafts during

pedestal formation
[250,251]

Escherichia coli Uropathogenic Transcellular translocation [252]
Escherichia coli diffusely

adhering (DAEC)
Entry AfaE CD55 [253], but see also

[254]
Francisella tularensis Entry /survival [255]
Helicobacter pylori Adhesion HpaA LacCer [256]
Legionella pneumophila Intracellular survival [257]
Listeria monocytogenes Signaling Internalin E-cadherin [258]
Mycobacterium avium Entry Polar lipid fraction [259]
Mycobacterium kansasii Entry CR3 in association with

GPI-anchored protein(s)
[260]

Mycobaterium tuberculosis Entry/survival Receptor-Ck [174,261]
Mycobaterium bovis Entry [174]
Mycoplasma fermentans [262]
Porphyromonas gingivalis Entry/intracellular survival [263,264]
Pseudomonas aeruginosa Entry/signaling [265–267]
Salmonella typhimurium Entry/intracellular survival SipB (T3SS) Cholesterol [201,204,268,269]

Effector proteins PipB and PipB2
Shigella flexneri Entry Components of the T3SS:

IpaB
CD44 [270,271]

Yersinia enterolitica Intracellular replication [272]
Neisseria gonorrhoeae Entry CEACAM [273,274]
Staphylococcus aureus Entry asialoGM1/TLR2 [275]
Gram-negative bacteria Binding/Entry Lipopolysaccheride (LPS) CD14 [276]

Table 2
Bacterial toxins interacting with lipid rafts.

Bacterial toxina

Actinobacillus actinomycetemcomitus Binding Cytolethal distending toxin [277,278]
Aeromonas hydrophila Binding–oligomerization Aerolysin CD14 (GPI-anchored) [279,280]
Bacillus anthracis Oligomerization – Clathrin-coated pits anthrax toxin (protective antigen) Anthrax toxin receptor (ATR) [281,282]

Anthrolysin O (a CDC)
Bacillus thuringiensis Binding/oligomerization cry1A toxin Aminopeptidase N [283–285]
Clostridium botulinum Binding Neurotoxin [286,287]
Clostridium difficilus Binding Toxin TcdA and TcdB [288]
Clostridium perfringens Binding/oligomerization epsilon-Toxin [289]
Clostridium perfringens Binding/internalization iota-Toxin [290]
Clostridium perfringens Binding theta-Toxin (CDC)b (=perfringolysin) Cholesterol [291,292]
Clostridium septicum Binding a-Toxin GPI-anchored proteins [293]
Clostridium tetani Binding/internalization Tetanus toxin [294]
Escherichia coli Binding/oligomerization Heat-labile enterotoxin LTII GD1 [295]
Escherichia coli Binding/oligomerization Heat-labile enterotoxin LTI GM1 [296]
Helicobacter pylori Binding/oligomerization VacA SMc [297,298]
Listeria monocytogenes Binding/oligomerization Listeriolysin (a CDC)b Cholesterol [258,299,300]

Vacuole lysis (via T3SS-raft interaction)
Shigella dysenteriae Binding/oligomerization Shiga toxin Gb3 [301,302]
Streptococcus pyogenes Oligomerization streptolysin (CDC)b [303]
Vibrio cholera Binding/Caveolae Vibrio cholera cytolysin (CDC)b Cholesterol [303,304]

Cholera toxin GM1

a For a complete overview of CDC, secreted by 26 different pathogens, the reader is referred to a recent review by Rosado et al. [305].
b CDC: Cholesterol-dependent cytolysin.
c For a list additional toxins that interact with sphingomyelin (SM) but are secreted by other types of pathogens, the reader is referred to a recent review by Shogomori and

Kobayashi [306].
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order to access the raft-associated cellular machinery. Other
pathogens that exploit lipid-binding toxins to localise to lipid
rafts include toxigenic E. coli, which secrete the heat-labile
enterotoxin LTI targeting GM1, or which secrete the heat-labile
enterotoxin LTII targeting GD1, Shigella dysenteriae that secrete
Shiga toxin targeting Gb3, and Vibrio cholera that secrete cholera



Table 3
Viruses interacting with lipid rafts.

Virus

Avian sarcoma and leukosis virus Entry GPI-anchored receptor
TVA800

[307]

Bluetongue virus Protein localisation VP5 [308]
Coxsackievirus Entry/Golgi targeting [309]
Dengue virus Entry Entry: HSP70/90 [310,311]

Association Association: non-structural
glycoprotein NS1

Ebola virus Entry Entry: fusion glycoprotein
GP2

[312–314]

Budding/assembly Budding/assembly: VP40 Budding/assembly:
Recruitment of TSG101

Echovirus 1 Entry/non-caveolar endocytosis/
caveosomes/trafficking

alpha2beta1 integrin [315–317]

Echovirus 6 Entry DAF GPI-anchored) [318]
Echovirus 11 Entry raft dependent DAF for raft-dependent

entry
[319]

Ecotropic murine leukemia virus Entry/budding [320]
Epstein-barr virus Signaling [321,322]
Hepatitis C virus Entry Entry: CD81 and class B

scavenger receptor
[323–326]

Replication Replication: NS proteins Replication: hVAP-33
Herpes simplex virus Entry/binding Entry: glycoprotein B [327,328]

Budding Budding: UL11
Herpesvirus saimiri Down regulation TCR Tip [329]
HIV Entry Binding: gp120 Binding: CD4/CXCR4 [148,330–340]

Transcytosis Transcytosis: Gp41 Transcytosis: GalCer
Assembly/budding/release Assembly: Gag Assembly: Annexin2

Human herpes virus-6 Entry Glycoprotein Q1 CD46 [341]
Human herpesvirus 8 = Kaposi’s

sarcoma-associated herpes virus
Manipulation of signaling [342]

Human T-cell leukemia virus Entry/budding/ [343–345]
Signaling in T-cell proliferation Signaling: Tax1 Signaling: IjB

Influenza virus Entry/budding/ assembly hemagglutinin and
neuraminidase

[346–348]

Marburg virus Entry/budding [313]
Measles virus Budding/assembly [349–351]
Newcastle disease virus Assembly/release [352,353]
Pseudorabies virus Entry/proteins localisation Us9 [354–356]
Respiratory syncitial virus Entry in caveolae F protein [357–359]

Assembly
Rhinovirus Entry [360]
rotaviruses Entry/replication VP4 [361–363]
SARS CoV Entry S-protein ACE-2 [364,365]
Sendai Virus Budding/assembly [366,367]
Semliki forest virus Entry and exit Entry: Fusion peptide [368,369]
Simian virus 40 Entry/Caveolae/trafficking/ MHCI [370,371]
Vaccinia virus Entry [372,373]
Varicella zoster virus Viral envelope integrity [374]
West Nile virus Entry [375]

Table 4
Protozoa, fungi and other pathogens interacting with lipid rafts.

Protozoon

Cryptosporidium parvum Entry/attachment [376]
Entamoeba histolytica Attachment [377]
Leishmania Intracellular survival Lipophosphoglycan [378]
Plasmodium falciparum Entry [379–381,101]
Theileria parva Signaling [382]
Toxoplasma gondii Invasion/Intracellular survival [383]
Fungus
Paracoccidiodis brasiliensis Adhesion/signaling [384]

Other
Prion protein PrPC Localisation to host cell membrane PrPsc [385,386]
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toxin targeting GM1. The multimeric toxins have the potential to
cluster rafts, thus allowing high affinity toxin-binding through
relatively weak individual binding forces of carbohydrate binding
sites [387,388]. In addition, the raft-dependent interaction also
determines their mechanism of uptake. It is becoming increas-
ingly clear that there are clathrin-dependent and clathrin-inde-
pendent endocytic pathways which differ in their requirement
of lipid rafts [389–392].



14 Y.P.M. van der Meer-Janssen et al. / Progress in Lipid Research 49 (2010) 1–26
The family of cholesterol-dependent cytolysins (CDCs) binds cho-
lesterol in membranes, resulting in oligomeric ring structures in
membranes that create pores with diameters ranging from 1 to
50 nm [305]. CDCs localise to lipid rafts, but how this property re-
lates to their mode of action is not clear, as the biophysical properties
of lipid rafts hamper the interaction of cholesterol with CDCs [393].

6.2. Lipid-dependent reorganization of rafts

Several lipids are targeted by pathogens in order to change the
oligomeric state of lipid rafts, resulting in (i) stabilization, (ii) alter-
ation, or (iii) disruption of lipid rafts. Examples of the first possibil-
ity, that of stabilization of lipid rafts, are provided by Neisseriae
gonorrhoeae, P. aeruginosa, S. aureus, rhinovirus or Sindbis virus,
which activate the enzyme acid sphingomyelinase to release cera-
mide in the outer leaflet of the cell membrane [235]. Ceramide mol-
ecules have the tendency to induce the formation of ceramide-
enriched microdomains, to function as a fusogen that triggers the
spontaneous fusion of ceramide-enriched membrane microdo-
mains, and to stabilize large ceramide-enriched membrane macr-
odomains [394–396]. The second possibility of lipid targeting by
pathogens is that lipids cause a reorganization/alteration of lipid
rafts. This possibility has been suggested for lipoarabinomannan
(LAM), an integral component of the M. tuberculosis that markedly
alters the morphology of lipid domains in membranes [397]. As a
result phagosome maturation is inhibited [398]. The third possibil-
ity is that pathogens target lipids to cause a disruption of lipid raft
structures. Brucella abortus secretes 1,2 cyclic glycan, a component
that resembles cyclodextrins and extracts cholesterol from mem-
branes, resulting in disruption of lipid rafts [399].

Together these results confirm that lipids are essential for the
stability of microdomains in biological membranes. In model
membranes that consist of only a specific subset of lipids, lipid
rafts can easily be observed (see e.g. [400]). In biological mem-
branes, the lipid composition is much more complex and heteroge-
neous, resulting in the suggestion that protein interactions are
necessary to stabilize lipid rafts (see e.g. [229] for a discussion on
this topic). The fact that pathogens can alter the oligomeric state
of rafts in biological membranes by targeting lipids suggests that
lipids provide a major driving force determining the biophysical
state and hence physiological role of rafts.

6.3. Lipid rafts in budding of viruses

It appears that several enveloped viruses select raft-like do-
mains to exit from cells. HIV viral membranes contain raft markers
GM1, Thy-1 and CD59 [334]. HIV viral membranes are Triton X-100
resistant and contain typical raft lipids [148]. Other viruses known
to assemble on or bud from lipid rafts in host cell membranes in-
clude influenza virus [176], measles virus [401] and Newcastle dis-
ease virus [352] (see Table 1 for a comprehensive list). As HIV-1
particles excluded a bona fide raft marker (flotillin-1), this indi-
cates that the virus buds from a subset of cellular microdomains.
The function of lipid rafts in virus assembly can be manifold,
including recruitment of a subset of host lipids and proteins into
viral membranes and determination of the oligomeric state of viral
proteins. Another surprising possibility was suggested by the find-
ing that assembly of the non-enveloped Rotavirus is dependent on
cholesterol, suggesting that rafts may control the proper incorpora-
tion of viral proteins into virions [402].
7. Lipid droplets

Lipid droplets (LDs), also termed lipid bodies or adiposomes, are
lipid storage organelles found in animals, plants and microorgan-
isms [403]. Lipid droplets are thought to be formed by accumula-
tion of neutral lipids between the membrane leaflets of the ER
and bud from there [403–405], although some variations of this
model have been presented [406,407]. Lipid droplets consist of a
neutral core composed of triacylglycerols, cholesterol esters, reti-
nol esters and diacylglycerols surrounded by a monolayer of phos-
pholipids. In addition, lipid droplets contain a specific and dynamic
subset of structural and functional proteins that are involved in the
biogenesis, turnover, and biological functions of these organelles.
Recent proteomic approaches have identified a large variety of pro-
teins associated with lipid droplets, which indicates that they are
much more than lipid storage depots. A wide range of cellular func-
tions have been suggested, including an involvement of lipid drop-
lets in lipid transport and metabolism, membrane trafficking,
intracellular signaling, production of inflammatory mediators,
and in protein folding and aggregation [408,409].

These properties make them attractive targets for pathogens
and indeed, recent work shows that several pathogens interact
with lipid droplets.

7.1. Pathogen induction of lipid droplet formation

A variety of pathogens induce the formation of lipid droplets in
host cells. For example, bacterial lipopolysaccharide (LPS), present
in all Gram-negative bacteria, induces lipid droplet accumulation
in host cells in a Toll-like receptor 4 (TLR4)-dependent way, which,
in case of macrophages, results in formation of foam cells
[410,411]. Other examples include the induction of lipid droplet
formation by Plasmodium berghei in mouse kidney and liver cells
[412,413] and the induction of lipid droplet formation by Candida
albicans in macrophages and hepatocytes by use of an extracellular
lipase [414]. The induction of lipid droplet formation by hepatitis C
virus (HCV), Trypanosoma cruzi, M. tuberculosis, Chlamydia tracho-
matis, and Mycobacterium bovis (M. bovis) will be discussed in some
detail below.

7.2. Lipid droplets and pathogen assembly

Hepatitis C virus induces the formation of more and larger lipid
droplets in hepatic cells. In addition, structural proteins of HCV
have been found to localise to lipid droplets [415]. The HCV capsid
protein (core protein) localises to the LDs and recruits non-struc-
tural proteins and replication complexes, which appears critical
for the production of virus particles [416,417]. The core protein
most likely replaces adipose differentiation-related protein (ADRP),
a major protein associated with the surface of lipid droplets, by
progressively coating the entire surface. The absence of ADRP then
results in lipid droplet aggregation around the nucleus [418]. The
presence of the replication machinery and the observation of viri-
ons in close proximity to the LDs might indicate virus assembly at
or in close proximity to lipid droplets. Recent work from Roingeard
et al. [419] indicates that the overexpression of HCV core protein
induces virion budding from ER membranes in close proximity to
the LD rather than at membranes directly apposed to the lipid
droplets.

7.3. Pathogen-vacuole interactions with lipid droplets

Trypanosoma cruzi induces both lipid droplet formation and
eicosanoid production in macrophages [420]. This suggests that li-
pid droplets may have a role in eicosanoid production. Indeed, sub-
sequent work showed that lipid droplets in cells infected with T.
cruzi are found in close proximity to, attached to, and even inter-
nalized into the parasite-containing vacuole. Thus, a close interac-
tion of lipid droplets with the pathogen vacuole allows a possible
discharge of lipid droplet content [421]. A direct interaction



Y.P.M. van der Meer-Janssen et al. / Progress in Lipid Research 49 (2010) 1–26 15
between lipid droplets and pathogen vacuoles is, however, not
always necessary for the induction eicosanoid production: the
membrane compound LAM of Mycobacterium induces a TLR2-
dependent, but phagocytosis-independent induction of lipid drop-
lets and eicosanoids in macrophages [422].

Cells infected with M. tuberculosis also show a close association
of the mycobacterial phagosome with lipid droplets. In this case
the close association of lipid droplets with the pathogen-contain-
ing vacuole is hijacked for the acquisition of iron (Fig. 4). M. tuber-
culosis secretes the metal-free siderophore mycobactin and after
binding to host cell cytosolic iron, mycobactin is targeted to lipid
droplets. The close interaction with lipid droplets subsequently al-
lows the pathogen to acquire host cell iron [423].

Lipid droplets are also crucial in Chlamydia trachomatis intra-
cellular survival and replication. In epithelial cells three Chla-
mydia proteins (Lda) were found to localise to host cell lipid
droplets (Fig. 5). Similar to what had been observed for HCV,
Lda association with lipid droplets occurred with a concomitant
decrease of ADRP, suggesting a replacement of lipid droplet coat
protein with a pathogen protein, allowing functional control of
this organelle. For example, lipid droplet-associated Lda may be
involved in the observed accumulation of lipid droplets around
the Chlamydia-containing vacuole (inclusion) [424]. Alternatively,
the chlamydial Lda proteins may function in the recently de-
scribed translocation of lipid droplets into the Chlamydia inclu-
sion, probably for the acquisition of nutrients [425]. See Section
8 for further details.
7.4. Pathogen-localised lipid droplets in detoxification

As a consequence of a hemoglobin diet for blood-feeding
organisms such as P. falciparum, they produce large amounts of
heme, a toxic molecule that can disrupt membranes, inhibit enzy-
matic processes and initiate oxidative damage. P. falciparum uses
lipid droplets in close proximity to its digestive vacuole to detox-
ify heme by formation of haemozoin crystals within the hydro-
phobic environment of lipid droplets [426,427]. Lipid droplet-
mediated detoxification of host derived heme has also been sug-
gested for Schistosoma mansoni and Rhodnius prolixus, allowing
the formation of multicrystalline assemblies in the guts of these
organisms [428].

In summary LDs are involved in a wide variety of host–patho-
gen interactions, such as inflammatory responses, pathogen
assembly, pathogen nutrient acquisition and detoxification pro-
cesses. As we are only beginning to understand the biological func-
tions of lipid droplets, studies on the involvement of lipid droplets
in host–pathogen interactions will also contribute to this area of
research.
8. Lipid acquisition

The host provides an appealing habitat for numerous microor-
ganisms and excluding them from critical nutritive resources has
its role in host defense [429]. This nutrient restriction also provides
an interesting pharmaceutical target, as many pathogen enzymes
that utilize host cell lipids bear resemblance to host cell enzymes,
but distinct differences allow the design of specific drugs to selec-
tively inhibit pathogen enzymes. A recent publication by Brinster
et al. [430], however, casts some doubts on this strategy, as inhibi-
tion of bacterial fatty acid synthesis is fully bypassed by the uptake
of exogenous fatty acids. There is an enormous amount of litera-
ture available that indicates that pathogens require host cell lipids
and it is beyond the scope of this review to give an extensive over-
view. For certain pathogens, it may seem obvious why they acquire
host cell lipids as they are auxotroph for fatty acids (e.g. [431]), or
cholesterol [205]. In many other cases, however, the reason for li-
pid acquisition from the host cell is not clear (e.g. [432]). Here, we
will focus on the general principles, illustrated with prominent and
recent examples.
8.1. Metabolic fate of acquired lipids

One function of acquired lipids is to modulate host–pathogen
interactions and virulence, as has been discussed in other sections
of this review (see also e.g. [433]). A second function of acquired
lipids is to serve as an energy source. For example, Corynebacterium
jeikeium cannot synthesize fatty acids, but upon their acquisition
they are utilized for subsequent b-oxidation, as the bacterium con-
tains all the enzymes required for this process [431]. Even choles-
terol can be used as a substrate for energy production, for example
by Rhodococcus species, soil bacteria related to M. tuberculosis
[434]. To ensure expedited energy supply, Gram-negative bacteria
can induce the release of fatty acids from host cells by stimulating
adipose lipolysis via the lipid A moiety of LPS [435]. A third func-
tion of acquired lipids is to provide building blocks for pathogen
assembly. In general, pathogens can synthesize the typical pro-
karyotic lipids phosphatidylserine, phosphatidylethanolamine,
and phosphatidylglycerol and must acquire lipids generally associ-
ated with eukaryotes such as sphingomyelin, cholesterol, phospha-
tidylcholine and phosphatidylinositol [163]. Hence, several
pathogens are auxotrophic for these lipids (e.g. sphingolipids
[162] or cholesterol [99,219]). Host cell lipids can also be used as
a carbon source, as has been described for e.g. M. tuberculosis
[205,429], Salmonella [436], Candida albicans [437], and Cryptococ-
cus neoformans [438]. The acquisition of a viral envelope from host
cell membranes could also be considered as an effective mecha-
nism to acquire building blocks for pathogen assembly. This has
been discussed elsewhere in this review (Section 4).

Thus, there are various ways by which pathogens utilize host
cell lipids. In the next section we will discuss which lipids are
known to be acquired by pathogens via interactions with a host
cell and describe the mechanisms involved.
8.2. Lipid acquisition by extracellular pathogens

Extracellular pathogens often reside in the host’s nutrient-rich
body fluids. Trypanosoma brucei acquires lysophosphatidylcholine
from plasma pools. Lysophospholipids are more soluble in aqueous
solution when compared to di-acylated phospholipids and are
more readily imported by the parasite. After their uptake, two lyso-
phosphatidylcholine molecules are then used for the generation of
one molecule of phosphatidylcholine by 3 consecutive enzymatic
steps involving a lyso-phospholipase A1, an acyl-CoA ligase and a
lysophosphatidylcholine:acyl-CoA acyltransferase [439,440].

T. brucei also incorporates host cholesterol from plasma into its
membranes. Cholesterol is not water soluble, but in this case T.
brucei selective absorbs LDL particles from the plasma by recep-
tor-mediated endocytosis [441,442] and acquires cholesterol from
these particles. Trichomonas vaginalis and Schistosoma mansoni also
internalize LDL particles for the acquisition of essential host lipids
[180,181,443]. The endocytic uptake by T. vaginalis is mediated by
a receptor for apolipoprotein CIII.

Extracellular pathogens acquire lipids from other body fluids as
well. For example, P. aeruginosa acquires lipids from lung surfac-
tant [444] and Salmonella ssp. might utilize phospholipids from
intestinal mucus [445], although this has not been confirmed
in vivo. Finally, extracellular pathogens can obtain lipids from the
extracellular leaflet of the plasma membrane, as has been shown
for Helicobacter pylori, which acquires cholesterol from lipid rafts
in the plasma membrane [221].
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8.3. Lipid acquisition inside a host cell via the pathogen vacuole

Many pathogens reside within membrane-enclosed vacuoles
and determine the properties of these structures to avoid host
cell-mediated degradation. The vacuolar membrane is the barrier
between host and pathogen, and can at the same time function
as source of lipids to the pathogen. Indeed, several host cell-de-
rived lipids accumulate in the membrane of pathogen vacuoles.
Cholesterol accumulates in the vacuoles of e.g. Coxiella [446], Sal-
monella [204], Chlamydia [447], T. gondii [448–450], and M. tubercu-
losis [212]. Sphingomyelin accumulates in Chlamydia inclusions
[451] and T. gondii vacuoles [452]. Diacylglycerol and the phospho-
lipids PI and PC accumulate in Chlamydia inclusions [158,163]. T.
gondii also preferentially recruits PC over other phospholipids to
its parasitophorous vacuole [453]. How are these lipids delivered
to the vacuole? In the case of Chlamydia, the observation that host
transmembrane proteins are not delivered to the vacuole has
intriguing implications for the mechanisms of transport [454].
Only for a few pathogens, including Chlamydia and T. gondii, the
molecular mechanisms of lipid transport to the pathogen vacuole
have been described in some detail. These pathogens will be dis-
cussed in some more detail, with evidence from other pathogens
added as additional examples.

8.4. Lipid acquisition via vesicular trafficking to the pathogen vacuole

Chlamydia intercepts exocytic vesicles from the secretory path-
way to acquire host cell lipid nutrients. In an elegant series of
experiments, the group of Hackstadt provided evidence for the
diversion of Golgi-derived vesicles, en route to the plasma mem-
brane, to the pathogen vacuole (Fig. 5) (reviewed in [455]). The
transport of both sphingomyelin [451] and cholesterol [447] was
shown to be Brefeldin A-sensitive, suggesting a Golgi origin of
these vesicles. In contrast, Golgi-derived glycoproteins en route
to the plasma membrane were not intercepted by the pathogen
[456]. These results indicate that only a subfraction of vesicles is
targeted for delivery to the pathogen vacuole. Indeed, recent evi-
dence suggests that Chlamydia preferentially intercepts basolater-
ally-directed sphingomyelin-containing exocytic vesicles [457].
Whether the intercepted vesicles represent bona fide exocytic ves-
icles derived from the Golgi complex remain to be established, as it
cannot be excluded that Chlamydia induces an alternative or mod-
ified exocytic pathway from the Golgi to the plasma membrane.
Recently, it was shown that Chlamydia trachomatis causes fragmen-
tation of the Golgi complex and the generation of Golgi ministacks
surrounding the bacterial inclusion [458]. This process is mediated
by bacteria-induced proteolytic cleavage of the Golgi matrix pro-
tein Golgin-84. This Golgi fragmentation is involved in lipid acqui-
sition, as inhibition of the cleavage of Golgin-84 also inhibited the
transport of lipids to the pathogen vacuole. These observations
open the possibility that lipid transport is not only mediated by
exocytic vesicles, but also by Golgi fragments (Fig. 5). T. gondii also
induces Golgi fragmentation in the host cell, but in this case, the
Golgi fragments seem dispensable for parasite invasion and repli-
cation [459]. It will interesting to determine whether the lipids
from these Golgi fragments are transported by fusion of the Golgi
fragments with the vacuole or by the generation of contact sites
between the Golgi fragments and the bacterial vacuole (see also
next Section 8.5). The Golgi fragments generated by knockdown
of Golgin-84 are different from the Golgi fragments caused by Bre-
feldin A. First, in the presence of Brefeldin A, de novo synthesized
sphingomyelin and cholesterol from the exocytic pathway are no
longer delivered to the Chlamydia vacuole [447,451]. Second,
whereas Golgin-84-induced Golgi fragmentation enhances bacte-
rial replication [458], Brefeldin A does not affect bacterial multipli-
cation [447,460]. The ineffectiveness of Brefeldin A on bacterial
multiplication indicates that alternative pathways must be avail-
able to provide Chlamydia with lipids. Indeed, recent evidence sug-
gests that Chlamydia can also recruit lipids from multivesicular
bodies that are rich in cholesterol and sphingomyelin [461,462]
(Fig. 5).

S. typhimurium is also known to redirect exocytic vesicles from
the Golgi complex toward the Salmonella-containing vacuole [463].
This process is dependent on effectors encoded by the Salmonella
pathogenicity island 2 (SPI-2). Similar to Chlamydia, the Salmonella
vacuole is also in close proximity to the Golgi complex. In contrast
to Chlamydia, however, Salmonella replication is affected by Brefel-
din A [464]. Legionella pneumophilla also intercepts vesicular traffic,
in this case from the endoplasmic reticulum exit sites, and the
pathogen-containing vacuole becomes surrounded by these vesi-
cles [465]. These vesicles attach and fuse with the Legionella-con-
taining vacuole, allowing the acquisition of ER-derived proteins.
Similar to Legionella, Brucella abortus interacts with the ER exit sites
and its replication is inhibited by blockage of Sar1 activity, which
disrupts the ER exit sites [466]. In the cases of Salmonella, Legionella
and Brucella, it remains to be established whether, as a result of
these specific interceptions of exocytic vesicles, the pathogens ac-
quire lipids.

8.5. Lipid acquisition via novel translocation mechanisms across
vacuolar membranes

Pathogen-containing vacuoles are often found in close proxim-
ity to other organelles (see also Fig. 3 and 5) such as the Golgi com-
plex (Chlamydia [458], Salmonella [464]), the ER (Brucella [466],
Legionella [465], T. gondii [467], and Plasmodium [468]), mitochon-
dria (T. gondii [467]), lipid droplets (Chlamydia [424], P. falciparum
[427], Trypanosoma cruzi [421]), multivesicular bodies (Chlamydia
[462]) and possibly recycling endosomes (Mycobacterium, [205]).
When the vacuole comes in close contact with another organelle,
the two membranes may form local contact sites as an efficient
means to transfer lipids from one membrane to the other
[469,470].

Alternative models for lipid delivery to the pathogen have been
suggested for cholesterol acquisition in the vacuole of T. gondii, as
studied in an elegant series of experiments by Coppens and
coworkers. The intracellular parasite T. gondii acquires cholesterol
from the host. T. gondii scavenges cholesterol from LDL that is taken
up by the host cell (Fig. 3) and does not utilize cholesterol synthe-
sized de novo by the host cell. During Toxoplasma infection, choles-
terol from LDL travels from the endosome to the parasitophorous
vacuole and is taken up by the parasite in a microtubule dependent
way [448,449]. The characteristics of cholesterol acquisition, such
as temperature, energy, and microtubule dependency, supported
a mechanism involving vesicular transport [449]. Recent evidence,
however, allowed Coppens et al . [471] to propose an unconven-
tional model that involves the inward budding of endosomal/lyso-
somal vesicles into the parasitophorous vacuole and subsequent
fission of the vacuolar membrane, generating double membrane-
layered vesicles in the vacuole.

A similar mechanism may apply to the appearance of lipid drop-
lets in the Chlamydia vacuole [425]. Lipid droplets were found
docked at the surface of the vacuole and can translocate from the
host cell cytoplasm into the vacuolar lumen [425]. How entire
organelles such as lipid droplets or vesicles derived from multive-
sicular bodies are translocated across the vacuolar membrane re-
mains to be determined. Under physiological conditions, inward
budding (i.e. into the lumen of an organelle) is so far only observed
for multivesicular bodies. The ESCRT machinery provides the driv-
ing force for this process [472]. Pathogens such as HIV hijack this
machinery to bud from the plasma membrane. It remains to be
established whether the inward budding into the parasitophorous
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vacuole also requires elements of the ESCRT machinery, or whether
specific virulence effectors, secreted by the pathogens, are suffi-
cient for this process. Clearly, the uptake of lipid droplets and
vesicles from multivesicular bodies is dependent on pathogen-
secreted factors [425,471]).
9. Conclusions and future perspectives

Lipids from host cells as well as from pathogens play important
roles in the ability of pathogens to escape from the immune sys-
tem. Pathogens make extensive use of the complexity of the host
cell lipidome and have evolved very sophisticated mechanisms to
use the diversity and complexity of the lipidome of their host to
their advance. This is best illustrated by Mycobacterium tuberculo-
sis, that uses a large portion of its coding capacity to the production
of enzymes involved in lipogenesis and lipolysis [473]. Pathogens
not only use lipids as building blocks or as a nutrient source, but
also to influence the host cell physiology, enabling their survival
and replication.

This review was written at the onset of the emergence of high-
throughput lipidomic techniques. Lipidomic analysis of host–path-
ogen interactions by mass spectrometry will provide a great oppor-
tunity for future research and can be expected to reveal the specific
roles of individual lipid species. This will greatly aid in the gener-
ation of more specific drugs against pathogens. An example of drug
development that interferes with lipid metabolism is the statins.
Statins have been reported to inhibit the replication of various
pathogens in host cells, including viruses [29,474–483], bacteria
[484–489] and parasites [490–493]. Clinical studies have been car-
ried out concerning the use of statins for the management of
septic patients [494]. Statins are inhibitors of 3-hydroxy-3-methyl-
glutaryl coenzyme A reductase and reduce the biosynthesis of
cholesterol, but also that of farnesylpyrophosphate and geranyl-
geranylpyrophosphate. The latter two compounds serve as lipid
attachments for a post-translational modification, termed prenyla-
tion, of a great number of regulatory proteins in eukaryotes, among
which small GTP-binding proteins. These GTP-binding proteins
have crucial roles in intracellular inflammatory signaling [495].
The inhibition by statins of the prenylation of regulatory proteins
in the eukaryotic cells is in most cases thought to cause the sup-
pressing effect of statins on the replication of the microorganisms.
In the case of the suppression of Salmonella replication in host cells
by statins [485], the inhibition of host cell prenylation of the bac-
terial effector protein SifA [496] may also play a role.

Another opportunity of lipidomic analysis is lipid profiling of
host–pathogen interactions. Lipid profiling may become an impor-
tant indicator for the metabolic condition of a cell or organism. The
specific depletion, presence or modulation of certain lipid species
may generate lipid fingerprints unique to infection by specific
pathogens, allowing the identification of biomarkers.

The study on host–pathogen interactions is a two-edged sword:
On the one hand, these studies advance our molecular understand-
ing of normal cellular processes, as they reveal novel intracellular
signaling and trafficking pathways/mechanisms. One such exam-
ple is the surprising capacity of lipid droplet organelles to pass bio-
logical membranes. Many novel and unanticipated findings are
expected to emerge from these studies, in combination with novel
methods of lipidomic analysis. On the other hand, these studies
generate knowledge about pathogen-mediated changes in host cell
metabolism. In this respect it is revealing that most pathogens
studied so far do not play a single trick with the host cell but simul-
taneously induce several changes in the host cell signaling and
trafficking mechanisms, both at the level of the proteome and of
the lipidome. In this review, we have described several pathogens,
such as T. gondii (Fig. 3), Mycobacteria (Fig. 4), Salmonella and
Chlamydia (Fig. 5), which appeared in multiple sections, illustrating
that they take full advantage of the complexity of the host cell
lipidome.

This may have important implications for drug development.
The goal to develop one drug for one pathogen in order to control
host cell infection may be too simplistic. For most pathogens, a
multidrug approach that aims at several pathogen-derived effector
molecules or their host cell targets may be more effective. More-
over, the pathogens described in this review change the host cell
lipidome in a unique way, characteristic for that particular patho-
gen. Thus lipidomic techniques will soon provide us with a detailed
view on changes of the host cell lipidome in response to pathogen
infection. Although lipidomic methods are technically more chal-
lenging than proteomic techniques, they may soon catch up and
bypass proteomic analyses. Most lipids exist across species, allow-
ing the application of lipidomic analyses to all species, indepen-
dently of the knowledge of the genomic organization. In the field
of host–pathogen interactions, with many pathogen genomes still
unknown, this is a great advantage. Thus, lipidomic analysis of
host–pathogens can be expected to contribute significantly to the
fight against infectious diseases.
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