Skip to main content
. 2020 Mar 26;11:300. doi: 10.3389/fpls.2020.00300

FIGURE 1.

FIGURE 1

Tissue specificity and subcellular localization of Mn transport proteins in roots of different plant species. (A) Mn transport proteins in epidermis, endodermis, cortex, and stele (including pericycle) of Arabidopsis roots. (B) Mn transport proteins in exodermis, endodermis, and stele of rice roots. Radial transport of Mn2+ is carried out by OsNRAMP5 and OsMTP9, which are polarly localized transporters at both the exodermis and the endodermis, providing a unidirectional flux of Mn from the soil to the stele (indicated as dashed arrow). (C) Mn transport proteins in epidermis, endodermis, cortex, and stele of roots of other plant species. (A–C) White arrows indicate import into the cytosol, black arrows indicate export out of the cytosol. Transport proteins with yet unknown root tissue specificity are marked by asterisks. Proteins which subcellular localization only shown in yeast but not in plants are indicated by a question mark. Hv, Hordeum vulgare; Pt, Populus trichocarpa; Sh, Stylosanthes hamata; Ta, Triticum aestivum; Vv, Vitis vinifera.