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Abstract

The incorporation of microeconomics concepts into studies using self-administration procedures has provided critical insights
into the factors that influence consumption of a wide range of food and drug reinforcers. In particular, the fitting of demand curves
to consumption data provides a powerful analytic tool for computing objective metrics of behavior that can be compared across a
wide range of reward types in both human and animal experiments. The results of these analyses depend crucially on the
mathematical form used to fit the data. The most common choice is an exponential form proposed by Hursh and Silberberg,
which is widely used and has provided fundamental insights into relationships between cost and consumption, but it also has
some disadvantages. In this paper, we first briefly review the use of demand curves to quantify the motivating effects of food and
drugs, then we describe the current methodology and highlight some potential issues that arise in its application. To address these
issues, we propose a new mathematical framework for the analysis of consumption data, including a new functional form for the
demand curve. We show that this proposed form gives good fits to data for a range of different reinforcers and experimental
protocols, while allowing for straightforward calculation of key metrics of demand, including preferred consumption level,
maximum response, price at maximum response, and price elasticity of demand. We provide software implementing our entire
analysis pipeline, including data fits, data visualization, and the calculation of demand metrics.
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Introduction

Behavioral economics is a branch of microeconomic the-
ory and practice that aims to understand and quantify the
economic choices made by individuals (Ayers and
Collinge 2004; Kahneman 2011; Perloff 2016;
Cartwright 2018). In recent years, methods adapted from
behavioral economics have been fruitfully applied to im-
prove our understanding of the motivating effects of food
and drugs, both in humans and also in animals,
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particularly in the context of self-administration proce-
dures (Hursh 1993; Winger et al. 2002; Hursh et al.
2005; Winger et al. 2006; Hursh and Silberberg 2008;
Galuska et al. 2011; Bentzley et al. 2013; Kawa et al.
2016; Pantazis et al. 2019). Although animals do not have
an economy in the sense of markets, currency, credit, and
so forth, in many cases, they are willing to “pay” for
goods such as food or drugs by performing work. By
measuring the amount of work they are willing to do for
a given return, one can develop notions of “price” and
“demand” for goods, on which the tools of economics
can then be brought to bear.

The utility of economic concepts in the study of food and
drug motivation and addiction has been demonstrated exten-
sively since their introduction to the field in the 1990s (Hursh
1993; Hursh and Winger 1995; Bickel et al. 2000; Hursh and
Silberberg 2008). Foundational contributions by Hursh,
Winger, Bickel, and others have established behavioral eco-
nomics approaches as a fundamental tool for the quantitative
assessment of self-administration behavior. The approach has
been widely applied to evaluate motivation across different
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reinforcers and testing conditions, to study effects of pharma-
cological or behavioral interventions on demand, and to ad-
dress abuse liability and neurobehavioral underpinnings of
substance abuse.

The behavioral economics approach as currently applied
focuses on the study of the so-called demand curve, which
represents the consumption of food or drug as a function of
the price paid or work performed to obtain it. Such curves are
computed by fitting an appropriate mathematical form to raw
self-administration data, and aspects of the fitted curve pro-
vide summary statistics describing features such as the maxi-
mum effort exerted to obtain a given reinforcer and the price at
which that maximum effort occurs. Most previous work has
made use of an exponential form for the demand curve pro-
posed by Hursh and Silberberg (2008), but, as we discuss, this
form and the accompanying methodology have some short-
comings that create challenges for comparisons across studies
and for reproducibility of results.

In this paper, we present a new approach for fitting demand
data that addresses these shortcomings while providing easy
calculation of key metrics of preferred consumption, price
sensitivity, and motivation. We begin with a brief introduction
to the relevant concepts of economics followed by a descrip-
tion of the current methodology. We then describe our pro-
posed approach, outlining its main features and providing a
simple recipe for data analysis that gives straightforward
quantitative answers to questions relevant to the study of de-
mand, motivation, and addiction. We couch our discussion
primarily in the language of animal self-administration exper-
iments, but, in principle, the same analysis approaches could
be used for human consumption data without modification.

Economics of consumption

Consider a typical self-administration experiment in which an
animal is given the opportunity to perform work, such as lever
presses, in return for a desirable good. In most cases, the good
is either food or drug; for the purposes of illustration, let us say
it is a dose of drug. The “price” of the drug can be varied by
the experimenter, usually using one of two methods: either
they can vary the number of lever presses required to receive
a fixed dose or they can vary the dose received for a fixed
number of lever presses. Either way, one can define the price P
of the drug as the number of lever presses per unit of drug
received, measured for instance in milligrams. Thus:

Number of lever presses

Price, P = —— —.
rice Milligrams of drug received

(1)

(See Table 1 for a summary of the variables used in this
paper.)
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In the most straightforward version of the experiment, the
experimenter allows the animal to “buy” repeated doses of
drug at a set price and records the total amount of drug QO
consumed during a session of fixed length (anywhere from a
few minutes to hours, depending on the drug, the question at
hand, and so forth). The procedure can then be repeated for a
range of different prices to measure consumption Q as a func-
tion of price P.

The data produced by experiments of this kind have a char-
acteristic form. First, there is normally a clear preferred
amount of drug that a particular animal will consume in the
allowed time when price is not an issue. Even if the price is
reduced practically to zero so that drug is essentially free, the
animal will not consume an unlimited amount but will stop
when it reaches its preferred level of consumption.
Traditionally, this level is denoted Q.

Next, if we now raise the price slightly, so that drug is not
free but still very cheap, the animal will still be willing to do
the modest work required of it and will take its fill of drug,
meaning its consumption will still be Q. But if we raise the
price enough, the effort will start to become a factor and the
animal will consume less drug. And if the price is very large—
if the animal has to do a million lever presses, say, to receive a
dose of drug—then consumption must be zero, since it is
physically impossible to perform this many lever presses in
the allowed amount of time.

Thus, when plotted against price, we expect consumption
to look something like Fig. 1a. The data points in this figure
show actual consumption against price for a rat self-
administering cocaine.' Observe how the points are roughly
flat in the left part of the plot but fall off beyond a certain point,
denoted approximately by the vertical dashed line, as the price
rises. If one were to continue the measurements far enough to
the right of the plot, they would eventually reach zero when
the price becomes so high that the rat receives no drug at all.
Note that the graph is plotted on logarithmic scales, a standard
practice that allows us to capture the typically wide range of
values of both price and consumption.

The demand curve

Data of the kind shown in Fig. 1a can be summarized by fitting a
demand curve to it. An example is shown as the solid curve in
Fig.1a; it represents the expected consumption level O as a func-
tion of price P. The demand curve has become a standard tool in
the analysis of consumption data, capturing in a single graph the
willingness of an animal to work for a range of outcomes. The
utility of this approach has been demonstrated repeatedly and
demand curve analyses have provided essential information

! Previously unpublished data kindly provided by A. B. Kawa, L. Longyear,
and T. E. Robinson.
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Table 1  Summary of the variables used in the theory described here,
along with alternative notations for the same quantities used by other
authors

Variable Meaning Other
notations
P Price, work performed per unit of C
good received
0 Consumption
R Revenue, total work performed at a (0]
given price point
Qo Preferred consumption level when
price is negligible
Rinax Maximum work performed to obtain Omax
goods at any price
Prax Price at which maximum work is
~ performed
Prax Normalized P, equal to Qp Prax PnaxsnPrax
@ Fitted parameter in exponential model,
inversely proportional to Py,
& Normalized «, equal to a/Qy, also o

called “essential value,” inversely
proportional to P

about many aspects of consumption and drug-taking behavior in
both humans and animal models (see, for example, Hursh and
Silberberg (2008); Bentzley et al. (2013); Aston and Cassidy
(2019)). As we will see, the demand curve allows us to describe
motivation for drugs or food in a quantitative manner, placing
numbers on concepts that may otherwise be accessible only via
more qualitative approaches, and allowing comparisons across
different reinforcers (see Hursh and Winger (1995) and Hursh
et al. (2005) for reviews). To do this, we borrow some concepts
from economics, starting with the so-called elasticity of demand.

Elasticity of demand

Suppose that we know the demand curve for a particular
experiment—the solid line running through the data points
in Fig. 1a. (We will see shortly how to extract such curves
from data.) In general, the demand curve falls off as price
increases, since we expect an animal to consume less of a
good as the work required to obtain it increases (the so-
called law of demand). The price elasticity of demand E mea-
sures exactly how the demand curve falls off with increasing
price. For instance, if we double the amount of work a rat has
to do to receive a dose of drug, will the rat consume the same
amount of drug overall? Half as much? A quarter?

The elasticity is the ratio between the fraction the price goes
up by and the fraction the consumption goes down by. For
example, if price goes up by 10% and as a result consumption
falls by —20%, then the elasticity is £=—20/10 =—2. Note
that elasticity is normally a negative number, as here.

More generally, suppose that the price P increases by
an amount dP. Then the fraction that price increases by
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Fig. 1 a Data points: total consumption of self-administered cocaine by a
single male rat as a function of price P measured in lever presses per
milligram. Solid curve: the demand curve reconstructed by fitting to Eq.
(21). b The elasticity corresponding to the demand curve in a. Note that
the value of the elasticity is always negative and that the point where
elasticity equals —1 coincides with the point at which the revenue
(plotted in ¢) reaches its maximum. ¢ The “revenue” corresponding to
the demand curve in a, i.e., the total work performed at each price point.
The maximum revenue R, falls at price Py, which coincides with the
point at which elasticity is —1

is dP/P. If at the same time consumption O goes down
by dQ then the fractional decrease in consumption is dQ/
Q. The elasticity is the ratio of these two fractions (frac-
tional decrease in consumption over fractional increase in
price), which is

_dQ/Q _PdQ
E=arip ~gar &

The quantity dQ/dP is the derivative of consumption with
respect to price.” The derivative is the slope of a graph of O
against P. Because the graph is downward sloping in this case,
the slope is negative, and hence again E will be a negative
number.

2 Technically, the derivative is the limiting value of dQ/dP for infinitesimal dP
and dQ.
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Alternatively, we can note that

dlogQ ~ dQ/Q 3)
dlogP  drP/P

which is the same elasticity again, meaning that £ is also equal
to the slope of a graph of log O against log P. In other words, if
we plot the demand curve on log scales (as in Fig. 1a), then the
elasticity is the slope.

Figure 1 b shows the elasticity for the demand curve of Fig.
la. Note that, in general, elasticity is not a single number: it
varies with price. In the left part of Fig. 1a, for instance, the
demand curve is flat and hence the elasticity in Fig. 1b is close
to zero. But, in the right part, the demand curve slopes down-
ward quite steeply, meaning the elasticity is large and
negative.

The elasticity is widely used in (human) economics as a
measure of the price sensitivity of goods, including psychoac-
tive substances (Ayers and Collinge 2004; Perloff 2016). A
large (negative) elasticity of demand indicates a good that is
highly price sensitive: small increases in price will substan-
tially decrease demand. A small elasticity indicates a relatively
price-insensitive good. For instance, the elasticity of soft
drinks has been measured to be about — 3.8 at prevailing prices
(Ayers and Collinge 2004), indicating substantial price
sensitivity—if the price of a soft drink is increased, people
will simply stop drinking it. On the other hand, the elasticity
of cigarettes is estimated to be much smaller, around — 0.4
(Becker et al. 1994), indicating significantly lower price
sensitivity—people will continue to smoke even if the price
of cigarettes goes up.

These results suggest that elasticity could be used as a
measure of the reinforcing or motivating effects of drugs or
food, not only in humans but also in animal experiments. In
practice, however, it is rarely used in this way in the animal
literature. Instead, elasticity has primarily been of interest be-
cause of its role in estimating the maximum work that animals
perform, as we discuss in the next section. (There are claims in
the literature of using elasticity to quantify motivation, but in
most such cases no value of the elasticity is actually reported.
Instead, researchers typically report derived measures such as
the price at which maximum work is performed, as we discuss
in the “Parameters for the exponential demand curve”
section.)

Measuring motivation

One of the primary uses of demand curves in animals is for
quantifying responding for food or drug. How motivated are
animals to take a drug? Can we define a single number to
quantify motivation? How does motivation change over time?
How does it compare between different reinforcers? One ap-
proach is to look at the total amount of work an animal is

@ Springer

willing to perform over the course of an experimental session.
In the jargon of economics, this total amount of work is called
the revenue, denoted R, although in the present context, it may
be more useful to think of the R as standing for “responses,”
since it is simply equal to the number of lever presses or other
work the animal performs.’

We have seen that the price P is defined as the amount of
work that must be performed to receive one unit of the desired
good, such as the number of lever presses per milligram of
drug (see Eq. (1)). If we know the number of lever presses per
milligram and we also know the total number of milligrams
consumed Q, then the total number of lever presses—the rev-
enue, R—must be the product of the two:

R = PQ. (4)

Figure 1 ¢ shows a plot of the revenue corresponding to the
demand curve in Fig. 1a. Observe how the revenue starts at a
low value on the left of the plot in the regime where the animal
is required to perform only a little work to receive drug, rises
to a maximum around the turning point in the demand curve,
then falls off again as the price becomes too high and the
animal abandons trying to obtain drug. These observations
suggest two possible measures of the motivation potential of
food or drugs: (1) the maximum amount R,,,, of work—the
maximum revenue—the animal is willing to commit to
obtaining goods at any price,* or (2) the price Py at which
this maximum occurs. In Fig. 1c, R corresponds to the
height of the peak in revenue (the horizontal dashed line)
and P, corresponds to the price at which that peak occurs
(the vertical dashed line). Perhaps more intuitively, Py, cor-
responds roughly to the turning point in the demand curve,
Fig. la, at which the curve falls off from its initial plateau.
Thus, Py, measures the maximum price the animal will tol-
erate before it gives up and reduces its consumption.

To calculate P,,,,, we maximize Eq. (4) with respect to P
by differentiating thus:
dR  d(PO) do P dQ
EZTZQJ“PEZQ{HQW}:Q(HE) (5)
where E is the elasticity as before and we have used Eq. (2).
Setting Eq. (5) to zero, we then find that the maximum reve-
nue is achieved when the elasticity E is equal to — 1, and thus,
we can find P, by finding the price at which this occurs. We
give examples of this calculation in the “Maximum work per-
formed for the exponential demand curve” and “Elasticity and
measures of motivation” sections. Once we have determined
P..x, we can substitute the result back into Eq. (4) to find the
corresponding value of the revenue, Ry

3 The notation R for revenue is a standard one in economics, but, in the animal
literature, one sometimes sees revenue denoted O for “output.” See also
Table 1.

4 Sometimes also denoted Ornax
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Ease of calculating P,,,,x and R, is one of the reasons why
the demand curve and the elasticity are useful concepts. In
principle, one could imagine measuring P« and Rax
directly from the data by asking what the maximum number
of responses is at any price and at what price that maximum
falls. Ad hoc methods for doing this have been proposed, for
instance, by Hursh and Silberberg (2008) (see also Oleson
etal. (2011)). The results returned by these methods, however,
are limited to the specific values of price and responding mea-
sured in the experiment and so give only a general indication,
and they are moreover prone to measurement fluctuations and
hence can be unreliable. Calculations based on demand curves
are more robust and repeatable (Bentzley et al. 2013).

Both R, and P,,,, are reasonable measures of motivation,
but they are not equivalent. If two animals display the same
P.x for a given reinforcer but the first has higher Ry, it
implies that the first is willing to do more work than the sec-
ond for the same amount of consumption. Conversely, if they
display the same R, but the first has higher P, then the
first is willing to do the same amount of work for less con-
sumption. Certainly, these two measures could be correlated,
but they are not the same thing.

Riax has found use in human studies, where strong associa-
tions have been observed between its value and, for instance,
post-intervention alcohol consumption (MacKillop and Murphy
2007; MacKillop et al. 2009), although it should be noted that
there were also strong relationships in these studies among Py,
R,ax, and other demand metrics (see “Example calculations™ and
Fig. 6 for further discussion). Hursh and Winger (1995) have
argued that R, is essentially independent of the potency or
magnitude of a reinforcer, and for this reason, support its use
for comparisons between different reinforcers. The value of
P« by contrast, varies with potency and thus can be difficult
to compare across reinforcers, although one can by suitable nor-
malization create a potency-independent version of P, that
remedies this issue, as discussed in the “Normalized price and
comparisons between different reinforcers” section. At the same
time, R, can be difficult to measure in some situations, partic-
ularly when using progressive ratio schedules or when drugs
have sedative or stimulant effects on motor performance, where-
as P is relatively easy to measure (for additional discussion,
see Richardson and Roberts 1996). Thus, both P, and R, can
be useful and both are widely employed in the field, although
arguably P, .« is more common. Which to adopt in any individ-
ual situation will depend on the details of the experiment.

Normalized price and comparisons between different
reinforcers

In addition to their use in basic data analysis, demand curves
are used as a way to compare behavior across experiments on
different drugs or other reinforcers. Can we tell, for instance,

whether animals have greater motivation for food or drugs? Or
for one drug over another?

One way to perform such comparisons is to use the measure
Ri.x defined in the “Measuring motivation™ section above,
which is the maximum work animals are willing to perform
to obtain a good, at any price. Hursh and Winger (1995) argue
that R,.x is well suited to comparisons between different rein-
forcers and describe it as “a sensitive tool for direct comparison
and quantitative ordering of demand, both within and across the
drug classes (stimulant, sedative, and opioid).”

Conversely, the measure P, (also defined in “Measuring
motivation”), which is the price at which animals exert their
greatest effort to obtain goods, is not well suited to answering
such questions because it is not clear how one should compare
prices for different goods. Is a price of 10 lever presses per
milligram of cocaine higher or lower than 10 lever presses per
milligram of amphetamine? The answer depends on the potency
of the drugs in question: 1 mg might have a strong effect for one
drug but only a weak effect for another. To make a meaningful
comparison, we need to normalize the price by a suitable factor
that represents the typical magnitude of drug intake in milligrams
(or other suitable units). Fortunately, we have exactly such a
factor to hand, namely the preferred consumption level Q.

If we divide dose by O, we get a number that is independent
of potency: every dose is specified as a fraction of the preferred
consumption level for the same good. Thus, a suitable normal-
ized price, as first proposed by Hursh and Winger (1995), is
given by replacing the dose in Eq. (1) by dose divided by Qy:

Normalized price, P
Number
(Milligrams

of lever presses
of drug received)/Q, (6)

Number of lever presses

= prer — = 0,P.

< Milligrams of drug received 2

Combining this approach with our measure, P, We can
then write a potency-independent measure of motivation thus:

T)max - Q()Pmax (7)

This measure appears to work well in practice for comparing
demand across different reinforcers.

Equations (6) and (7) are not in precisely the form used else-
where. In much of the literature, for instance, the price is denoted
C instead of P and the normalized price P is denoted P This,
however, is merely a matter of notation. A more substantive
difference is that many experimenters avoid the use of Py, as
ameasure of motivation in favor of another parameter commonly
denoted c. We discuss « in detail below (“Maximum work per-
formed for the exponential demand curve”), where we show that
it is in fact essentially equivalent to Py, but has some disadvan-
tages that P, does not share.

@ Springer
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Fitting the demand curve

Data such as those shown in Fig. 1a already give us a rough
outline of the demand curve. But they also inevitably display
statistical fluctuations and moreover give us the consumption
at only a small set of discrete price points. We can reduce the
effects of fluctuations and interpolate between price points by
fitting a suitable curve through the data, recovering the entire
demand curve, as shown by the blue line in Fig. 1a. The fitting
procedure itself is straightforward—there are a range of soft-
ware packages that will do the job. A crucial question, how-
ever, is what mathematical form the fitted curve should take.
We need to specify a form that is flexible enough to fit the data
we see in experiments on a range of different consumables,
different animals, and different procedures, while at the same
time following the common-sense requirements that the curve
be flat at first, then drop off, and go to zero as price becomes
large.

The exponential demand curve

The most common mathematical form used for demand
curves in self-administration experiments of the kind consid-
ered here is the “exponential” form advanced by Hursh and
Silberberg (2008):

0 =0,V (8)

This equation relates the consumption Q to the price P
using three parameters. The first is Oy, which we have already
discussed—it is the preferred level of consumption when the
price is low enough to have no limiting effect on intake. The
other two parameters are k£ and «, which we look at more
closely in the following section.

Because demand curves are normally plotted on logarith-
mic scales, one often sees Eq. (8) expressed in terms of the
logarithm of Q. Taking the log of both sides of the equation we
find that

logQ = logQ, + k(e *"~1), (9)

where “log” denotes the natural logarithm (base ¢).” The two
forms, Egs. (8) and (9), are entirely equivalent and contain the
same information.

Parameters for the exponential demand curve

Though it has been widely employed, the demand curve de-
fined in Eq. (8) has some shortcomings. Specific issues in-
clude difficulty estimating or interpreting the parameters k

> Some authors have employed common logarithms (base 10) instead, in
which case some of the formulas and parameter values are modified, but the
scientific outcome is unchanged

@ Springer

and «, difficulty estimating the elasticity, and an unrealistic
nonzero value of consumption at large prices.

The parameter k and the limiting value of Q A disadvantage
of Eq. (8) is that it fails to meet one of our fundamental criteria
for a demand curve, that it go to zero as price becomes large.
As we have said, it is axiomatic that the curve should go to
zero: if the price of drug is a million lever presses per dose
then the animal is necessarily going to consume no drug. As P
goes to infinity, however, the form in Eq. (8) tends to the
limiting value Qpe *, which is always nonzero.

This conflict causes a number of problems. First, it is un-
desirable to fit a curve to data when we know the curve to have
a different shape from the data. Just as one should not fit a
straight line if one knows the data to follow a rounded form, so
one should not fit data that must go to zero with a form that
does not. This is, however, a somewhat theoretical objection.
A more practical issue arises when we attempt to estimate the
parameter k. Since k controls the value of consumption when
price becomes large, one should be able to determine k by
measuring this value. This, however, is not possible in the
present case, since as we have said there is no such value in
practice: consumption always goes to zero.

There are ways around this difficulty. One could for in-
stance estimate & using some other type of fitting procedure.
Hursh and Silberberg (2008) take a different route, avoiding
the problem by not fitting & to the data at all. Instead, they
choose its value themselves, writing that “the value of k is
generally set to a common constant across comparisons be-
cause it merely specifies the range of the data.” In related work
Bentzley et al. (2013) write that the value of & is “chosen based
on the maximum observed range of consumption.”
Specifically, they compute the range spanned by the observed
values of log Q for all sessions and set & equal to the largest
such range. Gilroy et al. (2019) suggest a slight variant of this
procedure, calculating the same maximum range but then
adding 0.5, to guard against the possibility that & “does not
reflect the full range of observed consumption values.”®

In practice, however, approaches such as these are
somewhat unsatisfactory because they determine & using
an ad hoc recipe rather than by fitting to the data. Such
recipes can result in different experimenters using different
values of /—and hence reaching different conclusions—
even when fitting to the same set of data points. Consider
Fig. 2, which shows the same cocaine self-administration
data that appears in Fig. la. The four curves in the figure
show the best fit of the exponential demand curve to these
data for four different values of k. The blue (solid) curve

® The value of k must also always be greater than the mathematical constant
e =2.718 for P, to be well defined (Gilroy et al. 2019). If k is smaller than
this then there is no point on the demand curve where elasticity is — 1 and
hence, there is no P,,x—see “Measuring motivation”.



Psychopharmacology (2020) 237:943-955

949

T

T

e L

g olf

= L

S i

g i

£ i == k=3

=]

Z i k=4

o} k=5
0.01 k=6

T T

| |

|
10 100 1000

Price (responses/mg)

Fig. 2 Best fits of the cocaine self-administration data from Fig. 1a to the
exponential demand curve of Eq. (9) for various choices of the parameter
k as indicated

shows the fit when k is chosen according to the prescrip-
tion of Bentzley et al. that & should be set to the largest
range spanned by log O over all sessions. Since we are
looking at only a single session in this case, k is simply
equal to the range of the data, which gives a value of about
4. (The exact value is 3.91, but we use 4 for simplicity.)

On the other hand, if we were examining these data as one
session out of many, it is likely that at least one other session
would have a larger range of log O, meaning that we would
have to use a larger value of k. The green and orange (dashed
and dot-dashed) curves in Fig. 2 show fits with k=5 and 6.
For comparison, we also show one fit with a smaller value of
k=3 (red, dot-dot-dashed).

The values of the parameters of the fit for each curve are
shown in Table 2. As we can see, the values span quite a wide
range. The value of O, varies from 0.319 to 0.420, for exam-
ple, an increase of 32%, and P, shows a similar increase of
38%. Also shown in the table is the quantity we call @, which
is described in “Maximum work performed for the exponen-
tial demand curve” and which is widely used as a measure of
motivation in the literature. The fitted values of this quantity
vary over a broad range from a low of 0.0047 to a high of

0.0149, an increase of 217%. The quantity Prax = OoPraxs
which we recommended in the “Normalized price and com-
parisons between different reinforcers” section as a measure of
motivation, fares better, varying from 37.5 to 43.6, an increase
of just 16%, but even this variation is large enough to inject
significant uncertainty into the results, given that it is pro-
voked solely by making different choices for the parameter £.

The parameter a The parameter « is also somewhat problem-
atic, although for different reasons. In principle, this parameter
is unexceptionable: it plays the role of an exponential constant
and can be estimated in straightforward fashion by fitting to

data such as those in Fig. 1a. The problem is that in much of
the literature «v is said to be a measure of elasticity and it has
been extensively treated as such (e.g., Koffarnus et al.
(2011); Bentzley et al. (2013); Lacy et al. (2019)). As
discussed in “Elasticity of demand”, elasticity is a well-
defined and useful concept in economics, but « is not a
measure of elasticity. Rather, « is a measure of the price at
which the animal performs maximum work, equivalent to
the quantity Pn.x discussed in “Measuring motivation”
above. This point is made clearly in the literature, but, at
the same time, misinterpretation of « is also common. For
example, Bentzley et al. (2013) state correctly that “« is an
inherently normalized parameter and equivalent to [nor-
malized P,,,], as these variables are inversely proportion-
al”, but also that “« is a measure of demand curve elastic-
ity.” To some extent, this may be a matter of semantics—
the scientific conclusions are largely unaffected—but, in
the interests of clarity, it is good to be precise about the
role of the variables.

A further issue with « is that its value is strongly influenced
by the choice of k. In the following sections, we examine the
elasticity for the exponential demand curve in detail and ex-
plain the role played by a.

Elasticity for the exponential demand curve

Another issue with the exponential demand curve arises when
we attempt to estimate the corresponding elasticity of demand.
The elasticity for Eq. (8) can be calculated by taking the de-
rivative of the logarithmic form in Eq. (9), which, as shown by
Bentzley et al. (2013), gives

E = —kaPe °F. (10)

Unfortunately, this value depends fundamentally on the
parameter k, whose value, as we have said, may be chosen
differently by different experimenters depending on the pre-
cise recipe they are using. To see an example of why this
matters, let us calculate the maximum value of the elasticity
E.x for given values of the parameters Qy, «, and k. To do
this, we differentiate Eq. (10) with respect to P and set the
result to zero giving:

—kae " 4+ ka*Pef = 0. (11)
Canceling a number of factors and rearranging we find that

aP =1, and, substituting back into Eq. (10), we find the max-
imum value of the elasticity to be

(12)

where e=2.718...is the base of the natural logarithm.
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Table 2 Values of the parameters O and « for the four fitted curves in
Fig. 2, each for a different value of & as indicated, along with the

calculated values of the quantities &, Paxs Pmax> and Riax

k Qo « a Prax jimax Riax
3 0.319 0.000476 0.01491 130.2 41.5 104
4 0400 0.00379 0.00948 94.3 37.7 11.3
5 0420 0.00267 0.00636 96.9 40.7 13.0
6 0390 0.00183 0.00469 111.8 43.6 14.4

Thus, the maximal value of the elasticity depends only on &
(and the mathematical constant e). Since k is determined using
an ad hoc recipe that can give different answers for the same
data depending on experimental context, this means that the
value of E,,, is largely arbitrary.

The net result is that, in most cases, values of the elasticity
determined from data fits to Eq. (8) (or Eq. (9)) are not infor-
mative. This may be one reason why elasticity has not found
wide use in the analysis of self-administration data.

Maximum work performed for the exponential
demand curve

We have seen that the price Py, at which maximum work is
performed falls at the point where the elasticity £ is equal to
— 1 (“Measuring motivation” and Eq. (5)). For the exponential
demand curve, the elasticity is given by Eq. (10) and hence,
maximum work occurs when

—kaPe ' = -1, (13)
which can be solved to give

W(-1/k
Prax =~ (a/)’ (14)

where W is the so-called Lambert W-function (Olver et al.
2010; Gilroy et al. 2019).” Once we have the value of Py,
it is straightforward to compute the corresponding value of
Riax by substituting into Egs. (4) and (8), which gives

—aPmax —
Rmax - maxQOek(e b

__ W(_l/k) Qoek[ew(fl/k),l] )
«Q

(15)

In current approaches to data analysis, the standard proce-
dure is to hold the value of k constant over different sessions
and different animals, meaning that W(— 1/k) is also constant,
so that Eq. (14) implies that P, is inversely proportional to o
and hence, as discussed in the “Parameters for the exponential

7 Some authors have used common (base 10) logarithms instead of natural
(base e) logarithms, in which case the solution takes a slightly different form—
see Gilroy et al. (2019).
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demand curve” section, the two quantities measure the same

thing, a point that has been made clearly by, for example,

Bentzley et al. (2013). The detailed relationship between «

and P« however still depends on the value of & since Eq.

(14) can be rearranged to read

0o YCEVE (16)
Pmax

This means that even when working with identical data,
from animals with the same P,,,,y, different experimenters will
arrive at different results for « if they use different values for £.
Under the circumstances, therefore, we do not recommend
using the value of « as a measure of motivation, given that
P . itself contains the same information but is not directly
dependent on £.

Some writers have argued in favor of using a because for
some formulations of the demand curve it automatically in-
corporates a normalization by a factor of Oy of the kind
discussed in “Normalized price and comparisons between dif-
ferent reinforcers”. One can rewrite the demand curve of Eq.
(9) thus:

10gQ = 10gQ0 + k(e’(ﬂ/Qo)QoP_l)

= log0Q, + k <e;Q0P1> , (17)
where
~ (6%
a=—. 18
O (18)

Equation (17) is exactly equivalent to the original form of
Eq. (9) but expresses the consumption as a function of the
normalized price QP . This is the form in which the exponen-
tial demand curve is mostly commonly written,® and it in-
volves a change in the definition of o according to Eq. (18).
Combining Eq. (18) with Eq. (16), we find that
. W(-1/k) W(-1/k)

T 0P P

(19)

where we have used the definition of P,y from Eq. (6).
In other words, & is inversely proportional to the normal-

ized measure Pp,x and hence measures the same thing. Like

P it 1s also independent of potency. Because of this, a has
been used widely as a measure of motivation and is in fact
probably the most commonly used such measure. It is some-
times referred to as the “essential value,” and often denoted
simply «, though we prefer the notation « to avoid confusion
with the original v parameter of Eq. (8). While & is an

8 The price in this context is often written as C rather than P. This, however, is
merely a notational choice.
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appropriate normalized measure of motivation, however, it
still suffers from the same shortcoming as the unnormalized
«, that it depends on the choice of £, via Eq. (19). We saw an
example of this issue in “Parameters for the exponential de-
mand curve” (see Table 2). A further reason to avoid the use of
@ is that it is specific to the exponential demand curve form.

The value of T’max can be calculated for any demand curve, but
&, by its nature as a parameter of the exponential form, can
only be calculated if one uses that form.

An alternative form for the demand curve

In the “Fitting the demand curve” section, we examined the
use of fitted demand curves as a way of quantifying the vari-
ation of consumption with price and discussed the widely used
exponential form, Eq. (8), which has played an important role
in the field but has some disadvantages—in particular that it
does not go to zero as price becomes large and that it depends
crucially on the parameter £ which is not determined by a fit to
the data. Here, we propose an alternative form for the demand
curve which behaves in many ways like the exponential form
but eliminates these shortcomings. The form we propose is
also mathematically simpler, making solution of the resulting
equations more straightforward. In the accompanying mate-
rials, we provide a software program that calculates demand
curves and parameters such as Py, and R,,,,, from experimen-
tal data using our proposed form, as well as giving visualiza-
tions of the demand and revenue curves and best-fit parameter
values.” Instructions for using the program are given in the
Supplementary Information.

Form of the proposed demand curve and parameters

The functional form we propose for the demand curve is

P\?®
'+ (5)

The parameters, depicted in Fig. 3, are as follows:

QOy: the preferred consumption level, as previously, i.e., the
height of the plateau in the curve.

Py: the price at the point where the curve starts to fall off,
where the work is no longer worth the outcome.

a: the slope of the right-hand part of the curve where it falls
off.

b: a parameter controlling the width of the “knee” or tran-
sition region between the left and right parts of the curve.

Figure 4 shows the effect of varying each of these param-
eters on the shape of the demand curve.

-a/b

0=0, (20)

? See http://umich.edu/~mejn/demandcurve for details.

This form for the demand curve is flexible enough to fit a
variety of different data types (see also Figs. 5 and 7). It has
three basic regions, one flat, one curved, and one downward
sloping, and hence it can fit data with any of these forms, or a
combination of all three.'”

Since it is common to plot the demand curve on logarithmic
scales, one can also rewrite Eq. (20) in terms of the log of O

thus:
P\?
1 — .
- (Po)

The two forms, Egs. (20) and (21), are entirely equivalent
and contain the same information. One can employ either
natural (base e) or common (base 10) logarithms—the results
are identical either way.

a
logQ = logQy~ log (21)

Elasticity and measures of motivation

We can repeat the analyses of “Elasticity for the exponential
demand curve” and “Maximum work performed for the expo-
nential demand curve” for this new demand curve. The elas-
ticity, £, can be computed from the logarithmic derivative, Eq.
(3), which gives

a

E=——" ",
1+ (Po/P)

(22)

and the maximal value of E, the equivalent of Eq. (12), occurs
when P goes to infinity, giving simply

Emax = —a. (23)

Thus the elasticity in this case bears a very simple relation-
ship to the values of the parameters.

The value of P, is given, as previously, by the point at
which the elasticity equals — 1, i.e., by

v egrt .

Solving for P we find that

Py

Prox = ——7
(a_l)l/b

(25)

This is a more convenient form than Eq. (14), which in-
volves the special function Wand requires a complex iterative
procedure to calculate P, (Hursh and Silberberg 2008).
Equation (25) by contrast can be evaluated using only a simple
calculator or spreadsheet.

19 Note that, since Eq. (20) has four parameters, it should not be fit to data with
less than four price points, although such data are rare in practical situations.
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Fig. 3 Example of the demand curve form of Eq. (20), along with an
indication of the role played by each of the parameters Qy, Py, a, and b

As discussed in “Normalized price and comparisons
between different reinforcers,” it is useful when compar-
ing values for different goods to normalize the value of
P to give a potency- or magnitude-independent mea-
sure of motivation. The relevant measure in the present
case is

PoQy

Pmax - QOPmax - (a—l)l/b .

(26)

Given the value of P,,,, we can compute the correspond-
ing value of R, by substituting into Egs. (4) and (20) to get

(a-1)']"
Renax = P00, —] . (27)

aa

Combining Egs. (26) and (27), we can also derive a direct
relation between 1~3max and R, thus:

S Varying 0, Varying P,
= A4 ]

R

2

g

5 .

=

5]

O

Varying a Varying b

0.1

0.01

1 I

1 1
1 10 100 1 10 100

1 I

Price (responses/mg)

Fig.5 Cocaine consumption as a function of price in four individual male
rats. The blue lines show the best fit of the proposed demand curve form,
Eq. 21)

N a—1 a/b
Rimax = Prmax (T) . (28)

The quantity in brackets is never greater than 1, meaning
that we always have R, < f’max, with the equality occurring
in the limit where 5 becomes large.'" In practice, b can quite
often take values as large as 100 or more, in which case we
expect R,.x and 1’~’maX to be essentially equal. These observa-
tions shed some light on the question raised in “Measuring
motivation” of the extent to which R,,,,, and Poax Measure the
same thing: the answer appears to be that in some cases (but
not all) they do and that overall we expect them to be corre-
lated. We test this conclusion against data in “Example
calculations.”

We do not recommend using the values of the fitted param-
eters Py, a, and b themselves as measures of motivation or
behavior. When using the exponential form of Eq. (8) (or
Eq. (9)), it is common practice, as described in “Maximum
work performed for the exponential demand curve,” to use the
fitted value of the parameter & (also denoted « elsewhere) as
an indicator of reinforcement or motivation, but we do not
recommend using the parameters of Eq. (20) in this way since
they do not have a clear behavioral interpretation (with the
exception of Qy, which is certainly informative). Instead, we

recommend using the derived quantities R, and Igmax.

T T T T N T T T T

Price P
Fig. 4 The effect of varying each of the four parameters in Eq. (20)
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" The same result also holds for the exponential demand curve. Equation (15)
can be rewritten as Roax = Prmaxe© "™ 71, but 5™ 1) < | always, so
this implies that R, < Prax-
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Table 3
calculated values of the quantities Py ax, Pmax,> and Rypax

Values of Oy for the four fitted curves in Fig. 5 along with the

QO Pmax Pmax Rm'dx
a 3.52 17.3 60.8 41.6
b 3.74 27.0 100.8 33.6
c 2.65 40.3 107.1 85.0
d 4.84 19.0 91.7 15.0

Example calculations

Figure 5 shows example fits'? of the demand curve of Eq. (21)
to data from four different male rats self-administering cocaine
under conditions in which each lever press results in an infu-
sion of drug (FR1) and price is varied within session by sys-
tematically reducing the dose of drug from 0.72 to
0.004 mg/kg."* As the figure shows, there are a range of dif-
ferent qualitative forms in the data, some with a clear plateau
followed by a drop-off, in the classic shape of Fig. 1a, others
with a gentler curved form with less of a clear “knee.”
Nonetheless, the proposed form for the demand curve fits all
of the data sets well.

After performing the fits, one can use the fitted parameter

values to compute measures such as Py, Pmax, and Ry« The
results are shown in Table 3.

Note that there is wide variation in the values of both ?’max
and R,.x and that large values of one do not always corre-
spond to large values of the other. As discussed in “Elasticity

and measures of motivation,” we expect Ryax and Py to be

correlated, and they must satisfy the constraint R, < Proaxs
but they are separate measures and can differ substantially.
To shed more light on the relationship between R, and

Prax, we show in Fig. 6 a plot of the values of R, against

those of INDmaX for cocaine self-administration by nine different
male rats over ten sessions each, with one point for each ses-
sion for a total of 86 points (with four sessions omitted for
reasons given below). The plot shows substantial correlation
between the two measures (R>=0.716) and the fact that R,y

< P is clear in that all points lie on or below the diagonal

dashed line at which R,,,x = f’max. These findings are consis-
tent with previous work examining relationships between

R« and INDmaX (MacKillop and Murphy 2007; MacKillop
et al. 2009).

12 We perform our fits using a least-squares best fit of Eq. (21) to the logarithm
of consumption, discarding data points with zero consumption, since one
cannot take the log of zero. It is also possible to fit consumption data directly
to Eq. (20) and it is a straightforward modification of the approach to do so, but
in practice we find this gives visually poorer fits. See also Koffarnus et al.
(2011).

13 Previously unpublished data kindly provided by C. Carr and T. E.
Robinson.

The results shown in Fig. 6 omit data from four sessions,
one for which the demand curve had no point with elasticity
— 1 (and hence no P,,,y) and three that returned values of INJmax
that were extreme outliers, one having a value of almost 500.
If these three outliers are included in the fit then most of the
correlation disappears (R*=0.155). It is worth asking there-

fore what causes these outliers. Recall that }N’max = Qo Prax

(Eq. (25)), so that large Pinax values can be generated either by
large Py, o1 by large Q). We see both behaviors in the present
case: one of our three outliers is caused by a large value of Q,,
which appears to be due to the fact that the measured price
range failed to span the “knee” in the demand curve, but the
other two outliers are caused by large values of Pp,.. This
suggests that Prnax may be a (slightly) less reliable measure
of motivation than R,,,, which shows no extreme outliers, at
least in the data we have examined. This issue would be an
appropriate one for further investigation

Finally, in Fig. 7, we show fits of our proposed demand
curve form to data from a range of published studies on con-
sumption of drugs of different drug classes by rats, monkeys,
and, in one case, humans. The new form fits this diverse se-
lection of data well, even when the data do not follow the
traditional demand curve form as price increases, as in Fig.
7d for example. It is important to note that in such cases the fit
will still return values for Ppax, Rimax, and other quantities but
that they may not be meaningful because the price range

150 |- -

100

Rmax

50

0 50 100 150

Pmax

Fig. 6 Plot of the values of R, against ;’max for demand curves for
cocaine consumption by nine male rats over 86 separate sessions. The
values of the two quantities are substantially correlated (R*=0.716) and
clearly obey the rule R, < Prax derived at the end of “Elasticity and
measures of motivation.” (The dashed line shows the point at which R,
= f’max, and all points lie on or below this line.) Three extreme outliers on
the horizontal axis have been omitted from the plot and from the fit, as
discussed in the text
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Fig.7 Fits of the demand curve of Eq. (21) to data on self-administration
of four different drugs. a Cocaine in a male rat from Bentzley et al. (2013)
(Fig. 3). b Ketamine in male monkeys from Winger et al. (2002) (Fig. 3,
upper panel). ¢ Nicotine in humans from Giordano etal. (2001) (Fig. 1). d
Remifentanil in male monkeys from Winger et al. (2006) (Table 1)

examined does not cover the plateau and/or knee of the de-
mand curve and hence does not provide a good estimate of Q,
or P,.. For this reason, it is important to inspect all fits visu-
ally, not just for goodness of fit to the data, but also to verify
that the behavior of interest is actually captured by the range of
prices probed in the experiment.

Conclusions

The pioneering work of those who brought microeconomics
concepts to the study of food and drug self-administration
provides a rich foundation on which to build. In this paper,
we have discussed in detail the use of demand curves and
elasticity to quantify the motivating effects of food and drugs
in behavioral experiments. We have highlighted a number of
issues with current methodology in this area and proposed a
new mathematical framework for the analysis of consumption
data that remedies these issues. This framework incorporates a
proposed mathematical form for the demand curve that is
flexible enough to fit data for many different reinforcers and
experimental protocols and provides established metrics of
demand and the formulas needed to calculate them from fits
to data. The equations require only basic algebra for their
implementation, although we also provide software
implementing our entire analysis pipeline, including data fits,
plotting, and the calculation of summary statistics (see
Supplementary Information). Although our primary focus
has been on the analysis of data from animal experiments,
the proposed approach is also suitable for human data. The

@ Springer

use of individual metrics and their interpretation will certainly
vary from one context to another and will always be at the
discretion of the experimenter, but the general framework has
wide applicability across many experimental settings.
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