Skip to main content
. 2020 Apr;8(4):407–419. doi: 10.1016/S2213-2600(19)30469-2

Table 2.

Description of candidate blood transcriptional signatures for tuberculosis

Original gene number Model Intended application Discovery datasets
Population HIV status Setting Approach Tuberculosis cases Controls Total
Anderson39.LTBI26 42 Disease risk score Tuberculosis vs LTBI Children Positive or negative South Africa, Malawi Elastic net using genome-wide data 87 43 130
Anderson39.OD26 51 Disease risk score Tuberculosis vs OD Children Positive or negative South Africa, Malawi Elastic net using genome-wide data 87 134 221
BATF227 1 NA Tuberculosis vs HC (acute vs convalescent) Adults Negative UK SVM using genome-wide data 46 31 77
Duffy1016 10 SVM (linear kernel) Tuberculosis vs LTBI and OD Adults Positive or negative South Africa Multinomial random forest using genome-wide data 93 207 300
Gjoen828 7 LASSO regression Tuberculosis vs HC and OD Children Negative India LASSO using 198 pre-selected genes 47 36 83
Gliddon329 3 (FCGR1A + C1QB) − (ZNF296) Tuberculosis vs LTBI Adults Positive or negative South Africa, Malawi FS-PLS using genome-wide data NS NS 285
Gliddon429 4 (GBP6 + PRDM1) − (TMCC1 + ARG1) Tuberculosis vs OD Adults Positive or negative South Africa, Malawi FS-PLS using genome-wide data NS NS 293
Huang1130 13 SVM (linear kernel) Tuberculosis vs HC and OD Adults Negative UK Common genes from elastic net, L1/2 and LASSO models, using genome-wide data 16 79 95
Kaforou2531 27 Disease risk score Tuberculosis vs LTBI Adults Positive or negative South Africa, Malawi Elastic net using genome-wide data NS NS 285
Kaforou3931 44 Disease risk score Tuberculosis vs OD Adults Positive or negative South Africa, Malawi Elastic net using genome-wide data NS NS 293
Kaforou4531 53 Disease risk score Tuberculosis vs LTBI and OD Adults Positive or negative South Africa, Malawi Elastic net using genome-wide data NS NS NS
Maertzdorf432 4 Random forest Tuberculosis vs HC Adults Negative India Random forest using 360 selected target genes 113 76 189
NPC233 1 NA Tuberculosis vs HC and LTBI Adults NS Brazil Differential expression using genome-wide data 6 28 34
Penn-Nicholson617 6 Difference of means Incipient tuberculosis vs HC Adolescents Negative South Africa SVM-based gene pair models using genome-wide data 46 107 153
Qian1734 17 Sum of standardised expression Tuberculosis vs HC and OD Adults Negative UK Differential expression of Nrf2-mediated genes 16 69 85
Rajan535 5 Unsigned sums Tuberculosis vs HC (screening among PLHIV) Adults Positive Uganda Differential expression using genome-wide data NS NS 80 (1:2 cases:controls)
Roe313 3 SVM (linear kernel) Incipient tuberculosis vs HC Adults Negative UK Stability selection using genome-wide data 46 31 77
Roe427 4 SVM (linear kernel) Tuberculosis vs OD Adults Negative UK SVM using genome-wide data 23 35 58
Roe527 5 SVM (linear kernel) Tuberculosis vs HC and OD Adults Negative UK SVM using genome-wide data 23 50 73
Singhania2036 20 Modified disease risk score Tuberculosis vs HC and OD Adults Negative UK, South Africa Random forest using modular approach NS NS NS
Suliman237 2 ANKRD22 −OSBPL10 Incipient tuberculosis vs HC Adults Negative The Gambia, South Africa Pair ratios algorithm using genome-wide data 79 328 407
Suliman437 4 (GAS6 + SEPT4) – (CD1C + BLK) Incipient tuberculosis vs HC Adults Negative The Gambia, South Africa, Ethiopia Pair ratios algorithm using genome-wide data 45 141 186
Sweeney338 3 (GBP5 + DUSP3)/2 −KLF2 Tuberculosis vs LTBI and OD Adults Positive or negative Meta-analysis of South Africa, Malawi, UK, France, USA Significance thresholding and forward search in genome-wide data 296 727 1023
Walter4639 51 SVM (linear kernel) Tuberculosis vs LTBI Adults Negative USA SVM using genome-wide data 24 24 48
Walter3239 47 SVM (linear kernel) Tuberculosis vs OD Adults Negative USA SVM using genome-wide data 24 24 48
Walter10139 119 SVM (linear kernel) Tuberculosis vs LTBI and OD Adults Negative USA SVM using genome-wide data 24 48 72
Zak1640 16 SVM (linear kernel) Incipient tuberculosis vs HC Adolescents Negative South Africa SVM-based gene pair models using genome-wide data 37 77 114

Signatures were identified by systematic literature review and included for analysis. Signature names represent the first author's name of the corresponding publication, suffixed with the number of constituent genes that are present in the current RNAseq dataset. Both Anderson signatures resulted in the same number of final genes; these signatures were therefore additionally appended with the comparator control group. Details on how models were recreated are in appendix 1 (pp 2-4). LTBI=latent tuberculosis infection. OD=other diseases. NA=not applicable. HC=healthy controls. SVM=support vector machine. LASSO=least absolute shrinkage and selection operator. FS-PLS=forward selection-partial least squares. NS=not specified. Nrf2=nuclear factor, erythroid 2-like 2. PLHIV=people living with HIV.