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The translational landscape of ground state
pluripotency
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Nahum Sonenberg5,8✉ & Hendrik G. Stunnenberg 1,6,8✉

Translational control plays a central role in regulation of gene expression and can lead to

significant divergence between mRNA- and protein-abundance. Here, we used genome-wide

approaches combined with time-course analysis to measure the mRNA-abundance, mRNA-

translation rate and protein expression during the transition of naïve-to-primed mouse

embryonic stem cells (ESCs). We find that the ground state ESCs cultured with GSK3-, MEK-

inhibitors and LIF (2iL) display higher ribosome density on a selective set of mRNAs. This set

of mRNAs undergo strong translational buffering to maintain stable protein expression levels

in 2iL-ESCs. Importantly, we show that the global alteration of cellular proteome during the

transition of naïve-to-primed pluripotency is largely accompanied by transcriptional rewiring.

Thus, we provide a comprehensive and detailed overview of the global changes in gene

expression in different states of ESCs and dissect the relative contributions of mRNA-

transcription, translation and regulation of protein stability in controlling protein abundance.
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A lthough the central dogma of molecular biology (DNA↔
RNA→ protein) has been described decades ago, the rela-
tive contributions of major layers of post-transcriptional

gene regulation (i.e. mRNA turnover, translational, and post-
translational control) in many biological processes remain largely
unknown. Several lines of evidence demonstrated that post-
transcriptional gene regulation could result in significant diver-
gence between mRNA and protein abundances1–5. For instance,
quantitative measurements of RNA and protein levels revealed that
for ~60% of genes, changes in mRNA abundance cannot accurately
predict the variations in protein abundance in mammalian cells6.
Consistent with this notion, parallel measurements of mRNA
expression and protein levels as well as mRNA and protein turnover
suggest the major impact of translational control in regulating
the proteome landscape6–8. In this regard, translational control
was postulated to enable prompt response to internal and external
stimuli before the less rapid transcriptional reprogramming could
take place8–10.

Translational regulation plays a particularly important role
during early embryonic development; during the time window
of near complete shutdown of transcription after fertilization,
mRNA translation serves as the main layer of gene regulation by
which the maternally stored mRNAs are translated in a highly
spatiotemporally-controlled manner11. Furthermore, main-
tenance of the undifferentiated status in both adult and
embryonic stem cells (ESCs) is associated with low mRNA
translation rates and restricted protein synthesis12–15. Accord-
ingly, the process of differentiation coincides with a marked
increase in general mRNA translation rate. For example, dif-
ferentiation of ESCs to embryoid bodies results in an increased
[35S]methionine incorporation by ∼2-fold and polysome density
by ∼60%12. In addition to the global changes, selective trans-
lational control of specific mRNAs also plays a critical role in
ESCs. For instance, tight translational control of the Yy2 mRNA
is critical for maintenance of the mouse ESC self-renewal16.
Similarly, translational repression of the mitogen-activated
protein kinase kinase kinase 3 (Map3k3) and son of sevenless
homolog 1 (Sos1) is required for blocking the differentiation of
mouse ESCs17.

ESCs, therefore, rely on tight regulation of mRNA translation
in order to maintain their self-renewal and pluripotency. The
current knowledge on the translational control in mouse ESCs,
however, is mainly based on conventional ESCs cultured in
serum/LIF (SL) medium10,12,16,17. These undifferentiated cells are
metastable and show features of both pre-implantation and early
post-implantation epiblast (reviewed in ref. 18). In addition to SL,
ESCs can also be maintained in serum-free medium supple-
mented with LIF and two small-molecule inhibitors (2iL) which
include the GSK3 inhibitor CHIR99021 (CH) and the MEK-
inhibitor PD0325901 (PD)19,20. 2iL ESCs display major differ-
ences with SL cells that concern, among others, different tran-
scriptional profiles, DNA methylation patterns, cell proliferation,
and homogeneous expression of pluripotency genes18,20–23.
Accordingly, 2iL ESCs are less committed cells, better resembling
the pre-implantation epiblast, and are often referred to as the
ground state pluripotent cells19. In contrast to 2iL and SL ESCs,
pluripotent cells can be also derived from post-implantation
epiblast (e.g. Epiblast stem cells; EpiSCs, or Epiblast like stem
cells; EpiLSCs hereafter referred to as EPI). These cells are
lineage-primed and strongly downregulate the pre-implantation
transcription factors (TFs), show high expression of post-
implantation markers, and do not contribute to chimera upon
blastocyst complementation (reviewed in ref. 24).

The transition between different states of pluripotency provides
a versatile model for the study of stem cell biology and is of great
importance to elucidate early embryonic development. Previous

studies investigated the gene expression program at transcrip-
tional and post-transcriptional levels in ESCs and early mam-
malian development10,25–28. These observations indicate the
importance of machineries that control mRNA translation and
decay in ESCs. These studies, however, mainly focused on single
aspects of regulation of mRNA stability and/or translational
control (e.g. microRNA-induced repression) in conventionally
maintained SL-ESC. The concomitant regulation of tran-
scriptome and translatome, and its global impact on the cellular
proteome remains less understood in ground state 2iL-ESCs.
Here we employed several genome-wide approaches combined
with time-course analysis to measure a detailed and dynamic view
of the mRNA abundance, mRNA translation, and protein
expression during the transition between different states of ESCs.
This multifaceted analysis provides insights into mechanisms
controlling the ground-state pluripotency and sheds light on the
relative contributions of transcription, mRNA translation, and
protein stability in controlling the final protein abundance.

Results
Measuring mRNA translation in different states of ESCs. We
sought to study the potential differences in mRNA translation
between the ground state 2iL and the more committed SL and
EPI states (Fig. 1a). We employed polysome profiling (fractio-
nation of mRNAs based on the number of translating ribosomes,
using sucrose-density gradients) and found a considerable
increase in the association of cellular mRNAs with polysomes in
2iL when compared to SL and this increase was also observed,
although to a lesser extent, when compared to EPI (1.5- and 1.2-
fold increase in 2iL when compared to SL and EPI, respectively,
Fig. 1b). Given the low translation rate previously reported for the
undifferentiated ESCs12 and the consensus that 2iL represents a
less committed state when compared to SL and EPI, the increased
polysome density in 2iL was unexpected. We therefore sought to
identify the mRNAs that undergo differential translation in dif-
ferent states of pluripotency.

We measured the genome-wide mRNA translation rate by
ribosome profiling29 and in parallel the changes in mRNA
expression by RNA-seq in 2iL, SL, and EPI. Ribosome profiling is
a next-generation sequencing (NGS)-based method that accu-
rately measures the abundance of ribosome footprints (RFPs;
mRNA fragments protected from RNase by the translating
ribosomes). The abundance of RFPs for each mRNA serves as a
sensitive and quantitative surrogate of its translation efficiency
(TE; normalized RFP counts/normalized mRNA counts) and
represents a genome-wide measurement of the translation
landscape. This technique also enables the acquisition of
positional information with nucleotide precision regarding the
association of ribosomes with a particular transcript. We collected
biological duplicates per cell condition, while parallel cell lysates
were used for ribosome profiling or for rRNA-depleted total
RNA-seq library preparation. We verified the high quality of
generated data using several parameters: (a) the data were highly
reproducible among the biological replicates (r > 0.93 for RFP and
r > 0.95 for RNA, Supplementary Fig. 1a, b, Supplementary
Data 1), (b) the RFPs define the known coding sequences (CDS)
with 12-nt offsets upstream of the translation start codons (which
reflects the known distance from the 5′-end of RFPs to the known
P-site codons), (c) a high coverage of RFP reads within coding
sequence but low coverage at untranslated regions (UTRs), which
is specific for RFP but not RNA-seq libraries (Supplementary
Fig 1c–e). In total, we detected high-confidence RFPs in 6487
mRNAs in 2iL, SL, or EPI (with library size normalized RFP reads
>25 and RNA-seq reads >50 in both replicates). Furthermore,
comparing the gene expression profile of 2iL, SL, and EPI ESCs
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and the early developing mouse embryo30 indicated that 2iL-
specifc genes are mainly enriched in pre-implantation embryo
whereas the EPI-specific genes are mainly enriched in post-
implantation epiblast. SL-specific genes were enriched in both
pre- and post-implantation stage embryo reflecting the “meta-
stable” state of SL-ESCs with features resembling both naive and
primed state pluripotency18,24 (Supplementary Fig. 2).

We next computed the TE in different conditions and
identified a set of mRNAs that show differential TE in SL or
EPI when compared to 2iL (FDR < 0.1, fold-change > 1.5, n= 912
genes, Fig. 1c). We grouped the mRNAs that showed differential
TE in SL (SL genes; n= 482), EPI (EPI genes; n= 566), and both
SL and EPI (common genes; n= 136) when compared to 2iL
(Fig. 1d). In all the three groups, the majority of genes showed
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Fig. 1 The translational landscape of different states of pluripotency. a Schematic representation of the different ES states employed in this study. Scale
bar, 100 µm. b Polysome fractionation performed in 2iL, SL, and EPI. n= 4 biological replicates for 2iL vs. SL and n= 2 biological replicates for 2iL vs. EPI
comparison. c Scatter plots showing the association between mRNA and RFP fold-change in SL or EPI when compared to 2iL state. Differentially translated
mRNAs (FDR < 0.1 and fold-change >1.5 using Xtail analysis pipeline) are highlighted in different colors based on the direction of mRNA and RFP changes.
Homodirectional=mRNA and RFP display change in the same direction (up or downregulated). Opposite change=mRNA and RFP display change in
opposite directions. P values were adjusted for multiple testing using Benjamin–Hochberg correction, n= 6487 mRNAs. d Bar plots showing the number of
differentially translated mRNAs in SL, EPI, or in both (“common” genes) when compared to 2iL state. Differentially translated mRNAs are defined by FDR <
0.1 and fold-change >1.5 using Xtail analysis pipeline. P values were adjusted for multiple testing using Benjamin–Hochberg correction, N numbers
represent mRNAs and are stated in the figure. e GO-term enrichment analysis for the “common” genes with higher TE in 2iL cells. Two-sided values were
adjusted for multiple testing using Benjamin–Hochberg correction, n= 108 mRNAs. f Scatter plot showing the correlation of TEs in SL and EPI states. The
set of “common” genes were used in this analysis and representative examples were highlighted in the figure. R-values represent Pearson correlation
coefficients, N numbers represent mRNAs and are stated in the figure. g Plots showing the change of TE at different time points of SL-to-2iL or 2iL-to-SL
transition. The set of “common” genes were used in this analysis. “All” genes were also included for comparison. N numbers represent mRNAs and are
stated in the figure.
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increased TE in 2iL state. These results are in line with the
polysome profiling results and point to a general increase in TE in
2iL when compared to SL and EPI. Gene ontology (GO) analysis
revealed that SL genes were mainly enriched in polyA-RNA-
binding proteins and included a large number of genes encoding
ribosomal proteins (n= 10 Rpl genes and n= 8 Rps genes, FDR <
0.1, fold change >1.5) (Supplementary Fig. 3a, b) whereas EPI
genes and common genes were mainly enriched in polyA-RNA-
binding proteins (Fig. 1e, Supplementary Fig. 3a, Supplementary
Data 2). In contrast to SL culture, both 2iL and EPI cultures are
based on serum-free medium supplemented with small-molecule
inhibitors (for 2iL culture) or growth factors (FGF2 and
ACTIVIN for EPI culture). Both SL and EPI conditions, however,
display increased lineage priming when compared to 2iL state.
Thus the “common” set of genes are likely to represent
developmentally regulated genes rather than the effect of culture
media; we therefore focused on the common gene set for the rest
of this study. In almost all the common genes, the change in TE
followed a similar direction in both SL and EPI states (cor=0.89)
and the vast majority of these genes (108/136, 79%) showed
increased TE in 2iL state (Fig. 1f).

The two states of SL and 2iL are interconvertible and can be
induced by switching the culture condition from SL-
supplemented to 2iL-supplemented medium. We therefore asked
whether the change in TE takes place early during SL–2iL
transition or whether this change is observed only at the steady-
state SL and 2iL. To address this, we performed ribosome
profiling at different time points of SL-to 2iL and 2iL-to-SL
transitions (Day 1, Day 3, and Day 7 of transition). We found that
change in TE is observed as early as Day 1 of SL-to-2iL or 2iL-to-
SL transitions, indicating an early response in the form of
differential TE during the conversion of the two ES-states
(Fig. 1g).

To further validate the results of the ribosome profiling, we
measured the changes in translation rate of a number of
candidate genes with differential TE in SL and EPI using
polysome fractionation followed by quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR), using specific
primers against mRNAs of interest. We also examined Oct4,
which showed no differential TE in our ribosome profiling data,
as control. In line with the ribosome profiling results, genes that
showed higher TE in 2iL displayed significantly higher association
with heavier polysome fractions when compared to SL and EPI
(Supplementary Fig. 3c).

Thus, the 2iL ground state is associated with increased
ribosome occupancy for a subset of mRNAs, which display
reduced TE during early commitment to SL and EPI states.

Pervasive translational buffering in ground state ESCs. In order
to assess the impact of changes in TE on alterations in protein
levels, we measured global protein abundance in SL, 2iL, and EPI
and during the SL–2iL transition using mass spectrometry-based
proteomics. Label-free quantification31 identified 4743 protein
groups that give rise to 5969 individual proteins across different
samples (Supplementary Data 3). Based on this quantitative
information, we sought to identify specific patterns of changes in
the mRNA expression and TE that would explain the variations in
protein abundance among SL, EPI, and 2iL. We integrated the
mRNA, RFP, and protein expression and selected a group of
proteins that could be accurately quantified in (a) all three 2iL, SL,
and EPI states and (b) could be uniquely assigned to their cor-
responding mRNAs, yielding a total of 3294 uniquely assigned
protein-RFP-mRNA groups (Fig. 2a, Supplementary Fig 4a, Sup-
plementary Data 4). We noted that generally, changes in mRNA
expression highly correlated with changes in ribosome occupancy

in both SL and EPI when compared to 2iL (Pearson’s correlation
coefficient=82% and 81%, respectively, Fig. 2b). In contrast,
changes in mRNA or RFP expression correlated to a lesser degree
with changes in protein abundance (Pearson’s correlation coeffi-
cient=72% in SL vs. 2iL and 61% in EPI vs. 2iL, Fig. 2b).

At the global level, we observed that in general a change in TEs
between different ES states does not lead to concomitant change
in protein expression (cor=0.01 in SL vs. 2iL and cor=0.04 in EPI
vs. 2iL, Fig. 2c). Strikingly, the vast majority of genes with
differential TE showed no change in protein abundance among
the different ES-states (75% of “common” genes, 81% of SL genes
and 88% of EPI genes, protein fold change <2). Importantly, for
these genes we observed that change in TE often takes place in an
opposite direction to that of mRNA expression, culminating in
similar abundance of the corresponding proteins (Fig. 2d). Thus,
the majority of mRNAs with differential TE undergo “transla-
tional buffering” in different states of ESCs; a large number of
these genes show lower mRNA expression and increased
ribosome occupancy in the 2iL state, leading to a comparable
net protein level when 2iL is compared to SL or EPI states.
Notably, the buffering effect of translational control was not
universal as among the mRNAs that display differential TE, we
also detected a number of mRNAs such as Rnf126, Trim27, and
Med21, for which change in the TE was mirrored in concomitant
change in protein abundance (Fig. 2e, Supplementary Fig 4b). To
validate these observations, we selected Rnf126, which showed the
highest change in protein expression (based on mass spectro-
metry data) in SL and EPI when compared to 2iL, as a
representative mRNA. Polysome fractionation followed by qRT-
PCR analysis confirmed the shift of mRNA from light to heavy
polysome fractions in SL and EPI (Fig. 2f). Consistently, western
blot analysis confirmed the increased RNF126 protein abundance
in SL and EPI when compared to 2iL ESCs (Fig. 2g).

To probe the mechanism underlying the translational buffer-
ing, we analyzed the common features of mRNAs that show
similar TE-changes in different culture conditions. There was no
significant difference in the length of the 5′- or the 3′-UTRs
between the differentially translated mRNAs and a set of random
genes that were selected for comparison (Supplementary Fig. 4c).
Furthermore, no significant difference in %GC of 5′ UTR regions
was found in differentially translated genes when compared to the
control set of genes (Supplementary Fig. 4c). However, we found
a significantly higher %AU in 3′ UTRs within genes that show
higher TE in 2iL (P value=7.28e-05, Supplementary Fig. 4c).
Accordingly, a notable enrichment for AU-rich elements
(AUUUAU, 59% of genes, P= 2.9e-5) was found in this set of
translationally upregulated genes. Motif analysis for consensus-
binding sites of RNA-binding proteins (RBPs) revealed that the 3′
UTR regions of these mRNAs are strongly enriched, among
others, with ELAVL1/2/3/4 binding motifs (P value= 1.1e-06), a
protein family known to specifically bind to the AU-rich
elements32 (Supplementary Fig. 4d). In line with this observation,
we found significant (FDR < 0.05) downregulation of ELAVL2/4
protein in both SL and EPI when compared to 2iL state (2-fold
and 1.7-fold, respectively). These results point to a potential
regulatory mechanism that involves the AU-rich elements and
their RBPs at the 3′-UTRs of mRNAs that undergo specific
translational repression in SL and EPI.

Taken together, the transition to/from ground state 2iL
displays translational buffering for a set of mRNAs which ensures
the maintenance of stable protein levels. Thus, state-specific
translational control contributes minimally to the protein
variation during the naive to primed state transition. Instead,
this mode of gene regulation may provide a potential mechanism
for counteracting the transcriptional noise in response to
environmental changes.
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Proteome changes are accompanied by transcriptional rewir-
ing. Since variation in protein levels is the key determinant of
gene expression and as the vast majority of changes in protein
expression could not be explained by translational control, we
next sought to further characterize the differential protein
expression during naive to primed ESC transition. The quanti-
tative information obtained at different layers of gene expression
and at different time points of naive to primed ESC transition
provided a unique opportunity to investigate how the proteome
rewiring takes place in different states of pluripotency.

Principal component analysis confirmed the largely similar
trajectories of mRNA and protein dynamics during the 2iL to SL
and EPI transition (Fig. 3a). Among the 4743 identified protein
groups, 26% (n= 1250 proteins) showed differential expression
in at least one time point of the 2iL to SL to EPI transition (fold
change ≥3 and FDR < 0.05). When the steady states were
compared, 7% (n= 338) were differentially expressed between
SL and 2iL and 6% (n= 293) between EPI and 2iL (Fig. 3a, b).
Among the proteins that are differentially expressed in 2iL vs. SL
or EPI (n= 465), 216 proteins were exclusive to certain ESC state
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and could not be detected in all three ESC states (for example,
DAZL and BHMT that are exclusive for 2iL; DNMT3L and
TGLN that are exclusive for SL and EPI). RNA-seq analysis
showed that 68% of these genes are transcriptionally regulated
and showed differential mRNA abundance (fold change >2,
FDR < 0.05).

Importantly, we detected 194 differentially expressed proteins
in all the three ESC states at the RNA, RFP, and protein levels.
For this set of genes, we therefore estimated the contribution of
different layers of gene expression in determining the final
protein variation. By comparing mRNA, RFP, and protein
changes in SL and EPI vs. 2iL, we found that for ~70% of these
differentially expressed proteins the change in protein abundance

could be explained by changes in mRNA expression (RNA
change >2-fold). Translational control contributed to ~10% of the
variation in protein expression for differentially expressed
proteins (RFP change >2-fold and RNA change <2-fold). In
addition, for ~20% of the differentially expressed proteins, we
found that change in protein abundance takes place without
evident change in mRNA or RFP expression (RNA and RFP
change <2-fold, Fig. 3c–e and Supplementary Fig. 4e). In spite of
the differential protein expression, the stable mRNA and RFP
abundance in this set of genes suggest a specific post-translational
regulation in different states of pluripotency (Fig. 3f). In this
group, we detected proteins such as KRAS and MSI1 that are
specifically upregulated in 2iL and proteins such as UHRF1 that is
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specifically upregulated in SL and EPI states. Differentially
expressed proteins between SL and 2iL followed a cascade of
gene expression with gradual and continuous change at different
time points (Day 1, Day 3, and Day 7) of SL–2iL transition
(Fig. 3g). To validate the prteome data we used western blot
analysis and examined a set of candidate proteins in 2iL, SL, and
EPI states, and during 2iL–SL transition. These proteins included:
2iL-specific proteins, BHMT, NQO1, and KRAS; SL-specific
protein, S100A6; SL and 2iL-ESC-specific protein, ESRRB and a
general pluripotency protein (SL, 2iL, and EPI), OCT4. Data
obtained from western blot analysis largely confirmed the
proteomics data for all the examined proteins (Fig. 4).

Thus, the majority of changes in the proteome is accomplished
by transcriptional rewiring during naive to primed ESC
transition. A set of genes, however, undergo specific regulation
at the translational or post-translational levels.

2iL-specific proteins are enriched for metabolic pathways. We
next sought to functionally annotate the differentially expressed
proteins during the naive to primed state transition. The protein
signature of the 2iL state was mainly enriched in metabolic
pathways (such as glutathione and lipid metabolism) and inclu-
ded proteins such as GSS, IDH1, ACSL1, and DAZL whereas the
specific proteins for SL or EPI were mainly enriched in cell
adhesion proteins or purine nucleotide metabolism and included
proteins such as ITGA3, FLNA, EPCAM, and LIN28A (Fig. 5a,
b). We also asked whether the differential proteins in SL or EPI

are enriched for specific protein complexes. By examining the
recently annotated compendium of 275 large protein complexes
(>5 members33) we found that the differentially expressed pro-
teins are highly enriched for the AuroaB-INCENP protein com-
plex, that is involved in regulating the mitotic progression, and
the Polycomb protein complex 2 (PRC2) that is involved in
H3K27me3 deposition (Fig. 5c, d). For AuroaB–INCENP com-
plex we detected four of the five annotated proteins in which
three members (AURKB, AURKC, and MAGED1) were differ-
entially expressed between SL and EPI compared with 2iL.
Similarly, we detected 8 of the 11 described core members of the
PRC2 complex, in which 4 members (EZH1, SUZ12, MTF2, and
AEBP2) were significantly downregulated in SL and EPI states
(Fig. 5d). These findings are in line and extend on the previous
observations that reported a strong difference in global
H3K27me3 and cell cycle progression in different states of
ESCs20,34,35.

Finally, given that the 2iL state is promoted by inhibition of the
signaling pathways downstream of the GSK and MEK, we sought
to explore the link between the observed differential protein
expressions to the upstream signaling pathways. We used CH or
PD withdrawal from 2iL to maintain cells for 1 and 3 days with a
single inhibitor and generated mass spectrometry-based pro-
teome profiles from the cultured ESCs (Fig. 5e). These cultures
represent the early response to the single inhibitor withdrawal
and likely reflect direct effects of the small molecule inhibitors.
For the majority of proteins that significantly change expression
between 2iL and SL/EPI steady states (529/642 proteins),
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removing either the PD or the CH inhibitors was not sufficient to
induce a gene expression pattern that is observed in SL/EPI states
(Fig. 5e). This indicates that signaling downstream of either PD or
CH is sufficient to maintain a gene expression signature similar to
2iL. On the other hand, 95 proteins significantly changed
expression upon PD or CH withdrawal (fold change >2 and
FDR < 0.05) and we could accurately assign these proteins to
signaling pathways downstream of CH or PD inhibitors. Overall,
we observed a greater effect of PD than CH withdrawal on
differential protein expression (76 vs. 19 proteins, respectively).
Further, for a specific set of proteins (n= 40), we found that the
function of both PD and CH is required to induce a gene
expression signature similar to 2iL state. These proteins included
members of the DNA methyl transferase complex (including
DNMT3A, DNMT3B, and DNMT3L) that gained similar
expression as SL/EPI when either the PD or the CH was removed
from the 2iL culture.

In summary our findings revealed genes that undergo specific
transcriptional, translational, or post-translational regulation in
ground state ESCs when compared to SL or EPI states (Fig. 5,
Supplementary Data 5). We provide a plausible link between the
observed differential protein expressions and the individual
signaling pathways downstream of PD- or CHIRON-function
in ground state pluripotency. We observed that the majority of
differentially expressed proteins requires either PD- or CHIRON
signaling to maintain their expression similar to 2iL state; for
some proteins (e.g. DNMT3B or TET2), however, both inhibitors
(2i), are required and removing either PD or CH from the 2iL
medium induces changes similar to SL/EPI states. Altogether, by
integrating different layers of gene expression and linking these
changes to the upstream signaling pathways, we provide a
comprehensive and detailed overview of the global changes in
gene expression during the naive to primed ESC transition
(summarized in Fig. 6, Supplementary Data 5).
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Discussion
In this study, we provide a comprehensive and detailed picture of
the different layers of gene regulation in naive and primed state
pluripotency. We started by asking whether and to what extent
translational control contributes to differential gene expression
and protein levels variation during the naive to primed ESC
transition. We found that 2iL state is associated with increased
polysome density and TE. This observation cannot be explained
by general increase in stem cell differentiation or cell prolifera-
tion, both of which are generally associated with augmented
mRNA translation and protein synthesis2,9,36. In this regard, 2iL
ESCs display lower lineage commitment and cell proliferation
rate when compared to SL and EPI states18,35. Our findings,
however, may not contradict the previous observations of a low
protein synthesis rate in stem cells as we found a poor correlation
between increased ribosome occupancy and enhanced protein
expression for the majority of examined RNAs. Thus the trans-
lational control contributes minimally to the final protein varia-
tion during naive to primed ESC transition.

Conspicuously, the majority of mRNAs with higher TE showed
lower mRNA abundance that is compensated by the increased
mRNA translation in 2iL ESCs, ultimately leading to similar
protein expression levels across different ESC states. This obser-
vation highlights the effect of gene expression buffering; a

coordinated balancing act between transcriptional and transla-
tional machineries that likely provides a mechanism to offset the
transcriptional noise and to ensure consistent and precise reg-
ulation of protein expression9. Cells require robust mechanisms
for coping with internal noise (e.g. stochastic initiation of tran-
scription) or fluctuations in external signals to tightly regulate
protein expression. In fact, during the cell state transition in
mammalian cells, post-transcriptional control accounts for sig-
nificant delays in induction of changes in the protein levels,
despite comparatively fast shifts in the mRNA levels9,37. The
phenomenon of post-transcriptional buffering at the translational
or post-translational levels has been observed in diverse contexts;
for instance, studies in tumor cells show that copy number
alterations result in less variation in protein levels than the cor-
responding mRNAs38,39. Similarly, genetic variations among
individuals (quantitative trait loci, QTLs) have less effect on
protein than the corresponding mRNA levels40, suggesting that
the effects of QTLs on the downstream phenotypes are buffered.
A similar observation was also made by comparing mRNA and
protein levels among primates (human chimpanzee and rhesus
macaques), where many genes with significant mRNA differences
showed little or no change in protein levels indicating a stronger
evolutionary constraint for protein expression5,41. Furthermore,
specific buffering at the translational level has been observed
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Fig. 6 Diverse modes of gene regulation in pluripotent cells. An overview of the multiple layers of gene regulation that have been integrated in this study.
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“2i” refers to the proteins that require both PD and CH signaling to maintain expression similar to 2iL state; removing either PD or CH from 2iL induces
changes similar to SL/EPI state. “P” refers to the proteins that require PD to maintain an expression pattern similar to 2iL; removing PD from 2iL medium
induces changes similar to SL/EPI state. “C” refers to the proteins that require CH to maintain an expression pattern similar to 2iL; removing CH from 2iL
medium induces changes similar to SL/EPI state.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15449-9 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1617 | https://doi.org/10.1038/s41467-020-15449-9 |www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


between yeast42 or bacterial species43, across human indivi-
duals44, in aneuploid tumor cells45, and in response to growth
factor stimulation46. Thus, post-transcriptional buffering (both at
translational or post-translational levels) can lead to comparable
protein abundance and divergence between mRNA and protein
expression.

Interestingly, we observed a significant enrichment for RBPs
among the translationally regulated mRNAs. RBPs impact var-
ious stages of mRNA expression and turnover and play critical
roles in stem cell pluripotency and differentiation. Several dif-
ferentially translated RBPs in our data such as Mettl14 (ref. 47),
Pabc1 (ref. 48), Pcbp1 (ref. 49), Ddx6 (ref. 50), and Hnrnpd51 have
been implicated in the maintenance or differentiation of
embryonic and adult stem cells. However, it remains an open
question how these RBPs are translationally regulated in different
states of ESCs. A potential mechanism affecting some of these
mRNAs could be the activity of the ELAVL; ELAVL1/2/3/4)
protein family, which are known to specifically bind the AREs.
While AREs were demonstrated to both increase or decrease
translation and mRNA stability in various contexts52–55, ELAVL
proteins are generally linked to the enhanced stability and
translation of their target mRNAs55–57. We found a considerable
enrichment of AU-rich elements and the consensus-binding
motif of the ELAVL proteins in the 3′ UTRs of mRNAs that
showed higher TE in 2iL ESCs. Accordingly, we observed a sig-
nificant downregulation of ELAVL2/4 proteins in both SL and
EPI when compared to 2iL state. Thus, downregulation of the
ELAVL proteins in SL and EPI cells might be linked to the
decreased TE of the ARE-containing mRNAs in these cells. Our
data also demonstrate a strong induction of the RBP DAZL in 2iL
ESCs. DAZL stimulate mRNA translation in cooperation with the
poly(A)-binding protein (PABP)58; DAZL was shown to specifi-
cally bind to the 3′ UTR of the ELAVL2 mRNA and enhance its
stability and TE59. The involvement of DAZL and its associate
factors in regulation of the expression of ELAVL proteins
and their impact on the higher rate of general, as well as tran-
script-specific, mRNA translation in 2iL cells would be an
interesting subject for further investigations.

By comparing the steady-state mRNA level, ribosome occu-
pancy, and protein abundance in the three pluripotent states (i.e.
2iL, SL, and EPI) we showed that changes in mRNA expression
can largely explain the changes in protein abundance for ~70% of
genes. Conspicuously, we found that translational control
accounts for ~10% of protein variations. In a seminal work
describing the correlation between mRNA and protein levels,
~40% of differences in protein levels was attributed to variation in
mRNA expression suggesting a major impact of translation on
controlling the protein levels in mammalian cells6. An indepen-
dent study concluded that only ~9% of variation in protein levels
could be attributed to specific translational control and mRNA
change explained most of the variation in protein levels60.
Similarly, in lipopolysaccharide-stimulated dendritic cells, change
in mRNA abundance plays a dominant role in determining the
changes in protein levels61. Accordingly, the inter-species diver-
gence in protein levels was largely explained by changes in RNA
levels and the divergence in TE accounted for less than 20% of
variation in protein abundance41. Thus in specific cellular con-
texts, change in mRNA abundance can largely explains the var-
iation in protein levels in steady-state measurements2,9,62,63,
while translational and post-translational controls could enable
rapid, temporal adaptation during cell state transitions.

Given that we have measured the steady-state mRNA levels,
our observed changes in mRNA abundance could be due to either
transcriptional regulation or mRNA stability, both of which could
lead to changes in the final mRNA abundance. Recently, Fremier
et al. investigated the transcriptome-wide changes in mRNA

translation and stability in the context of microRNA-induced
gene silencing64. In this regard, microRNAs were shown to reg-
ulate both the stability and translation of their target mRNAs.
Notably, depletion of DDX6, a RNA helicase implicated in
microRNA-induced gene silencing, affected mRNA translation
without impacting their stability, thus demonstrating a role for
translational repression, independent of mRNA destabilization.
By measuring nascent mRNA transcription and steady-state
mRNA levels, Fremier et al. also employed ESCs maintained in a
mix of SL+ 2iL culture condition and showed that mRNA
transcription rather than change in mRNA stability is the
dominant regulator of mRNA abundance during ESCs-to-EPI
differentiation. Furthermore, Fremier et al. reported limited dif-
ferential mRNA translation in the employed ESCs when com-
pared to EPI cells. Our findings corroborate and extend these
observations and suggest that transcriptional control represents
the main mode of gene regulation among different states of ESCs
whereby specific translational and post-translational control play
a lesser contribution to regulating the final protein abundance.
We also note that for a subset of genes the change in protein
abundance cannot be extrapolated by analyzing RNA-seq data
alone. We show that this group of genes are regulated mainly at
the post-translational level and to a lesser extent at the transla-
tional levels.

Methods
ESC culture. For SL culture, E14Tg2a ESCs (purchased from ATCC) were
maintained on gelatin-coated dishes without feeder cells and in Dulbecco’s mod-
ified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum, L-gluta-
mine (2 nM), Na-Pyruvate (1 mM), non-essential amino acids (0.1 mM each),
penicillin/streptomycin (Gibco), 2-mercaptoethanol (55 µM), and LIF (1000 U/ml,
Milipore). For 2iL culture, E14Tg2a ESCs were cultured in NDiff 227 medium
(StemCells, Inc.) supplemented with MEK inhibitor PD0325901 (1 μM), GSK3
inhibitor CHIR99021 (3 μM), and LIF (1000 U/ml, Milipore). SL-ESCs were cul-
tured for over 2 months (>24 passages) in 2iL medium to generate the steady-state
2iL ESCs. For EPI differentiation, E14Tg2a ESCs were cultured in NDiff 227
(StemCells, Inc.) supplemented with penicillin/streptomycin, 20 ng/ml Activin-A
(R&D Systems), 12 ng/ml bFGF (R&D Systems), and 1% knock-out serum repla-
cement (Gibco) and on Fibronectin (10 μg/ml)-coated dishes at ~15,000 cells per
cm2 density. For EPI differentiation, 2iL-ESCs were transferred to EPI medium and
were maintained for 72 h. For single-inhibitor experiments and to assess the (likely)
direct effects of PD and CHIRON signaling, we cultured the steady-state 2iL ESCs
for 1 and 3 days in single inhibitor-supplemented medium and collected the cells
for further experiments.

Polysome profiling assay. Cells were pretreated with 100 µg/ml cycloheximide
(Sigma) for 5 min, and lysed in hypotonic buffer (5 mM Tris-HCl (pH 7.5), 2.5 mM
MgCl2, 1.5 mM KCl, 1× protease inhibitor cocktail (EDTA-free; Roche), 100 µg/ml
cycloheximide, 2 mM DTT, 200 U/ml RNaseIn, 0.5% (v/w) Triton X-100, and 0.5%
(v/w) sodium deoxycholate) to isolate the ribonucleoproteins. Four hundred
micrograms of the ribonucleoproteins were separated on a 10–50% sucrose gra-
dient by ultracentrifugation at 36,000 r.p.m. in an SW40 rotor (Beckman Coulter)
at 4 °C for 2 h, and fractionated using an ISCO gradient fractionation system and
optical density at 254 nm was continuously recorded with a FOXO JR Fractionator
(Teledyne ISCO).

Ribosome profiling assay. Ribosome profiling was performed as previously
described65, with minor modifications. Briefly, 500 µg of the ribonucleoproteins
(two biological replicates per sample) were treated with 1000 U RNase I (Ambion
Cat# AM2295) at 4 °C for 50 min with gentle end-over-end rotation followed by
incubation with SuperaseIn (Ambion, Cat# AM2696). Monosomes were pelleted by
ultracentrifugation in a 34% sucrose cushion at 70,000 r.p.m. in a TLA-120.2 rotor
(Beckman Coulter) at 4 °C for 3 h. RNA fragments were extracted with acid phenol
(2×), once with chloroform, and precipitated with isopropanol at −20 °C in the
presence of NaOAc and GlycoBlue (Invitrogen). Purified RNA samples were
resolved on a denaturing 15% polyacrylamide-urea gel and the sections corre-
sponding to 28–32 nucleotides containing the RFPs were excised, eluted, and
precipitated by isopropanol.

Purified RFPs were dephosphorylated using T4 polynucleotide kinase (New
England Biolabs) for 1 h at 37 °C. Denatured fragments were re-suspended in
10 mM Tris (pH 7) and quantified using the Bio-Analyzer Small RNA assay
(Agilent). A sample of 10 pmol of RNA was ligated to the 3′-adaptor with T4 RNA
ligase 1 (New England Biolabs) for 2 h at 37 °C. Reverse transcription was carried
out using oNTI223 adapter (Illumina) and SuperScript III reverse transcriptase
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(Invitrogen) according to the manufacturer’s instructions. Products were separated
from the empty adaptor on a 10% polyacrylamide Tris/Borate/EDTA-urea (TBE-
urea) gel and circularized by CircLigase (Epicentre). Ribosomal RNA amounts were
reduced by subtractive hybridization using biotinylated rDNA complementary
oligos65. The RFP libraries were amplified by PCR (11 cycles) using indexed
primers and quantified using the Agilent BioAnalyzer High-Sensitivity assay. DNA
was then sequenced on the HiSeq-2000 platform with read length of 50 nucleotides
(SR50) according to the manufacturer’s instructions, with sequencing primer
oNTI202 (5CGACAGGTTCAGAGTTCTACAGTCCGACGATC).

RNA-seq assay. RNA isolation was performed using two biological samples per
time point and the Qiagen RNeasy protocol. Four micrograms of RNA was
employed to generate the RNA-seq libraries. In short, total RNA was subjected to
rRNA depletion using the Ribo-ZeroTM Gold kit (Epicentre) according to the
manufacturer's instructions. rRNA-depleted samples were employed for first- and
second-strand cDNA synthesis and using dUTP for strand-specificity. RNA-seq
libraries were prepared using KAPA Hyperprep kit (Roche 07962363001)
according to the manufacturer's instructions and the final libraries were sequenced
on a HiSeq-2000 Illumina sequencer.

Analysis of ribosome profiling and RNA-seq data. To analyze the ribosome
profiling data, FASTQ reads were processed as previously described65. Briefly,
adaptor sequences were removed using fastx_clipper (fastx_toolkit-0.0.14)
(http://hannonlab.cshl.edu/fastx_toolkit/index.html) and by employing the fol-
lowing parameters clipper -Q33 -a CTGTAGGCACCATCAAT -l 25 -c -n -v.
Reads were then trimmed using fastx_trimmer (fastx_toolkit-0.0.14) and -Q33 -f
2 parameters. Both RNA-seq reads and the trimmed RFP reads were then aligned
against mouse rRNA, tRNA, snRNA, snoRNA, mtRNA sequences using Bowtie66

and -seedlen=23 to deplete these small RNA contamination. Unmapped reads
(cleaned) were then mapped against mouse genome (mm9) using GSNAP67 and
by employing the following parameters: -B 5 -t 15 -N 1 -E 100 -w 100000 -n 10 -s
mm9refGene_splice. Mapped reads were counted in the coding sequence using
HTseq-count68 with the settings: -m union -s reverse -t CDS.

RFP and RNA-Seq read counts were normalized for quantification of the TE
quantification and differentially translation analysis using Xtail algorithm v.1.1.5
(ref. 69) with minMeanCount=50. Genes were considered differentially translated
if they had at least 50 normalized reads in RNA, 25 normalized reads in RFP,
displayed absolute fold change >1.5 and FDR ≤ 0.1. The DESeq package70 was also
used to normalize the RFP and RNA-Seq read counts (with similar results to Xtail
normalization) and the results were employed to correlate the variation in RNA,
RFP, and protein levels. Graphs were generated using data.table and ggplot2 R
packages in R version 3.5.1 on Ubuntu 16.04.5 LTS.

Quality control of Ribo-Seq data. To analyze the position of initiating ribosome in
relation to the annotated translation initiation sites (TISs), we employed a custom
pipeline as reported previously52. Briefly, BAM files were converted to strand specific
5′ end wiggle files using a custom Pyton script. Wiggle files were then converted to a
format suitable for the Batch PositionConverter Interface in Mutalyzer 2.0.beta-32
(https://mutalyzer.nl/batchPositionConverter). These converted files were then
manually loaded into Mutalyzer to retrieve positions relative to the annotated TIS. We
analyzed the first position of the aligned reads to transcript coordinates and relating
those coordinates to annotated TISs positions located up to −15 nt surrounding the
TIS were counted as positions in coding regions For all samples, a major peak was
observed at −12 nt from the annotated TIS.

To calculate the read distribution and coverage at 5′ UTR, CDS, and 3′ UTR
regions, we first downloaded all the 5′ UTR, CDS, and 3′ UTR sequences from
Ensemble BIOMART mm9 database. CDS sequences were extended by 50 nt
upstream for 5′ UTR analysis and by 200 nt downstream for 3′ UTR analysis. We
used CDS sequences with more than 1000 nt for this analysis. The generated BED
file for 5′ UTR-CDS or 3′ UTR-CDS were binned into 10 nt bins and the number of
reads from RNA-seq and RFP-seq libraries were counted using BEDtools, Samtools
and in house script (peakstats.py).

Proteome profiling with LC-MS/MS. To generate whole-cell proteomics profiles,
cells were lyzed in 4% SDS, 0.1M HEPES pH 7.6, 0.1M DTT. Protein lysates were
then digested with trypsin/LysC combination using Filter Aided Sample‐Preparation
(FASP) as described previously71. Peptides were desalted and purified on StageTips72

and were loaded on Orbitrap LC-MS (Thermo). Two set of proteomes were gener-
ated: the forward proteome (included 2iL, SLd1, SLd3, SLd7, SL, and EPI samples)
and the reverse transition (that included SL, 2iLd1, 2iLd3, 2iLd7, and 2iL samples).
MaxQuant 1.5.1.0 (ref. 31) was used to analyze the mass spectra. Briefly Thermo Raw
MS files were used to search against the curated mouse RefSeq protein sequence
database using default MaxQuant settings with match-between-runs, and label-free
quantification (LFQ) and iBAQ quantification of proteins enabled31,73. One percent
false-discovery rate was applied to the match of propensity-score matching and
assembly of proteins. Two missed cleavages were allowed for trypsin enzyme cuts and
peptides length was set between 1 and 7 amino acids. Perseus software (version
1.5.5.3) was used to perform filtering, imputation of missing values, and permutation-
based t-test. In brief, the generated LFQ and IBAQ values from MaxQuant were used

and the identified proteins were searched against a decoy database from MaxQuant.
We filtered out proteins that flagged as “reverse” or “contaminant” from the final list.
To calculate differential protein expression, biological triplicates were grouped and the
protein list was filtered for proteins that were not reproducibly quantified in three
replicates in at least one conditions of the forward or reverse proteome samples. Next,
missing values were imputed from a normal distribution using the default settings
(width= 0.3, down shift= 1.8). Lastly, differential proteins between triplicates were
calculated using a Student’s t-test (FDR < 0.05) and a fold-change of >3-fold, fol-
lowing previous recommendations74.

qRT-PCR. To validate the candidate genes expression in polysome profiling assay,
sucrose gradient fractions were used for RNA extraction by using TRIzol (Ther-
moFisher). RNA samples were employed in cDNA synthesis using 1 µg of RNA
according to the manufacturer's instructions. Fractions collected from two inde-
pendent experiments were used. Quantitative PCR was performed using iQ SYBR
green supermix (Bio-Rad) and primers in Supplementary Data 6. Ct values were
normalized to input samples from un-fractionated (total) lysates.

Western blot analysis. ES cells were lysed in RIPA buffer supplemented with
protease inhibitors (11836170001; Roche). Twelve percent SDS-PAGE gels were
used for protein separation followed by transfer onto PVDF membrane. Blots were
blocked with 5% non-fat milk at room temperature for 1 h and incubated with the
following primary antibodies overnight at 4 °C: RNF126 (Abcam, ab234812, 1:500),
BHMT (Abcam, ab96415, 1:500), NQO1 (Abcam, ab28947, 1:500), KRAS (Abcam,
Ab180772, 1:500), S100A6 (Abcam, ab134149, 1:1000), OCT4 (Millipore,
MABD76, 1:1000), and ESRRB (Perseus proteomics, PP-H6705-00, 1:1000). Pri-
mary antibodies for GAPDH (Abcam, Ab8245, 1:1000) and ACTB (Sigma, A1978,
1:1000) were employed as internal controls and for 1 h at room temperature. HRP-
swine-anti-rabbit (Dako, P0217) and HRP-rabbit anti mouse (Dako, P0161) were
used as secondary antibodies and subsequently signal was detected using ECL kit
(Pierce, 32106) and the ImageQuant LAS 4000 system (GE Healthcare Life Sci-
ences). Western blots were repeated for two times.

Comparison with embryonic profiles. We first compared the profiles of 2iL, SL,
and EPI ESCs and selected genes that are specific for each state or shared between
SL and EPI when compared to 2iL state (FC ≥ 3 and DEseq, adjusted P value
<0.05). We then performed hypergeometric enrichment analysis and computed the
enrichment of ESCs-specific genes within stage-specific gene sets previously
reported for different stages of the developing mouse embryo30. All P values were
corrected using Benjamini–Hochberg test.

UTR analysis. We retrieved the 5′-UTR, CDS and 3′-UTR sequences from
Ensemble BIOMART and used the full-length sequences for structural features
analysis (including nucleotide composition, sequence enrichment, and motif
enrichment analysis). To analyze the sequence around the start and stop codons,
we selected the 50 nt flanking the start site and the 200 nt flanking the stop codon.
To compute the length and the %GC of different sequences the bedtools nuc from
BEDTools suite v2.20.1 was used. To compute the AU-rich elements (ARE)
enrichment, we scanned for the UAUUUAU elements in the 3′ UTR regions of
differentially translated mRNAs (n= 108), all mRNAs that were included in TE-
analysis (n= ~6300) and randomly selected 3′ UTR regions (n= 108) using
Gimme scan and the following parameters: -c 0.9 –r. AREs were scanned in the
positive strand of 3′ UTRs and mRNAs with at least one ARE in their 3′ UTR
region were counted. Hypergeometric test was performed to compute the enrich-
ment of AREs in differentially translated genes and random set of genes.

RBP motif analysis. We used the CISBP-RNA database75 that includes RNA
motifs for 228 RNA-binding proteins. Gimme Motifs package scan76 was then used
with –c 0.9 –r to scan all motifs for the known RNA-binding proteins in the 3′ UTR
of differentially translated genes, total genes (6K), and 108 randomly selected genes.
We captured ~186 unique RBP motifs in DE genes, all genes, and in random list.
Hypergeometric test was then performed to calculate the enrichment for different
RBP-motifs for the differentially translated mRNAs and the random set of genes.

Protein complex enrichment analysis GO-term analysis. To compute the
enrichment of different protein complexes in the list of differentially expressed
proteins, we used the recently annotated compendium of 275 large protein com-
plexes (>5 members)33. Hypergeometric test was used to calculate the enrichment
and P values were adjusted for multiple testing using Benjamini–Hochberg cor-
rection and protein complexes with FDR ≤ 0.1 were selected.

Statistics and reproducibility. R version 3.5.1 on Ubuntu 16.04.5 LTS was used
for statistical analyses. Error bars, P values, and statistical tests are reported in the
figure legends. Biovenn was used to generate the venn diagram for overlap between
RNA, RFP, and proteins. http://www.biovenn.nl/. Statistical tests include paired or
unpaired two-tailed Student’s t-test, Fisher’s exact test, Wilcoxon rank-sum test,
“N–1” Chi-squared test, Pearson correlation, and Wald test. All experiments were
performed independently at least two times unless otherwise indicated.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All high throughput datasets have been deposited at Gene Expression Omnibus (GEO)
with accession code GSE133794. The mass spectrometry data have been deposited at the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD014528. The source data underlying Figs 1–6 and Supplementary Figs 1–4
are are provided as a Source Data file.

Code availability
Codes are available as part of the source data file
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